
Le Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4486812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tight Junction Pore and Leak Pathways: A Dynamic Duo. Annual Review of Physiology, 2011, 73, 283-309.	13.1	720
2	A porous defense: the leaky epithelial barrier in intestinal disease. Laboratory Investigation, 2004, 84, 282-291.	3.7	423
3	Targeted Epithelial Tight Junction Dysfunction Causes Immune Activation and Contributes to Development of Experimental Colitis. Gastroenterology, 2009, 136, 551-563.	1.3	393
4	Caveolin-1–dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. Journal of Cell Biology, 2010, 189, 111-126.	5.2	390
5	Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. Journal of Cell Science, 2006, 119, 2095-2106.	2.0	389
6	The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. Journal of Cell Biology, 2008, 181, 683-695.	5.2	309
7	Actin Depolymerization Disrupts Tight Junctions via Caveolae-mediated Endocytosis. Molecular Biology of the Cell, 2005, 16, 3919-3936.	2.1	293
8	Tight Junction–associated MARVEL Proteins MarvelD3, Tricellulin, and Occludin Have Distinct but Overlapping Functions. Molecular Biology of the Cell, 2010, 21, 1200-1213.	2.1	264
9	The Epithelial Barrier Is Maintained by In Vivo Tight Junction Expansion During Pathologic Intestinal Epithelial Shedding. Gastroenterology, 2011, 140, 1208-1218.e2.	1.3	234
10	Epithelial Myosin Light Chain Kinase Activation Induces Mucosal Interleukin-13 Expression to Alter Tight Junction Ion Selectivity. Journal of Biological Chemistry, 2010, 285, 12037-12046.	3.4	227
11	MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8237-8241.	7.1	218
12	Coxsackievirus Entry across Epithelial Tight Junctions Requires Occludin and the Small GTPases Rab34 and Rab5. Cell Host and Microbe, 2007, 2, 181-192.	11.0	213
13	Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. Journal of Cell Biology, 2011, 193, 565-582.	5.2	210
14	PKCη regulates occludin phosphorylation and epithelial tight junction integrity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 61-66.	7.1	203
15	The role of molecular remodeling in differential regulation of tight junction permeability. Seminars in Cell and Developmental Biology, 2014, 36, 204-212.	5.0	179
16	IL-22ÂUpregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance. Cell Host and Microbe, 2017, 21, 671-681.e4.	11.0	178
17	Phosphorylation of Tyr-398 and Tyr-402 in Occludin Prevents Its Interaction with ZO-1 and Destabilizes Its Assembly at the Tight Junctions. Journal of Biological Chemistry, 2009, 284, 1559-1569.	3.4	176
18	Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Annals of the New York Academy of Sciences, 2012, 1258, 9-18.	3.8	173

LE SHEN

#	Article	lF	CITATIONS
19	Helicobacter pylori Dysregulation of Gastric Epithelial Tight Junctions by Urease-Mediated Myosin II Activation. Gastroenterology, 2009, 136, 236-246.	1.3	158
20	LIGHT Signals Directly to Intestinal Epithelia to Cause Barrier Dysfunction via Cytoskeletal and Endocytic Mechanisms. Gastroenterology, 2007, 132, 2383-2394.	1.3	157
21	Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Molecular Biology of the Cell, 2013, 24, 3056-3068.	2.1	148
22	Dynamic migration of Î ³ δ intraepithelial lymphocytes requires occludin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7097-7102.	7.1	142
23	Role of Epithelial Cells in Initiation and Propagation of Intestinal Inflammation. Eliminating the static: tight junction dynamics exposed. American Journal of Physiology - Renal Physiology, 2006, 290, G577-G582.	3.4	141
24	Inflammation-induced Occludin Downregulation Limits Epithelial Apoptosis by Suppressing Caspase-3 Expression. Gastroenterology, 2019, 157, 1323-1337.	1.3	124
25	Mechanisms and Functional Implications of Intestinal Barrier Defects. Digestive Diseases, 2009, 27, 443-449.	1.9	116
26	Claudin-2-dependent paracellular channels are dynamically gated. ELife, 2015, 4, e09906.	6.0	92
27	Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 765-774.	2.4	83
28	The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. Journal of Biological Chemistry, 2018, 293, 17317-17335.	3.4	72
29	Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Science Translational Medicine, 2019, 11, .	12.4	51
30	Molecular determination of claudin-15 organization and channel selectivity. Journal of General Physiology, 2018, 150, 949-968.	1.9	44
31	Functional Morphology of the Gastrointestinal Tract. Current Topics in Microbiology and Immunology, 2009, 337, 1-35.	1.1	35
32	A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice. ELife, 2019, 8, .	6.0	28
33	Permissive microbiome characterizes human subjects with a neurovascular disease cavernous angioma. Nature Communications, 2020, 11, 2659.	12.8	27
34	Micro-computed tomography in murine models of cerebral cavernous malformations as a paradigm for brain disease. Journal of Neuroscience Methods, 2016, 271, 14-24.	2.5	25
35	Phenotypic characterization of murine models of cerebral cavernous malformations. Laboratory Investigation, 2019, 99, 319-330.	3.7	24
36	Cerebral Cavernous Malformation Proteins in Barrier Maintenance and Regulation. International Journal of Molecular Sciences, 2020, 21, 675.	4.1	20

