
Christelle Baunez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4487362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stop-Signal Reaction-Time Task Performance: Role of Prefrontal Cortex and Subthalamic Nucleus. Cerebral Cortex, 2008, 18, 178-188.	2.9	344
2	Chronic dopaminergic stimulation in Parkinson's disease: from dyskinesias to impulse control disorders. Lancet Neurology, The, 2009, 8, 1140-1149.	10.2	337
3	Deep brain stimulation: from neurology to psychiatry?. Trends in Neurosciences, 2010, 33, 474-484.	8.6	262
4	Bilateral Lesions of the Subthalamic Nucleus Induce Multiple Deficits in an Attentional Task in Rats. European Journal of Neuroscience, 1997, 9, 2086-2099.	2.6	233
5	Addiction in Parkinson's disease: Impact of subthalamic nucleus deep brain stimulation. Movement Disorders, 2005, 20, 1052-1055.	3.9	223
6	ls there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neuroscience and Biobehavioral Reviews, 2010, 34, 50-72.	6.1	222
7	The subthalamic nucleus exerts opposite control on cocaine and 'natural' rewards. Nature Neuroscience, 2005, 8, 484-489.	14.8	210
8	Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1196-1200.	7.1	181
9	Chronic But Not Acute Treatment with a Metabotropic Glutamate 5 Receptor Antagonist Reverses the Akinetic Deficits in a Rat Model of Parkinsonism. Journal of Neuroscience, 2002, 22, 5669-5678.	3.6	174
10	Effects of dopamine depletion of the dorsal striatum and further interaction with subthalamic nucleus lesions in an attentional task in the rat. Neuroscience, 1999, 92, 1343-1356.	2.3	149
11	Enhanced Food-Related Motivation after Bilateral Lesions of the Subthalamic Nucleus. Journal of Neuroscience, 2002, 22, 562-568.	3.6	149
12	Parkinson's <scp>D</scp> isease, the <scp>S</scp> ubthalamic <scp>N</scp> ucleus, <scp>I</scp> nhibition, and <scp>I</scp> mpulsivity. Movement Disorders, 2015, 30, 128-140.	3.9	147
13	Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior. Progress in Neurobiology, 2009, 89, 79-123.	5.7	135
14	Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance Behavioral Neuroscience, 2001, 115, 799-811.	1.2	116
15	Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. European Journal of Neuroscience, 2001, 13, 1609-1616.	2.6	106
16	Functional Disconnection of the Medial Prefrontal Cortex and Subthalamic Nucleus in Attentional Performance: Evidence for Corticosubthalamic Interaction. Journal of Neuroscience, 2003, 23, 5477-5485.	3.6	103
17	Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. European Journal of Neuroscience, 2005, 21, 3107-3116.	2.6	95
18	Beyond the Reward Pathway: Coding Reward Magnitude and Error in the Rat Subthalamic Nucleus. Journal of Neurophysiology, 2009, 102, 2526-2537.	1.8	89

CHRISTELLE BAUNEZ

#	Article	IF	CITATIONS
19	High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction time task. European Journal of Neuroscience, 2003, 18, 951-956.	2.6	87
20	Cocaine and Amphetamine Depress Striatal GABAergic Synaptic Transmission through D2 Dopamine Receptors. Neuropsychopharmacology, 2002, 26, 164-175.	5.4	78
21	Reward-related neuronal activity in the subthalamic nucleus of the monkey. NeuroReport, 2005, 16, 1241-1244.	1.2	77
22	Effects of transient inactivation of the subthalamic nucleus by local muscimol and APV infusions on performance on the five-choice serial reaction time task in rats. Psychopharmacology, 1999, 141, 57-65.	3.1	73
23	Bilateral high-frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats. European Journal of Neuroscience, 2007, 25, 1187-1194.	2.6	70
24	Alcohol Preference Influences the Subthalamic Nucleus Control on Motivation for Alcohol in Rats. Neuropsychopharmacology, 2008, 33, 634-642.	5.4	60
25	The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making. Brain, 2016, 139, 1830-1843.	7.6	57
26	Deep brain stimulation for addiction: why the subthalamic nucleus should be favored. Current Opinion in Neurobiology, 2013, 23, 713-720.	4.2	56
27	Different populations of subthalamic neurons encode cocaine vs. sucrose reward and predict future error. Journal of Neurophysiology, 2013, 110, 1497-1510.	1.8	43
28	High-Frequency Stimulation of the Subthalamic Nucleus Blocks Compulsive-Like Re-Escalation of Heroin Taking in Rats. Neuropsychopharmacology, 2017, 42, 1850-1859.	5.4	43
29	Frontal Cortex-Like Functions of the Subthalamic Nucleus. Frontiers in Systems Neuroscience, 2011, 5, 83.	2.5	42
30	Functional interaction between mGlu 5 and NMDA receptors in a rat model of Parkinson?s disease. Psychopharmacology, 2005, 179, 117-127.	3.1	39
31	The Dopamine Agonist Piribedil with L-DOPA Improves Attentional Dysfunction: Relevance for Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 914-923.	2.5	37
32	Subthalamic nucleus high frequency stimulation prevents and reverses escalated cocaine use. Molecular Psychiatry, 2018, 23, 2266-2276.	7.9	35
33	Chronic D _{2/3} agonist ropinirole treatment increases preference for uncertainty in rats regardless of baseline choice patterns. European Journal of Neuroscience, 2017, 45, 159-166.	2.6	34
34	Social modulation of drug use and drug addiction. Neuropharmacology, 2019, 159, 107545.	4.1	32
35	Differential effects of prolonged high frequency stimulation and of excitotoxic lesion of the subthalamic nucleus on dopamine denervation-induced cellular defects in the rat striatum and globus pallidus. European Journal of Neuroscience, 2004, 20, 3331-3341.	2.6	29
36	Deep-Brain Stimulation of the Subthalamic Nucleus Selectively Decreases Risky Choice in Risk-Preferring Rats. ENeuro, 2017, 4, ENEURO.0094-17.2017.	1.9	28

