List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4486581/publications.pdf Version: 2024-02-01

		13099	20961
213	15,231	68	115
papers	citations	h-index	g-index
217	217	217	11062
all docs	docs citations	times ranked	citing authors

DETED REEH

#	Article	IF	CITATIONS
1	Lysophosphatidic acid activates nociceptors and causes pain or itch depending on the application mode in human skin. Pain, 2022, 163, 445-460.	4.2	8
2	The Role of TRP Channels in Nicotinic Provoked Pain and Irritation from the Oral Cavity and Throat: Translating Animal Data to Humans. Nicotine and Tobacco Research, 2022, , .	2.6	0
3	Nobel somatosensations and pain. Pflugers Archiv European Journal of Physiology, 2022, 474, 405-420.	2.8	13
4	The formalin test does not probe inflammatory pain but excitotoxicity in rodent skin. Physiological Reports, 2022, 10, e15194.	1.7	9
5	Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection. Journal of Clinical Investigation, 2022, 132, .	8.2	19
6	Imaging the influence of peripheral TRPV1-signaling on cerebral nociceptive processing applying fMRI-based graph theory in a resiniferatoxin rat model. PLoS ONE, 2022, 17, e0266669.	2.5	1
7	Psoralens activate and photosensitize Transient Receptor Potential channels Ankyrin type 1 (TRPA1) and Vanilloid type 1 (TRPV1). European Journal of Pain, 2021, 25, 122-135.	2.8	8
8	Painful diabetic neuropathy leads to functional CaV3.2 expression and spontaneous activity in skin nociceptors of mice. Experimental Neurology, 2021, 346, 113838.	4.1	9
9	The phospholipase C inhibitor U73122 is a potent agonist of the polymodal transient receptor potential ankyrin type 1 (TRPA1) receptor channel. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 177-189.	3.0	10
10	Afferent renal innervation in anti-Thy1.1 nephritis in rats. American Journal of Physiology - Renal Physiology, 2020, 319, F822-F832.	2.7	7
11	Reactive dicarbonyl compounds cause Calcitonin Gene-Related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum. Journal of Biological Chemistry, 2020, 295, 6330-6343.	3.4	4
12	Complementary roles of murine NaV1.7, NaV1.8 and NaV1.9 in acute itch signalling. Scientific Reports, 2020, 10, 2326.	3.3	16
13	TRPA1-dependent calcium transients and CGRP release in DRG neurons require extracellular calcium. Journal of Cell Biology, 2020, 219, .	5.2	13
14	A Randomized, Double-Blind, Placebo- and Active Comparator-Controlled Phase I Study of Analgesic/Antihyperalgesic Properties of ASP8477, a Fatty Acid Amide Hydrolase Inhibitor, in Healthy Female Subjects. Pain Medicine, 2018, 19, 1206-1218.	1.9	12
15	New mechanism underlying IL-31–induced atopic dermatitis. Journal of Allergy and Clinical Immunology, 2018, 141, 1677-1689.e8.	2.9	131
16	The roles of TRPV1, TRPA1 and TRPM8 channels in chemical and thermal sensitivity of the mouse oral mucosa. European Journal of Neuroscience, 2018, 47, 201-210.	2.6	27
17	NaV1.7 and pain: contribution of peripheral nerves. Pain, 2018, 159, 496-506.	4.2	26
18	Etomidate and propylene glycol activate nociceptive TRP ion channels. Molecular Pain, 2018, 14, 174480691881169.	2.1	8

#	Article	IF	CITATIONS
19	Local NGF and GDNF levels modulate morphology and function of porcine DRG neurites, In Vitro. PLoS ONE, 2018, 13, e0203215.	2.5	12
20	Heat-resistant action potentials require TTX-resistant sodium channels NaV1.8 and NaV1.9. Journal of General Physiology, 2018, 150, 1125-1144.	1.9	17
21	TRPA1 and TRPV1 Antagonists Do Not Inhibit Human Acidosis-Induced Pain. Journal of Pain, 2017, 18, 526-534.	1.4	37
22	Sodium Channel Na _v 1.8 Underlies TTX-Resistant Axonal Action Potential Conduction in Somatosensory C-Fibers of Distal Cutaneous Nerves. Journal of Neuroscience, 2017, 37, 5204-5214.	3.6	33
23	Reduced excitability and impaired nociception in peripheral unmyelinated fibers from Nav1.9-null mice. Pain, 2017, 158, 58-67.	4.2	16
24	Activity and connectivity changes of central projection areas revealed by functional magnetic resonance imaging in NaV1.8-deficient mice upon cold signaling. Scientific Reports, 2017, 7, 543.	3.3	1
