Jeroen J G Geurts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4486768/publications.pdf

Version: 2024-02-01

		394421	197818
58	2,728	19	49
papers	citations	h-index	g-index
58	58	58	4196
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cellular Substrates of Functional Network Integration and Memory in Temporal Lobe Epilepsy. Cerebral Cortex, 2022, 32, 2424-2436.	2.9	6
2	Functional network dynamics and decreased conscientiousness in multiple sclerosis. Journal of Neurology, 2022, 269, 2696-2706.	3.6	9
3	Distinct gene expression in demyelinated white and grey matter areas of patients with multiple sclerosis. Brain Communications, 2022, 4, fcac005.	3.3	10
4	Structure-function coupling as a correlate and potential biomarker of cognitive impairment in multiple sclerosis. Network Neuroscience, 2022, 6, 339-356.	2.6	9
5	Artificial double inversion recovery images can substitute conventionally acquired images: an MRI-histology study. Scientific Reports, 2022, 12, 2620.	3.3	4
6	Localization of Nerve Growth Factor Expression to Structurally Damaged Cartilaginous Tissues in Human Lumbar Facet Joint Osteoarthritis. Frontiers in Immunology, 2022, 13, 783076.	4.8	3
7	Is MS affecting the CNS only?. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e914.	6.0	19
8	Axonâ€Myelin Unit Blistering as Early Event in <scp>MS</scp> Normal Appearing White Matter. Annals of Neurology, 2021, 89, 711-725.	5.3	39
9	Nile Red fluorescence spectroscopy reports early physicochemical changes in myelin with high sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	36
10	Functional correlates of motor control impairments in multiple sclerosis: A 7 Tesla task <scp>functional MRI</scp> study. Human Brain Mapping, 2021, 42, 2569-2582.	3.6	7
11	Axonal loss in major sensorimotor tracts is associated with impaired motor performance in minimally disabled multiple sclerosis patients. Brain Communications, 2021, 3, fcab032.	3.3	11
12	Understanding Global Brain Network Alterations in Glioma Patients. Brain Connectivity, 2021, 11, 865-874.	1.7	20
13	Mechanistic underpinning of an inside–out concept for autoimmunity in multiple sclerosis. Annals of Clinical and Translational Neurology, 2021, 8, 1709-1719.	3.7	20
14	Longitudinal Network Changes and Conversion to Cognitive Impairment in Multiple Sclerosis. Neurology, 2021, 97, e794-e802.	1.1	19
15	Multiple sclerosis and drug discovery: A work of translation. EBioMedicine, 2021, 68, 103392.	6.1	9
16	Dynamic functional connectivity as a neural correlate of fatigue in multiple sclerosis. NeuroImage: Clinical, 2021, 29, 102556.	2.7	21
17	Relationship between β-amyloid and structural network topology in decedents without dementia. Neurology, 2020, 95, e532-e544.	1.1	17
18	Anterior insular network disconnection and cognitive impairment in Parkinson's disease. NeuroImage: Clinical, 2020, 28, 102364.	2.7	20

#	Article	IF	CITATIONS
19	Functional connectivity between resting-state networks reflects decline in executive function in Parkinson's disease: A longitudinal fMRI study. NeuroImage: Clinical, 2020, 28, 102468.	2.7	15
20	Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurology, The, 2020, 19, 860-871.	10.2	302
21	Suitability and realism of the novel Fix for Life cadaver model for videolaryngoscopy and fibreoptic tracheoscopy in airway management training. BMC Anesthesiology, 2020, 20, 203.	1.8	1
22	The Multilayer Network Approach in the Study of Personality Neuroscience. Brain Sciences, 2020, 10, 915.	2.3	10
23	Prematurely aging mitochondrial DNA mutator mice display subchondral osteopenia and chondrocyte hypertrophy without further osteoarthritis features. Scientific Reports, 2020, 10, 1296.	3.3	22
24	Postoperative oscillatory brain activity as an add-on prognostic marker in diffuse glioma. Journal of Neuro-Oncology, 2020, 147, 49-58.	2.9	19
25	Axonal degeneration as substrate of fractional anisotropy abnormalities in multiple sclerosis cortex. Brain, 2019, 142, 1921-1937.	7.6	38
26	Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain, 2019, 142, 1858-1875.	7.6	303
27	Normal Aging Brain Collection Amsterdam (NABCA): A comprehensive collection of postmortem high-field imaging, neuropathological and morphometric datasets of non-neurological controls. Neurolmage: Clinical, 2019, 22, 101698.	2.7	25
28	Post-Mortem MRI and Histopathology in Neurologic Disease: A Translational Approach. Neuroscience Bulletin, 2019, 35, 229-243.	2.9	18
29	Can post-mortem MRI be used as a proxy for in vivo? A case study. Brain Communications, 2019, 1, fcz030.	3.3	17
30	Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment. Acta Neuropathologica Communications, 2019, 7, 206.	5.2	100
31	Alterations of Subchondral Bone Progenitor Cells in Human Knee and Hip Osteoarthritis Lead to a Bone Sclerosis Phenotype. International Journal of Molecular Sciences, 2018, 19, 475.	4.1	18
32	Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis. International Journal of Molecular Sciences, 2018, 19, 845.	4.1	11
33	Novel Ex Vivo Human Osteochondral Explant Model of Knee and Spine Osteoarthritis Enables Assessment of Inflammatory and Drug Treatment Responses. International Journal of Molecular Sciences, 2018, 19, 1314.	4.1	31
34	What drives osteoarthritis?â€"synovial <i>versus</i> subchondral bone pathology. Rheumatology, 2017, 56, kew389.	1.9	118
35	Marathon performance but not BMI affects post-marathon pro-inflammatory and cartilage biomarkers. Journal of Sports Sciences, 2017, 35, 711-718.	2.0	21
36	GEORG-SCHMORL-PRIZE OF THE GERMAN SPINE SOCIETY (DWG) 2016: Comparison of in vitro osteogenic potential of iliac crest and degenerative facet joint bone autografts for intervertebral fusion in lumbar spinal stenosis. European Spine Journal, 2017, 26, 1408-1415.	2.2	5