LE SHEN

#	Article	IF	CITATIONS
37	Expression of Human Decay-Accelerating Factor on Intestinal Epithelium of Transgenic Mice Does Not Facilitate Infection by the Enteral Route. Journal of Virology, 2015, 89, 4311-4318.	3.4	14
38	ZO-1 Regulates Intercalated Disc Composition and Atrioventricular Node Conduction. Circulation Research, 2020, 127, e28-e43.	4.5	13
39	Computational Modeling of Claudin Structure and Function. International Journal of Molecular Sciences, 2020, 21, 742.	4.1	13
40	The cerebral cavernous malformation disease causing gene KRIT1 participates in intestinal epithelial barrier maintenance and regulation. FASEB Journal, 2019, 33, 2132-2143.	0.5	11
41	Intercellular Junctions: Actin the PARt. Current Biology, 2008, 18, R1014-R1017.	3.9	6
42	Antibodies in cerebral cavernous malformations react with cytoskeleton autoantigens in the lesional milieu. Journal of Autoimmunity, 2020, 113, 102469.	6.5	4
43	Real time analysis of TNFâ€induced occludin internalization within jejunal epithelia of living mice. FASEB Journal, 2007, 21, A585.	0.5	1
44	Identification of discrete single tight junction opening/closing events with ion channelâ€ l ike properties. FASEB Journal, 2012, 26, 1107.3.	0.5	1
45	Distinct mechanisms dictate unique dynamic behaviors of tight junction proteins. FASEB Journal, 2006, 20, A352.	0.5	0
46	Actomyosinâ€dependent tight junction (TJ) barrier regulation: Roles of ZOâ€1 and actin exchange FASEB Journal, 2007, 21, A585.	0.5	0
47	Caveolar endocytosis is essential for tumor necrosis factor (TNF) â€induced occludin internalization in vivo. FASEB Journal, 2008, 22, 938.5.	0.5	0
48	Câ€ŧerminal domains are required for ZOâ€1 stabilization and tight junction assembly. FASEB Journal, 2009, 23, 978.1.	0.5	0
49	Occludin is essential for tumor necrosis factor (TNF)â€induced intestinal epithelial tight junction (TJ) disruption. FASEB Journal, 2011, 25, .	0.5	0
50	Intestinal epithelial claudinâ€2â€dependent paracellular pores drive both diarrhea and survival in immuneâ€mediated colitis. FASEB Journal, 2013, 27, .	0.5	0
51	Occludin limits epithelial survival by inducing caspaseâ€3 expression. FASEB Journal, 2013, 27, 954.11.	0.5	0
52	Circulating Plasma miRNA Homologs in Mice and Humans Reflect Familial Cerebral Cavernous Malformation Disease. Translational Stroke Research, 0, , .	4.2	0