25	Photosensitization of TRPA1 and TRPV1 by 7-dehydrocholesterol: implications for the Smith–Lemli–Opitz syndrome. Pain, 2017, 158, 2475-2486.	4.2	9
26	Intradermally applied LPA but not bile salts induce itch and pain in humans depending on the mode of application. Journal of Hepatology, 2017, 66, S355.	3.7	2
27	Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation. Scientific Reports, 2017, 7, 5447.	3.3	53
28	Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1. Marine Drugs, 2017, 15, 269.	4.6	16
29	TRPA1 and TRPV1 are required for lidocaine-evoked calcium influx and neuropeptide release but not cytotoxicity in mouse sensory neurons. PLoS ONE, 2017, 12, e0188008.	2.5	19
30	Quaternary Lidocaine Derivative QX-314 Activates and Permeates Human TRPV1 and TRPA1 to Produce Inhibition of Sodium Channels and Cytotoxicity. Anesthesiology, 2016, 124, 1153-1165.	2.5	35
31	Functional and structural characterization of axonal opioid receptors as targets for analgesia. Molecular Pain, 2016, 12, 174480691662873.	2.1	22
32	The prokineticin Bv8 sensitizes cutaneous terminals of female mice to heat. European Journal of Pain, 2016, 20, 1326-1334.	2.8	5
33	Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia. Pain, 2016, 157, 2504-2516.	4.2	31
34	Photosensitization in Porphyrias and Photodynamic Therapy Involves TRPA1 and TRPV1. Journal of Neuroscience, 2016, 36, 5264-5278.	3.6	66
35	Taurolidine and congeners activate <scp>hTRPA</scp> 1 but not <scp>hTRPV</scp> 1 channels and stimulate <scp>CGRP</scp> release from mouse tracheal sensory nerves. Pharmacology Research and Perspectives, 2016, 4, e00204.	2.4	6
36	Systemic desensitization through TRPA1 channels by capsazepine and mustard oil - a novel strategy against inflammation and pain. Scientific Reports, 2016, 6, 28621.	3.3	78

#	Article	lF	CITATIONS
37	Use dependence of peripheral nociceptive conduction in the absence of tetrodotoxinâ€resistant sodium channel subtypes. Journal of Physiology, 2016, 594, 5529-5541.	2.9	5
38	Lactate is a potent inhibitor of the capsaicin receptor TRPV1. Scientific Reports, 2016, 6, 36740.	3.3	22
39	Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity. Scientific Reports, 2016, 6, 28763.	3.3	103
40	(368) Sodium channel NaV1.8 mediates axonal TTX-resistant conduction in peripheral C-fibres in mice. Journal of Pain, 2016, 17, S67.	1.4	0
41	Transient receptor potential melastatin 8 ion channel in macrophages modulates colitis through a balance-shift in TNF-alpha and interleukin-10 production. Mucosal Immunology, 2016, 9, 1500-1513.	6.0	65
42	Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L812-L820.	2.9	36
43	Irritant Volatile Anesthetics Induce Neurogenic Inflammation Through TRPA1 and TRPV1 Channels in the Isolated Mouse Trachea. Anesthesia and Analgesia, 2015, 120, 467-471.	2.2	27
44	Differential Contribution of TRPA1, TRPV4 and TRPM8 to Colonic Nociception in Mice. PLoS ONE, 2015, 10, e0128242.	2.5	52
45	Vitamin B complex attenuated heat hyperalgesia following infraorbital nerve constriction in rats and reduced capsaicin in vivo and in vitro effects. European Journal of Pharmacology, 2015, 762, 326-332.	3.5	12
46	Streptozotocin Stimulates the Ion Channel TRPA1 Directly. Journal of Biological Chemistry, 2015, 290, 15185-15196.	3.4	59
47	Mice and rats differ with respect to activity-dependent slowing of conduction velocity in the saphenous peripheral nerve. Neuroscience Letters, 2015, 592, 12-16.	2.1	10
48	Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1363-72.	7.1	105
49	Formalin Evokes Calcium Transients from the Endoplasmatic Reticulum. PLoS ONE, 2015, 10, e0123762.	2.5	16
50	A New Paradigm to Understand and Treat Diabetic Neuropathy. Experimental and Clinical Endocrinology and Diabetes, 2014, 122, 201-207.	1.2	31
51	HCN2 channels account for mechanical (but not heat) hyperalgesia during long-standing inflammation. Pain, 2014, 155, 1079-1090.	4.2	58
52	Receptors, cells and circuits involved in pruritus of systemic disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 869-892.	3.8	82