CHRISTELLE BAUNEZ

#	Article	IF	CITATIONS
37	The Good and Bad Differentially Encoded within the Subthalamic Nucleus in Rats. ENeuro, 2015, 2, ENEURO.0014-15.2015.	1.9	27
38	Targeting the subthalamic nucleus in a preclinical model of alcohol use disorder. Psychopharmacology, 2017, 234, 2127-2137.	3.1	27
39	Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. ELife, 2018, 7, .	6.0	27
40	Cognitive and limbic effects of deep brain stimulation in preclinical studies. Frontiers in Bioscience - Landmark, 2009, Volume, 1891.	3.0	26
41	Linking reward processing to behavioral output: motor and motivational integration in the primate subthalamic nucleus. Frontiers in Computational Neuroscience, 2013, 7, 175.	2.1	25
42	The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation. Frontiers in Behavioral Neuroscience, 2014, 8, 414.	2.0	25
43	Evidence for Functional Differences between Entopeduncular Nucleus and Substantia Nigra: Effects of APV (DL-2-amino-5-phosphonovaleric acid) Microinfusion on Reaction Time Performance in the Rat. European Journal of Neuroscience, 1996, 8, 1972-1982.	2.6	23
44	Modulation of neuronal activity by reward identity in the monkey subthalamic nucleus. European Journal of Neuroscience, 2015, 42, 1705-1717.	2.6	23
45	Subthalamic low-frequency oscillations predict vulnerability to cocaine addiction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
46	Effects of GPi and STN inactivation on physiological, motor, cognitive and motivational processes in animal models of Parkinson's disease. Progress in Brain Research, 2010, 183, 235-258.	1.4	22
47	Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit. Neurobiology of Disease, 2015, 80, 54-62.	4.4	18
48	Neurons in the Monkey's Subthalamic Nucleus Differentially Encode Motivation and Effort. Journal of Neuroscience, 2022, 42, 2539-2551.	3.6	15
49	Subthalamic nucleus mediates the modulation on cocaine selfâ€∎dministration induced by ultrasonic vocalization playback in rats. Addiction Biology, 2020, 25, e12710.	2.6	13
50	Posttraumatic Stress Disorder is associated with altered reward mechanisms during the anticipation and the outcome of monetary incentive cues. NeuroImage: Clinical, 2020, 25, 102073.	2.7	13
51	Increased motor impulsivity in a rat gambling task during chronic ropinirole treatment: potentiation by win-paired audiovisual cues. Psychopharmacology, 2019, 236, 1901-1915.	3.1	12
52	Effects of subthalamic nucleus stimulation and levodopa on decisionâ€making in Parkinson's disease. Movement Disorders, 2019, 34, 377-385.	3.9	10
53	A few examples of the contribution of animal research in rodents for clinical application of deep brain stimulation. Progress in Brain Research, 2011, 194, 105-116.	1.4	9
54	Evidence for a vocal signature in the rat and its reinforcing effects: a key role for the subthalamic nucleus. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20212260.	2.6	7

CHRISTELLE BAUNEZ

#	Article	IF	CITATIONS
55	Decreased riskâ€taking and lossâ€chasing after subthalamic nucleus lesion in rats. European Journal of Neuroscience, 2021, 53, 2362-2375.	2.6	5
56	Repeated cocaine exposure prior to fear conditioning induces persistency of PTSD-like symptoms and enhancement of hippocampal and amygdala cell density in male rats. Brain Structure and Function, 2021, 226, 2219-2241.	2.3	4
57	Repeated ethanol exposure following avoidance conditioning impairs avoidance extinction and modifies conditioningâ€associated prefrontal dendritic changes in a mouse model of postâ€traumatic stress disorder. European Journal of Neuroscience, 2021, 54, 7710-7732.	2.6	4
58	Harnessing Circuits for the Treatment of Addictive Disorders. , 2019, , 271-285.		1
59	Inactivating the Subthalamic Nucleus in the Rat Induces Various Cognitive Deficits and Motivational Exacerbation. Advances in Behavioral Biology, 2002, , 591-602.	0.2	1
60	The Subthalamic Nucleus and Reward-Related Processes. Innovations in Cognitive Neuroscience, 2016, , 319-337.	0.3	1
61	Surgical Strategies for Parkinson's Disease Based on Animal Model Data: GPi and STN Inactivation on Various Aspects of Behavior (Motor, Cognitive and Motivational Processes). , 2009, , 1-21.		0
62	45. The Subthalamic Nucleus at the Nexus of Decision-Making Processes. Biological Psychiatry, 2017, 81, S19.	1.3	0
63	Ablative Neurotherapeutics and Deep Brain Stimulation in Animal Models of Psychiatric Disorders. , 2016, , 187-207.		0
64	Subthalamic stimulation breaks the balance between distal and axial signs in Parkinson's disease. Scientific Reports, 2021, 11, 21810.	3.3	0
65	The Ventral/Dorsal Divide: To Integrate or Separate. , 2005, , 437-456.		0
66	Editorial Special Issue on "Nature vs nurture in addiction research― Psychopharmacology, 2022, 239, 989-991.	3.1	0