
Hongzhe Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4486537/publications.pdf Version: 2024-02-01

HONCZHE DAN

#	Article	IF	CITATIONS
1	Promoted photocarriers separation by straining in 2D/2D van der Waals heterostructures for high-efficiency visible-light photocatalysis. Materials Today Physics, 2022, 22, 100600.	6.0	13
2	Tuning length scale effect of hardness in Ag/Nb/Cu/Nb multilayers by Nb amorphous interlayer. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142651.	5.6	4
3	Li-decorated porous hydrogen substituted graphyne: A new member of promising hydrogen storage medium. Applied Surface Science, 2021, 535, 147683.	6.1	36
4	Tuning electronic properties in the C3N/C3B lateral heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114497.	2.7	4
5	Ultrahigh hydrogen storage capacity of holey graphyne. Nanotechnology, 2021, 32, 215402.	2.6	28
6	Realization of Strong Room-Temperature Ferromagnetism in Atomically Thin 2D Carbon Nitride Sheets by Thermal Annealing. ACS Nano, 2021, 15, 12069-12076.	14.6	27
7	Constructing van der Waals Heterogeneous Photocatalysts Based on Atomically Thin Carbon Nitride Sheets and Graphdiyne for Highly Efficient Photocatalytic Conversion of CO ₂ into CO. ACS Applied Materials & Interfaces, 2021, 13, 40629-40637.	8.0	51
8	Comprehensive mechanism of ferromagnetism enhancement in nitrogen-doped graphene. New Journal of Physics, 2021, 23, 103003.	2.9	3
9	The effect of thermal annealing on the magnetic properties of graphene oxide quantum dots. Applied Surface Science, 2020, 501, 144234.	6.1	5
10	Tuning electronic structure and optical properties of C3N by B doping. Physica B: Condensed Matter, 2020, 577, 411807.	2.7	2
11	Graphitic-nitrogen-enhanced ferromagnetic couplings in nitrogen-doped graphene. Physical Review B, 2020, 102, .	3.2	19
12	Realization of ultrathin red 2D carbon nitride sheets to significantly boost the photoelectrochemical water splitting performance of TiO2 photoanodes. Chemical Engineering Journal, 2020, 396, 125267.	12.7	16
13	Unusual mechanical and electronic behaviors of bulk layered hydrogen substituted graphdiyne under biaxial strain. Applied Surface Science, 2020, 513, 145694.	6.1	13
14	Magnetic properties of graphene. , 2020, , 137-161.		11
15	Increasing Solar Absorption of Atomically Thin 2D Carbon Nitride Sheets for Enhanced Visibleâ€Light Photocatalysis. Advanced Materials, 2019, 31, e1807540.	21.0	166
16	Stable group-IIB elements —Zn, Cd and Hg at terapascal pressures. Europhysics Letters, 2019, 126, 36001.	2.0	2
17	Tensile strain effects on C4N3H monolayer: Large Poisson's ratio and robust Dirac cone. Applied Physics Letters, 2019, 114, .	3.3	7
18	Comparative investigation of the mechanical, electrical and thermal transport properties in graphene-like C3B and C3N. Journal of Applied Physics, 2019, 126, .	2.5	32

Hongzhe Pan

#	Article	IF	CITATIONS
19	Electronic properties of α-graphyne on hexagonal boron nitride and α-BNyne substrates. RSC Advances, 2019, 9, 35297-35303.	3.6	3
20	Identifying the stacking style, intrinsic bandgap and magnetism of pristine graphdyine. Carbon, 2019, 143, 8-13.	10.3	22
21	Half-metallicity in a honeycomb–kagome-lattice Mg ₃ C ₂ monolayer with carrier doping. Physical Chemistry Chemical Physics, 2018, 20, 14166-14173.	2.8	19
22	Ultrasmall and Monolayered Tungsten Dichalcogenide Quantum Dots with Giant Spin–Valley Coupling and Purple Luminescence. ACS Omega, 2018, 3, 12188-12194.	3.5	15
23	Tunable electronic structures and magnetic properties of zigzag C ₃ N nanoribbons. Journal Physics D: Applied Physics, 2018, 51, 345301.	2.8	9
24	Magnetism of graphene quantum dots. Npj Quantum Materials, 2017, 2, .	5.2	53
25	Metal-free spin and spin-gapless semiconducting heterobilayers: monolayer boron carbonitrides on hexagonal boron nitride. Physical Chemistry Chemical Physics, 2017, 19, 14801-14810.	2.8	6
26	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">C</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">N</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mrow></mml:mrow></mml:mrow></mml:math> monolayer: A two-dimensional organic Dirac material with high Fermi velocity. Physical Review B, 2017, 96, .</pre>	3.2	15
27	B ₄ CN ₃ and B ₃ CN ₄ monolayers as the promising candidates for metal-free spintronic materials. New Journal of Physics, 2016, 18, 093021.	2.9	27
28	First-principles prediction of a new planar hydrocarbon material: half-hydrogenated 14,14,14-graphyne. Physical Chemistry Chemical Physics, 2016, 18, 23954-23960.	2.8	11
29	Gas Adsorption Effects on the Electronic Properties of Two-Dimensional Nickel Bis(dithiolene) Complex. Journal of Physical Chemistry C, 2016, 120, 3846-3852.	3.1	31
30	Electron tunneling of graphene modulated by realistic magnetic barriers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1906-1911.	2.1	4
31	Interstitial boron doping effects on the electronic and magnetic properties of graphitic carbon nitride materials. Solid State Communications, 2015, 203, 35-40.	1.9	26
32	First-principles study of hydrogen adsorption on titanium-decorated single-layer and bilayer graphenes. Chinese Physics B, 2013, 22, 067101.	1.4	14
33	The Limit of Noether Conserved Charges is the Number of Primary First-Class Constraints in a Constrained System. Communications in Theoretical Physics, 2012, 58, 539-543.	2.5	17
34	Fractional charges and fractional spins for composite fermions in quantum electrodynamics. Chinese Physics B, 2012, 21, 070501.	1.4	1
35	Electronic and magnetic properties of copper-family-element atom adsorbed graphene nanoribbons with zigzag edges. Solid State Communications, 2011, 151, 1440-1443.	1.9	9
36	Atomic chemisorption on graphene with Stone–Thrower–Wales defects. Carbon, 2011, 49, 3356-3361.	10.3	51

Hongzhe Pan

#	Article	IF	CITATIONS
37	Adsorption-induced magnetism properties in graphene. Journal of Magnetism and Magnetic Materials, 2011, 323, 547-551.	2.3	8
38	FIRST-PRINCIPLES CALCULATION OF THE ELECTRONIC STRUCTURE AND MAGNETISM AT THE GRAPHENE/Ni(111) INTERFACE. International Journal of Modern Physics B, 2011, 25, 2791-2800.	2.0	2
39	The influence of Stone–Wales defects on magnetic properties in graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 593-597.	2.7	7
40	First-principles studies of HF molecule adsorption on intrinsic graphene and Al-doped graphene. Solid State Communications, 2010, 150, 1906-1910.	1.9	92
41	Total Hamiltonian and Extended Hamiltonian forÂConstrained Hamilton Systems. International Journal of Theoretical Physics, 2008, 47, 2319-2325.	1.2	0