53	Direct evidence for functional TRPV1/TRPA1 heteromers. Pflugers Archiv European Journal of Physiology, 2014, 466, 2229-2241.	2.8	98
54	Bupivacaineâ€induced cellular entry of <scp>QX</scp> â€314 and its contribution to differential nerve block. British Journal of Pharmacology, 2014, 171, 438-451.	5.4	55

#	Article	IF	CITATIONS
55	H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO–TRPA1–CGRP signalling pathway. Nature Communications, 2014, 5, 4381.	12.8	324
56	TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nature Communications, 2014, 5, 3125.	12.8	361
57	The interphase of the formalin test. Pain, 2014, 155, 511-521.	4.2	71
58	Bimodal Concentration-Response of Nicotine Involves the Nicotinic Acetylcholine Receptor, Transient Receptor Potential Vanilloid Type 1, and Transient Receptor Potential Ankyrin 1 Channels in Mouse Trachea and Sensory Neurons. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 529-539.	2.5	38
59	Scratching an itch. Nature Neuroscience, 2013, 16, 117-118.	14.8	44
60	Analgesic treatment of ciguatoxin-induced cold allodynia. Pain, 2013, 154, 1999-2006.	4.2	51
61	Beyond H ₂ S and NO Interplay: Hydrogen Sulfide and Nitroprusside React Directly to Give Nitroxyl (HNO). A New Pharmacological Source of HNO. Journal of Medicinal Chemistry, 2013, 56, 1499-1508.	6.4	126
62	An oral <scp>TRPV</scp> 1 antagonist attenuates laser radiantâ€heatâ€evoked potentials and pain ratings from <scp>UV_B</scp> â€inflamed and normal skin. British Journal of Clinical Pharmacology, 2013, 75, 404-414.	2.4	23
63	Phenotyping the Function of TRPV1-Expressing Sensory Neurons by Targeted Axonal Silencing. Journal of Neuroscience, 2013, 33, 315-326.	3.6	86
64	<scp>TRPA1</scp> and <scp>TRPV1</scp> are differentially involved in heat nociception of mice. European Journal of Pain, 2013, 17, 1472-1482.	2.8	43
65	The anti-diabetic drug glibenclamide is an agonist of the transient receptor potential Ankyrin 1 (TRPA1) ion channel. European Journal of Pharmacology, 2013, 704, 15-22.	3.5	41
66	Amplified Cold Transduction in Native Nociceptors by M-Channel Inhibition. Journal of Neuroscience, 2013, 33, 16627-16641.	3.6	37
67	The Molecular Basis for Species-specific Activation of Human TRPA1 Protein by Protons Involves Poorly Conserved Residues within Transmembrane Domains 5 and 6. Journal of Biological Chemistry, 2013, 288, 20280-20292.	3.4	82
68	Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO Journal, 2012, 31, 3795-3808.	7.8	103
69	Norepinephrine reduces ω-conotoxin-sensitive Ca ²⁺ currents in renal afferent neurons in rats. American Journal of Physiology - Renal Physiology, 2012, 302, F350-F357.	2.7	5
70	Transient opening of the perineurial barrier for analgesic drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2018-27.	7.1	87
71	Tonic Postganglionic Sympathetic Inhibition Induced by Afferent Renal Nerves?. Hypertension, 2012, 59, 467-476.	2.7	38
72	5,6-EET Is Released upon Neuronal Activity and Induces Mechanical Pain Hypersensitivity via TRPA1 on Central Afferent Terminals. Journal of Neuroscience, 2012, 32, 6364-6372.	3.6	103

#	Article	IF	CITATIONS
73	Local Anesthetic-like Inhibition of Voltage-gated Na+Channels by the Partial μ-opioid Receptor Agonist Buprenorphine. Anesthesiology, 2012, 116, 1335-1346.	2.5	88
74	Sensory and Signaling Mechanisms of Bradykinin, Eicosanoids, Platelet-Activating Factor, and Nitric Oxide in Peripheral Nociceptors. Physiological Reviews, 2012, 92, 1699-1775.	28.8	239
75	Methylglyoxal Activates Nociceptors through Transient Receptor Potential Channel A1 (TRPA1). Journal of Biological Chemistry, 2012, 287, 28291-28306.	3.4	166
76	Opposite effects of substance P and calcitonin gene-related peptide in oxazolone colitis. Digestive and Liver Disease, 2012, 44, 24-29.	0.9	45
77	Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nature Medicine, 2012, 18, 926-933.	30.7	414
78	Establishment of myelinating schwann cells and barrier integrity between central and peripheral nervous systems depend on <i>Sox10</i> . Glia, 2012, 60, 806-819.	4.9	36
