Yi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4487261/publications.pdf

Version: 2024-02-01

32	1,853	17 h-index	32
papers	citations		g-index
34	34	34	1893
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	1.95-kV Beveled-Mesa NiO/ \hat{l}^2 -Ga ₂ O ₃ Heterojunction Diode With 98.5% Conversion Efficiency and Over Million-Times Overvoltage Ruggedness. IEEE Transactions on Power Electronics, 2022, 37, 1223-1227.	7.9	60
2	Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities. Advanced Materials, 2022, 34, e2106195.	21.0	307
3	Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting Solar Desalination. ACS Applied Materials & Enhanced Contactles Salt-Collecting	8.0	13
4	Sustainable Solar Evaporation while Salt Accumulation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4935-4942.	8.0	46
5	1.37 kV/12 A NiO/ \hat{I}^2 -Ga ₂ O ₃ Heterojunction Diode With Nanosecond Reverse Recovery and Rugged Surge-Current Capability. IEEE Transactions on Power Electronics, 2021, 36, 12213-12217.	7.9	77
6	Field-Plated NiO/Ga ₂ O ₃ p-n Heterojunction Power Diodes With High-Temperature Thermal Stability and Near Unity Ideality Factors. IEEE Journal of the Electron Devices Society, 2021, 9, 1166-1171.	2.1	10
7	Accurate manipulation of single skyrmion by probe ring. Journal of Applied Physics, 2020, 128, .	2.5	3
8	Anion Engineering Enhanced Response Speed and Tunable Spectral Responsivity in Gallium-Oxynitrides-Based Ultraviolet Photodetectors. ACS Applied Electronic Materials, 2020, 2, 808-816.	4.3	18
9	Research on Broadband Microwave Absorber Containing a 2D Artificial Electromagnetic Material Composed of Cross Section Resonator Sub-Unit Cells Inserting Ferromagnetic Materials. Journal of Nanoelectronics and Optoelectronics, 2020, 15, 108-112.	0.5	O
10	Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film Transistors and Their Application for Light-Stimulated Neuromorphic Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12161-12169.	8.0	80
11	Carbonized Bamboos as Excellent 3D Solar Vaporâ€Generation Devices. Advanced Materials Technologies, 2019, 4, 1800593.	5.8	107
12	Flexible IZO Homojunction TFTs With Graphene Oxide/Chitosan Composite Gate Dielectrics on Paper Substrates. IEEE Electron Device Letters, 2018, 39, 363-366.	3.9	33
13	Research of the impact of coupling between unit cells on performance of linear-to-circular polarization conversion metamaterial with half transmission and half reflection. International Journal of Modern Physics B, 2018, 32, 1850124.	2.0	O
14	Light Stimulated IGZO-Based Electric-Double-Layer Transistors For Photoelectric Neuromorphic Devices. IEEE Electron Device Letters, 2018, 39, 897-900.	3.9	94
15	Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane. Journal of Materials Research, 2018, 33, 3857-3869.	2.6	19
16	Preparation and Microwave Absorption of Nitrogen-Doped Carbon Nanotubes With Iron Particles. IEEE Transactions on Magnetics, 2018, , 1-6.	2.1	7
17	Electric-double-layer transistors for synaptic devices and neuromorphic systems. Journal of Materials Chemistry C, 2018, 6, 5336-5352.	5.5	170
18	High-frequency magnetodielectric response in yttrium iron garnet at room temperature. Journal of Applied Physics, 2018, 123, 205109.	2.5	5

#	Article	IF	CITATIONS
19	Neuromorphic Simulation of Proton Conductors Laterally Coupled Oxide-Based Transistors With Multiple in-Plane Gates. IEEE Electron Device Letters, 2017, 38, 525-528.	3.9	14
20	Multifunctional Logic Demonstrated in a Flexible Multigate Oxideâ€Based Electricâ€Doubleâ€Layer Transistor on Paper Substrate. Advanced Electronic Materials, 2017, 3, 1600509.	5.1	36
21	2D MoS ₂ Neuromorphic Devices for Brainâ€Like Computational Systems. Small, 2017, 13, 1700933.	10.0	268
22	Tunable storage states' transition in slotted ferromagnetic nanorings. Journal of Applied Physics, 2017, 121, .	2.5	3
23	Distinct enhancement of sub-bandgap photoresponse through intermediate band in high dose implanted ZnTe:O alloys. Scientific Reports, 2017, 7, 44399.	3.3	10
24	Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thinâ€Film Transistors. Advanced Functional Materials, 2017, 27, 1604447.	14.9	147
25	Optimization of chitosan gated electric double layer transistors by combining nanoparticle incorporation and acid doping. RSC Advances, 2016, 6, 109803-109808.	3.6	5
26	Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30281-30286.	8.0	91
27	Hysteretic Behavior of the Dynamic Permeability in FeCoB Thin Films. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	1
28	Oxide-based Synaptic Transistors Gated by Sol–Gel Silica Electrolytes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3050-3055.	8.0	52
29	Short-Term Plasticity and Synaptic Filtering Emulated in Electrolyte-Gated IGZO Transistors. IEEE Electron Device Letters, 2016, 37, 299-302.	3.9	64
30	Flexible Low-Voltage In–Zn–O Homojunction TFTs With Beeswax Gate Dielectric on Paper Substrates. IEEE Electron Device Letters, 2016, 37, 287-290.	3.9	11
31	Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates. Journal of Materials Chemistry C, 2014, 2, 6249-6255.	5.5	81
32	Thin magnetic coating for low-frequency broadband microwave absorption. Journal of Applied Physics, 2014, 116, 243911.	2.5	16