#	Article	IF	Citations
37	Ascorbic Acid Attenuates Senescence of Human Osteoarthritic Osteoblasts. International Journal of Molecular Sciences, 2017, 18, 2517.	4.1	19
38	Characterization of subchondral bone histopathology of facet joint osteoarthritis in lumbar spinal stenosis. Journal of Orthopaedic Research, 2016, 34, 1475-1480.	2.3	27
39	Elevated marrow inflammatory cells and osteoclasts in subchondral osteosclerosis in human knee osteoarthritis. Journal of Orthopaedic Research, 2016, 34, 262-269.	2.3	46
40	The primate autoimmune encephalomyelitis model; a bridge between mouse and man. Annals of Clinical and Translational Neurology, 2015, 2, 581-593.	3.7	47
41	Multicolor flow cytometry-based cellular phenotyping identifies osteoprogenitors and inflammatory cells in the osteoarthritic subchondral bone marrow compartment. Osteoarthritis and Cartilage, 2015, 23, 1865-1869.	1.3	16
42	An Improved Cartilage Digestion Method for Research and Clinical Applications. Tissue Engineering - Part C: Methods, 2015, 21, 394-403.	2.1	7
43	FGF2 induces RANKL gene expression as well as $IL1\hat{I}^2$ regulated MHC class II in human bone marrow-derived mesenchymal progenitor stromal cells. Annals of the Rheumatic Diseases, 2015, 74, 260-266.	0.9	17
44	Increased Osseous ^{99m} Tc-DPD Uptake in End-Stage Ankle Osteoarthritis. Foot and Ankle International, 2015, 36, 1438-1447.	2.3	23
45	Combination of immortalization and inducible death strategies to generate a human mesenchymal stromal cell line with controlled survival. Stem Cell Research, 2014, 12, 584-598.	0.7	38
46	Educational Quality of YouTube Videos on Knee Arthrocentesis. Journal of Clinical Rheumatology, 2013, 19, 373-376.	0.9	104
47	Aging and Osteoarthritis: An Inevitable Encounter?. Journal of Aging Research, 2012, 2012, 1-7.	0.9	50
48	Will the real multiple sclerosis please stand up?. Nature Reviews Neuroscience, 2012, 13, 507-514.	10.2	406
49	A novel Saa3-promoter reporter distinguishes inflammatory subtypes in experimental arthritis and human synovial fibroblasts. Annals of the Rheumatic Diseases, 2011, 70, 1311-1319.	0.9	20
50	Toll-like receptor-4 signalling is specifically tak1-independent in synovial fibroblasts. Annals of the Rheumatic Diseases, 2011, 70, A16-A17.	0.9	0
51	Toll-like receptor 4 signalling is specifically TGF-beta-activated kinase 1 independent in synovial fibroblasts. Rheumatology, 2011, 50, 1216-1225.	1.9	19
52	S100A8 causes a shift toward expression of activatory Fcî³ receptors on macrophages via tollâ€ike receptor 4 and regulates Fcî³ receptor expression in synovium during chronic experimental arthritis. Arthritis and Rheumatism, 2010, 62, 3353-3364.	6.7	43
53	A crucial role for tumor necrosis factor receptor 1 in synovial lining cells and the reticuloendothelial system in mediating experimental arthritis. Arthritis Research and Therapy, 2010, 12, R61.	3 . 5	21
54	Regulated promoters., 2010,, 147-159.		0

#	Article	IF	CITATIONS
55	Computational Design and Application of Endogenous Promoters for Transcriptionally Targeted Gene Therapy for Rheumatoid Arthritis. Molecular Therapy, 2009, 17, 1877-1887.	8.2	18
56	Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: Prominent role of Wntâ€induced signaling protein 1. Arthritis and Rheumatism, 2009, 60, 501-512.	6.7	200
57	Gene therapy works in animal models of rheumatoid arthritis so what!. Current Rheumatology Reports, 2006, 8, 386-393.	4.7	8
58	Identification of Small Heat Shock Protein B8 (HSP22) as a Novel TLR4 Ligand and Potential Involvement in the Pathogenesis of Rheumatoid Arthritis. Journal of Immunology, 2006, 176, 7021-7027.	0.8	246