79	The proximodistal aggravation of colitis depends on substance P released from TRPV1-expressing sensory neurons. Journal of Gastroenterology, 2012, 47, 256-265.	5.1	75
80	TRPA1 and Substance P Mediate Colitis in Mice. Gastroenterology, 2011, 141, 1346-1358.	1.3	197
81	T114 NAV1.9 IS A TRANSFORMATION AMPLIFIER REDUCING POLYMODAL RECEPTIVE THRESHOLDS. European Journal of Pain Supplements, 2011, 5, 19.	0.0	0
82	Inhibitory CB1 and activating/desensitizing TRPV1-mediated cannabinoid actions on CGRP release in rodent skin. Neuropeptides, 2011, 45, 229-237.	2.2	37
83	TRPV1, TRPA1, and CB1 in the isolated vagus nerve – Axonal chemosensitivity and control of neuropeptide release. Neuropeptides, 2011, 45, 391-400.	2.2	52
84	Soluble Epoxide Hydrolase Limits Mechanical Hyperalgesia during Inflammation. Molecular Pain, 2011, 7, 1744-8069-7-78.	2.1	43
85	<i>Sox10</i> is required for Schwannâ€cell homeostasis and myelin maintenance in the adult peripheral nerve. Glia, 2011, 59, 1022-1032.	4.9	113
86	Role of sensory neurons in colitis: increasing evidence for a neuroimmune link in the gut. Inflammatory Bowel Diseases, 2011, 17, 1030-1033.	1.9	82
87	Sodium channelopathies and pain. Pflugers Archiv European Journal of Physiology, 2010, 460, 249-263.	2.8	110
88	The tetrodotoxin-resistant Na+ channel Nav1.8 reduces the potency of local anesthetics in blocking C-fiber nociceptors. Pflugers Archiv European Journal of Physiology, 2010, 459, 751-763.	2.8	17
89	Sensitized peripheral nociception in experimental diabetes of the rat. Pain, 2010, 151, 496-505.	4.2	78
90	Protease Activated Receptors 1 and 4 Sensitize TRPV1 in Nociceptive Neurones. Molecular Pain, 2010, 6, 1744-8069-6-61.	2.1	69

#	Article	IF	CITATIONS
91	Acid-induced CGRP release from the stomach does not depend on TRPV1 or ASIC3. Neurogastroenterology and Motility, 2010, 22, 680-687.	3.0	13
92	<i>Sox10</i> is required for Schwann cell identity and progression beyond the immature Schwann cell stage. Journal of Cell Biology, 2010, 189, 701-712.	5.2	198
93	The General Anesthetic Propofol Excites Nociceptors by Activating TRPV1 and TRPA1 Rather than GABAA Receptors. Journal of Biological Chemistry, 2010, 285, 34781-34792.	3.4	79
94	Electrophysiological and Neurochemical Techniques to Investigate Sensory Neurons in Analgesia Research. Methods in Molecular Biology, 2010, 617, 237-259.	0.9	15
95	Inflammation and Hypersensitivity in the Context of the Sensory Functions of Axonal Membranes: What Are the Molecular Mechanisms?. Digestive Diseases, 2009, 27, 11-15.	1.9	8
96	Do distinct populations of dorsal root ganglion neurons account for the sensory peptidergic innervation of the kidney?. American Journal of Physiology - Renal Physiology, 2009, 297, F1427-F1434.	2.7	31
97	Differential effects of TRPV channel block on polymodal activation of rat cutaneous nociceptors in vitro. Experimental Brain Research, 2009, 196, 31-44.	1.5	45
98	The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO Journal, 2009, 28, 1308-1318.	7.8	309
99	Phenotyping sensory nerve endings in vitro in the mouse. Nature Protocols, 2009, 4, 174-196.	12.0	152
100	TRPV1 controls acid―and heatâ€induced calcitonin geneâ€related peptide release and sensitization by bradykinin in the isolated mouse trachea. European Journal of Neuroscience, 2009, 29, 1896-1904.	2.6	38
101	Projected pain from noxious heat stimulation of an exposed peripheral nerve – A case report. European Journal of Pain, 2009, 13, 35-37.	2.8	10
102	MUDr. Ladislav Vyklický, DrSc. (1925-2008). European Journal of Pain, 2009, 13, 327-328.	2.8	0
103	High Concentrations of Morphine Sensitize and Activate Mouse Dorsal Root Ganglia via TRPV1 and TRPA1 Receptors. Molecular Pain, 2009, 5, 1744-8069-5-17.	2.1	32
104	Effects of Bradykinin on Nociceptors. NeuroImmune Biology, 2009, 8, 135-168.	0.2	6
105	Calcitonin gene-related peptide release from intact isolated dorsal root and trigeminal ganglia. Neuropeptides, 2008, 42, 311-317.	2.2	47
106	Morphological characterization of rat Mas-related G-protein-coupled receptor C and functional analysis of agonists. Neuroscience, 2008, 151, 242-254.	2.3	27
107	Mechanisms of potassium- and capsaicin-induced axonal calcitonin gene-related peptide release: Involvement of L- and T-type calcium channels and TRPV1 but not sodium channels. Neuroscience, 2008, 151, 836-842.	2.3	32
108	TRPA1-mediated nociception: Response to letter by Fischer et al. Neuroscience, 2008, 155, 339.	2.3	3

#	Article	IF	CITATIONS
109	Sensory Transduction in Peripheral Nerve Axons Elicits Ectopic Action Potentials. Journal of Neuroscience, 2008, 28, 6281-6284.	3.6	41
110	The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. Journal of Clinical Investigation, 2008, 118, 763-76.	8.2	134
111	Bradykinin-induced nociceptor sensitisation to heat depends on cox-1 and cox-2 in isolated rat skin. Pain, 2007, 130, 14-24.	4.2	20
112	Prostaglandin E2 and I2 facilitate noxious heat-induced spike discharge but not iCGRP release from rat cutaneous nociceptors. Life Sciences, 2007, 81, 1685-1693.	4.3	10
113	Electrophysiological characterization of vagal afferents relevant to mucosal nociception in the rat upper oesophagus. Journal of Physiology, 2007, 582, 229-242.	2.9	25
114	Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nature Neuroscience, 2007, 10, 870-879.	14.8	504
115	Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature, 2007, 447, 856-859.	27.8	355
116	Sensitization to heat through G-protein-coupled receptor pathways in the isolated sciatic mouse nerve. European Journal of Neuroscience, 2007, 25, 3570-3575.	2.6	37
117	A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium. European Journal of Neuroscience, 2007, 26, 12-22.	2.6	60
118	Stimulated release of calcitonin gene-related peptide from the human right atrium in patients with and without diabetes mellitus. Peptides, 2006, 27, 3255-3260.	2.4	4
119	TREK-1, a K+ channel involved in polymodal pain perception. EMBO Journal, 2006, 25, 2368-2376.	7.8	363
120	Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. Journal of Neuroscience Methods, 2006, 151, 178-185.	2.5	79
121	Release of calcitonin gene-related peptide from the isolated mouse heart: Methodological validation of a new model. Neuropeptides, 2006, 40, 107-113.	2.2	12
122	Role of different proton-sensitive channels in releasing calcitonin gene-related peptide from isolated hearts of mutant mice. Cardiovascular Research, 2005, 65, 405-410.	3.8	36
123	Can Receptor Potentials Be Detected With Threshold Tracking in Rat Cutaneous Nociceptive Terminals?. Journal of Neurophysiology, 2005, 94, 219-225.	1.8	9
124	Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12938-12943.	7.1	151
125	The TRPV1/2/3 activator 2-aminoethoxydiphenyl borate sensitizes native nociceptive neurons to heat in wildtype but not TRPV1 deficient mice. Neuroscience, 2005, 135, 1277-1284.	2.3	64
126	Comparison of Two Different Preparations of Ibuprofen with Regard to the Time Course of Their Analgesic Effect. Arzneimittelforschung, 2004, 54, 444-451.	0.4	10

#	Article	IF	CITATIONS
127	Effects of TRPV1 receptor antagonists on stimulated iCGRP release from isolated skin of rats and TRPV1 mutant mice. Pain, 2004, 109, 284-290.	4.2	36
128	Why cooling is beneficial: non-linear temperature-dependency of stimulated iCGRP release from isolated rat skin. Pain, 2004, 110, 215-219.	4.2	17
129	Morphological evidence for functional capsaicin receptor expression and calcitonin gene-related peripheral nerve axons of the mouse. Neuroscience, 2004, 126, 585-590.	2.3	85
130	Responsiveness of C-fiber nociceptors to punctate force-controlled stimuli in isolated rat skin: lack of modulation by inflammatory mediators and flurbiprofen. Neuroscience Letters, 2004, 361, 163-167.	2.1	18
131	Inflammatory mediators do not stimulate CGRP release if prostaglandin synthesis is blocked by S(+)-flurbiprofen in isolated rat skin. Inflammation Research, 2003, 52, 519-523.	4.0	13
132	Protonâ€induced calcitonin geneâ€related peptide release from rat sciatic nerve axons, <i>in vitro</i> , involving TRPV1. European Journal of Neuroscience, 2003, 18, 803-810.	2.6	60
133	Muscarinic receptor subtypes mediating central and peripheral antinociception studied with muscarinic receptor knockout mice. Life Sciences, 2003, 72, 2047-2054.	4.3	93
134	S(+)-flurbiprofen but not 5-HT1 agonists suppress basal and stimulated CGRP and PGE2 release from isolated rat dura mater. Pain, 2003, 103, 313-320.	4.2	17
135	Injection pain of rocuronium and vecuronium is evoked by direct activation of nociceptive nerve endings. European Journal of Anaesthesiology, 2003, 20, 245-253.	1.7	67
136	Injection pain of rocuronium and vecuronium is evoked by direct activation of nociceptive nerve endings. European Journal of Anaesthesiology, 2003, 20, 245-253.	1.7	59
137	The effects of excessive heat on heat-activated membrane currents in cultured dorsal root ganglia neurons from neonatal rat. Pain, 2002, 95, 207-214.	4.2	13
138	ATP can enhance the proton-induced CGRP release through P2Y receptors and secondary PGE2 release in isolated rat dura mater. Pain, 2002, 97, 259-265.	4.2	60
139	Muscarinic M2 Receptors on Peripheral Nerve Endings: A Molecular Target of Antinociception. Journal of Neuroscience, 2002, 22, RC229-RC229.	3.6	66
140	Effects of ReN1869, a CNS-available antihistamine, on capsaicin- and histamine-induced neurogenic inflammation in healthy subjects. Drug Development Research, 2002, 57, 193-199.	2.9	0
141	Substance P, calcitonin gene related peptide and PGE2 co-released from the mouse colon: a new model to study nociceptive and inflammatory responses in viscera, in vitro. Pain, 2001, 93, 213-219.	4.2	56
142	Molecular physiology of proton transduction in nociceptors. Current Opinion in Pharmacology, 2001, 1, 45-51.	3.5	151
143	Interactions of inflammatory mediators stimulating release of calcitonin gene-related peptide, substance P and prostaglandin E2 from isolated rat skin. Neuropharmacology, 2001, 40, 416-423.	4.1	111
144	Excitatory Nicotinic and Desensitizing Muscarinic (M2) Effects on C-Nociceptors in Isolated Rat Skin. Journal of Neuroscience, 2001, 21, 3295-3302.	3.6	108

#	Article	IF	CITATIONS
145	Muscarinic M2 receptors inhibit heat-induced CGRP release from isolated rat skin. NeuroReport, 2001, 12, 2457-2460.	1.2	45
146	Modulation of CGRP and PGE2 release from isolated rat skin by α-adrenoceptors and α-opioid-receptors. NeuroReport, 2001, 12, 2097-2100.	1.2	31
147	Role of nitric oxide in zymosan induced paw inflammation and thermal hyperalgesia. Inflammation Research, 2001, 50, 83-88.	4.0	46
148	Pro- and anti-inflammatory actions of ricinoleic acid: similarities and differences with capsaicin. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 87-95.	3.0	51
149	Bradykininâ€induced nociceptor sensitization to heat is mediated by cyclooxygenase products in isolated rat skin. European Journal of Neuroscience, 2001, 14, 210-218.	2.6	52
150	Noxious heatâ€induced CGRP release from rat sciatic nerve axons <i>in vitro</i> . European Journal of Neuroscience, 2001, 14, 1203-1208.	2.6	47
151	Interactions of histamine and bradykinin on polymodal C-fibres in isolated rat skin. European Journal of Pain, 2001, 5, 97-106.	2.8	19
152	Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. Journal of Physiology, 2001, 532, 229-239.	2.9	119
153	Denervation and NKI receptor block modulate stimulated CGRP and PGE2 release from rat skin. NeuroReport, 2000, 11, 283-286.	1.2	13
154	Interactions of inflammatory mediators and low pH not influenced by capsazepine in rat cutaneous nociceptors. NeuroReport, 2000, 11, 973-976.	1.2	24
155	Plasma levels after peroral and topical ibuprofen and effects upon low pHâ€induced cutaneous and muscle pain. European Journal of Pain, 2000, 4, 195-209.	2.8	28
156	Nociceptor excitation by thermal sensitization — A hypothesis. Progress in Brain Research, 2000, 129, 39-50.	1.4	57
157	Nociceptor Excitation by Sensitization: A Novel Hypothesis, Its Cellular and Molecular Background. , 2000, , 9-19.		3
158	The pH response of rat cutaneous nociceptors correlates with extracellular [Na+] and is increased under amiloride. European Journal of Neuroscience, 1999, 11, 2783-2792.	2.6	38
159	Rises in [Ca2+]imediate capsaicin- and proton-induced heat sensitization of rat primary nociceptive neurons. European Journal of Neuroscience, 1999, 11, 3143-3150.	2.6	77
160	Nociceptive neurons in the rat caudal trigeminal nucleus respond to blood plasma perfusion of the subarachnoid space: the involvement of complement. Pain, 1999, 81, 283-288.	4.2	7
161	Heat-induced release of CGRP from isolated rat skin and effects of bradykinin and the protein kinase C activator PMA. Pain, 1999, 83, 289-295.	4.2	72
162	Calcitonin gene-related peptide and prostaglandin E2 but not substance P release induced by antidromic nerve stimulation from rat skin in vitro. Neuroscience, 1999, 89, 303-310.	2.3	95

#	Article	IF	CITATIONS
163	Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience, 1999, 89, 901-907.	2.3	178
164	Rat peripheral nerve components release calcitonin gene-related peptide and prostaglandin E2 in response to noxious stimuli: evidence that nervi nervorum are nociceptors. Neuroscience, 1999, 92, 319-325.	2.3	117
165	A technique for fast application of heated solutions of different composition to cultured neurones. Journal of Neuroscience Methods, 1998, 82, 195-201.	2.5	72
166	Boole's algebra and the Gordian knot in peripheral nociception. Pain Forum, 1998, 7, 84-86.	1.1	4
167	Stimulated prostaglandin E2 release from rat skin, in vitro. Life Sciences, 1998, 62, 2045-2055.	4.3	33
168	Inflammatory Mediators at Acidic pH Activate Capsaicin Receptors in Cultured Sensory Neurons From Newborn Rats. Journal of Neurophysiology, 1998, 79, 670-676.	1.8	103
169	Acetylsalicylic acid reduces pH-induced excitation of rat cutaneous nociceptors in vitro. Primary Sensory Neuron: the International Interdisciplinary Journal Reporting Basic and Clinical Research on Sensory Receptors and Primary Afferent Neurons, 1997, 2, 77-94.	0.3	2
170	Intracutaneous injections of platelets cause acute pain and protracted hyperalgesia. Neuroscience Letters, 1997, 226, 171-174.	2.1	26
171	An interaction of inflammatory mediators and protons in small diameter dorsal root ganglion neurons of the rat. Neuroscience Letters, 1997, 224, 37-40.	2.1	51
172	Pulmonary serotonin 5-HT3-sensitive afferent fibers modulate renal sympathetic nerve activity in rats. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 272, H979-H986.	3.2	13
173	Recordings From Brain Stem Neurons Responding to Chemical Stimulation of the Subarachnoid Space. Journal of Neurophysiology, 1997, 77, 3122-3133.	1.8	55
174	Methylene blue induces ongoing activity in rat cutaneous primary afferents and depolarization of DRG neurons via a photosensitive mechanism. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 619-625.	3.0	19
175	Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia?. Neuroscience Letters, 1996, 208, 191-194.	2.1	215
176	Low pH facilitates capsaicin responses in isolated sensory neurons of the rat. Neuroscience Letters, 1996, 211, 5-8.	2.1	49
177	Dose-dependent competitive block by topical acetylsalicylic and salicylic acid of low pH-induced cutaneous pain. Pain, 1996, 64, 71-82.	4.2	29
178	Inflammatory mediators potentiate pain induced by experimental tissue acidosis. Pain, 1996, 66, 163-170.	4.2	105
179	Stable analogues of cyclic AMP but not cyclic GMP sensitize unmyelinated primary afferents in rat skin to heat stimulation but not to inflammatory mediators, in vitro. Neuroscience, 1996, 74, 609-617.	2.3	64
180	Diltiazem blocks the PH-induced excitation of rat nociceptors together with their mechanical and electrical excitability in vitro. Journal of Neurophysiology, 1996, 75, 1-10.	1.8	26

#	Article	IF	CITATIONS
181	More sensory competence for nociceptive neurons in culture. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14995-14997.	7.1	26
182	Chapter 8. Tissue acidosis in nociception and pain. Progress in Brain Research, 1996, 113, 143-151.	1.4	236
183	Effects of classical algogens. Seminars in Neuroscience, 1995, 7, 221-226.	2.2	30
184	A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro. Journal of Neuroscience, 1995, 15, 3982-3989.	3.6	268
185	Pain due to experimental acidosis in human skin: evidence for non-adapting nociceptor excitation. Neuroscience Letters, 1995, 199, 29-32.	2.1	106
186	Effects of oxygen radicals on nociceptive afferents in the rat skin in vitro. Pain, 1995, 62, 87-94.	4.2	18
187	Topical acetylsalicylic, salicylic acid and indomethacin suppress pain from experimental tissue acidosis in human skin. Pain, 1995, 62, 339-347.	4.2	48
188	Activated human platelets in plasma excite nociceptors in rat skin, in vitro. Neuroscience Letters, 1994, 170, 103-106.	2.1	38
189	Chemical Excitation and Sensitization of Nociceptors. , 1994, , 119-131.		26
190	Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neuroscience Letters, 1993, 154, 113-116.	2.1	181
191	Conditioning of histamine by bradykinin alters responses of rat nociceptor and human itch sensation. Neuroscience Letters, 1993, 152, 117-120.	2.1	37
192	Angiotensin II facilitates sympathetic transmission in rat hind limb circulation Hypertension, 1993, 21, 322-328.	2.7	45
193	Actions of cholinergic agonists and antagonists on sensory nerve endings in rat skin, in vitro. Journal of Neurophysiology, 1993, 70, 397-405.	1.8	122
194	Excitation of cutaneous afferent nerve endings in vitro by a combination of inflammatory mediators and conditioning effect of substance P. Experimental Brain Research, 1992, 91, 467-76.	1.5	144
195	The nociceptor sensitization by bradykinin does not depend on sympathetic neurons. Neuroscience, 1992, 46, 465-473.	2.3	174
196	Responsiveness and functional attributes of electrically localized terminals of cutaneous C-fibers in vivo and in vitro. Journal of Neurophysiology, 1992, 68, 581-595.	1.8	289
197	Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. Journal of Neuroscience, 1992, 12, 86-95.	3.6	477
198	Unresponsive afferent nerve fibres in the sural nerve of the rat Journal of Physiology, 1991, 435, 229-242.	2.9	151

#	Article	IF	CITATIONS
199	Chemosensitivity of fine afferents from rat skin in vitro. Journal of Neurophysiology, 1990, 63, 887-901.	1.8	298
200	Carrageenan inflammation increases bradykinin sensitivity of rat cutaneous nociceptors. Neuroscience Letters, 1990, 111, 206-210.	2.1	46
201	Pattern of monosynaptic la connections in the cat forelimb Journal of Physiology, 1989, 419, 321-351.	2.9	155
202	Selective excitation by capsaicin of mechano-heat sensitive nociceptors in rat skin. Brain Research, 1988, 446, 262-268.	2.2	242
203	Measurement of the analgesic effects of aspirin with a new experimental algesimetric procedure. Pain, 1988, 32, 215-222.	4.2	44
204	Chapter 31 Sensory receptors in a mammalian skin – nerve in vitro preparation. Progress in Brain Research, 1988, 74, 271-276.	1.4	36
205	Analgesic Effect of Acetylsalicylic Acid (ASA) Versus a Lithium-ASA combination: An Evoked Potential Study Employing Radiant Heat Stimulation with a CO ₂ Laser. Pharmacopsychiatry, 1987, 20, 217-221.	3.3	14
206	The effect of carrageenan-induced inflammation on the sensitivity of unmyelinated skin nociceptors in the rat. Pain, 1987, 29, 363-373.	4.2	130
207	Discharge patterns of afferent cutaneous nerve fibers from the rat's tail during prolonged noxious mechanical stimulation. Experimental Brain Research, 1987, 65, 493-504.	1.5	106
208	Sensitization of nociceptive cutaneous nerve fibers from the rat's tail by noxious mechanical stimulation. Experimental Brain Research, 1987, 65, 505-12.	1.5	97
209	Sensory receptors in mammalian skin in an in vitro preparation. Neuroscience Letters, 1986, 66, 141-146.	2.1	272
210	Does neurogenic inflammation alter the sensitivity of unmyelinated nociceptors in the rat?. Brain Research, 1986, 384, 42-50.	2.2	204
211	Location of motoneurones projecting to the cat distal forelimb. II. Median and ulnar motornuclei. Journal of Comparative Neurology, 1986, 244, 302-312.	1.6	31
212	1. Cutaneous receptors of man and of rat excited by noxious mechanical stimulation: a comparison. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1985, 308, 407-407.	2.3	0
213	Location of median and ulnar motornuclei in the cat. Neuroscience Letters, 1982, 30, 103-108.	2.1	23