Deepa Sampath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4486479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage pathway, to target glioma heterogeneity through mitochondrial oxidative stress. Neuro-Oncology, 2022, 24, 229-244.	1.2	13
2	Disruption of DNA Repair and Survival Pathways through Heat Shock Protein Inhibition by Onalespib to Sensitize Malignant Gliomas to Chemoradiation Therapy. Clinical Cancer Research, 2022, 28, 1979-1990.	7.0	10
3	<i>TP53</i> â€altered chronic lymphocytic leukemia treated with firstline Bruton's tyrosine kinase inhibitorâ€based therapy: A retrospective analysis. American Journal of Hematology, 2022, 97, 1005-1012.	4.1	6
4	Comparison of clinical and molecular characteristics of patients with acute myeloid leukemia and either TP73 or TP53 mutations. Leukemia, 2021, 35, 1188-1192.	7.2	2
5	Targeting DNA Damage Repair Functions of Two Histone Deacetylases, HDAC8 and SIRT6, Sensitizes Acute Myeloid Leukemia to NAMPT Inhibition. Clinical Cancer Research, 2021, 27, 2352-2366.	7.0	15
6	Preclinical evaluation of the Hsp90 inhibitor SNX-5422 in ibrutinib resistant CLL. Journal of Hematology and Oncology, 2021, 14, 36.	17.0	9
7	Anti-tumor NAMPT inhibitor, KPT-9274, mediates gender-dependent murine anemia and nephrotoxicity by regulating SIRT3-mediated SOD deacetylation. Journal of Hematology and Oncology, 2021, 14, 101.	17.0	8
8	Targeting Venetoclax-Resistant CLL By Bcl-XL Degradation. Blood, 2021, 138, 2252-2252.	1.4	0
9	Venetoclax, Obinutuzumab and Atezolizumab (PD-L1 Checkpoint Inhibitor) for Treatment for Patients with Richter Transformation. Blood, 2021, 138, 1550-1550.	1.4	11
10	Characterization of LP-118, a Novel Small Molecule Inhibitor of Bcl-2 and Bcl-XI in Chronic Lymphocytic Leukemia Resistant to Venetoclax. Blood, 2021, 138, 679-679.	1.4	5
11	Venetoclax, Obinutuzumab and Atezolizumab (PD-L1 Checkpoint Inhibitor) for First-Line Treatment for Patients with Chronic Lymphocytic Leukemia (CLL). Blood, 2021, 138, 2626-2626.	1.4	1
12	Retrospective Single-Institution Analysis of Patients with Chronic Lymphocytic Leukemia with <i>TP53</i> alterations Treated First-Line with Bruton's Tyrosine Kinase Inhibitor-Based Therapy. Blood, 2021, 138, 394-394.	1.4	0
13	Explaining Gene Expression Using Twenty-One MicroRNAs. Journal of Computational Biology, 2020, 27, 1157-1170.	1.6	5
14	Novel BCL2 mutations in venetoclax-resistant, ibrutinib-resistant CLL patients with BTK/PLCG2 mutations. Blood, 2020, 135, 2192-2195.	1.4	40
15	Eμ-TCL1xMyc: A Novel Mouse Model for Concurrent CLL and B-Cell Lymphoma. Clinical Cancer Research, 2019, 25, 6260-6273.	7.0	17
16	HSP90 inhibition depletes DNA repair proteins to sensitize acute myelogenous leukemia to nucleoside analog chemotherapeutics. Leukemia and Lymphoma, 2019, 60, 2308-2311.	1.3	5
17	Selective targeting of NAMPT by KPT-9274 in acute myeloid leukemia. Blood Advances, 2019, 3, 242-255.	5.2	38
18	Assays on DNA Damage and Repair in CLL. Methods in Molecular Biology, 2019, 1881, 153-163.	0.9	1

#	Article	IF	CITATIONS
19	Role of Mutant p53 in the Progression of Chronic Lymphocytic Leukemia. Blood, 2019, 134, 2526-2526.	1.4	1
20	The Protein Kinase C Inhibitor MS-553 for the Treatment of Chronic Lymphocytic Leukemia. Blood, 2019, 134, 2077-2077.	1.4	1
21	BRD4 Profiling Identifies Critical Chronic Lymphocytic Leukemia Oncogenic Circuits and Reveals Sensitivity to PLX51107, a Novel Structurally Distinct BET Inhibitor. Cancer Discovery, 2018, 8, 458-477.	9.4	101
22	Role and regulation of microRNAs targeting BTK in acute myelogenous leukemia. Leukemia and Lymphoma, 2018, 59, 1461-1465.	1.3	2
23	The TLR7/8/9 Antagonist IMO-8503 Inhibits Cancer-Induced Cachexia. Cancer Research, 2018, 78, 6680-6690.	0.9	33
24	Shielding p53 from destruction. Blood, 2018, 131, 2740-2741.	1.4	0
25	The BTK Inhibitor ARQ 531 Targets Ibrutinib-Resistant CLL and Richter Transformation. Cancer Discovery, 2018, 8, 1300-1315.	9.4	115
26	Using HSP90 Inhibitors to Target DNA Repair Proteins in AML. Blood, 2018, 132, 5144-5144.	1.4	0
27	NAMPT Inhibitor KPT-9274 Selectively Targets Self-Renewal Capacity in Acute Myeloid Leukemia. Blood, 2018, 132, 3931-3931.	1.4	0
28	Clinical and Molecular Characteristics of Acute Myeloid Leukemia (AML) Patients with TP53 Mutations and TP73 Mutations. Blood, 2018, 132, 1488-1488.	1.4	0
29	A novel interaction of PAK4 with PPARγ to regulate Nox1 and radiation-induced epithelial-to-mesenchymal transition in glioma. Oncogene, 2017, 36, 5309-5320.	5.9	34
30	Targeting deubiquitinases in CLL. Blood, 2017, 130, 100-101.	1.4	8
31	Efficacy of Onalespib, a Long-Acting Second-Generation HSP90 Inhibitor, as a Single Agent and in Combination with Temozolomide against Malignant Gliomas. Clinical Cancer Research, 2017, 23, 6215-6226.	7.0	53
32	EXTH-84. TARGETING THE SALVAGE PATHWAY OF NAD+ GENERATION IN GLIOMAS BY KPT-9274, AÂNOVEL DUAL INHIBITOR OF PAK4 AND NAMPT. Neuro-Oncology, 2017, 19, vi91-vi91.	1.2	0
33	The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget, 2017, 8, 25942-25954.	1.8	23
34	XPO1 Inhibition using Selinexor Synergizes with Chemotherapy in Acute Myeloid Leukemia by Targeting DNA Repair and Restoring Topoisomerase IIα to the Nucleus. Clinical Cancer Research, 2016, 22, 6142-6152.	7.0	79
35	Targeting BTK through microRNA in chronic lymphocytic leukemia. Blood, 2016, 128, 3101-3112.	1.4	30
36	HDAC Inhibition Induces MicroRNA-182, which Targets RAD51 and Impairs HR Repair to Sensitize Cells to Sapacitabine in Acute Myelogenous Leukemia. Clinical Cancer Research, 2016, 22, 3537-3549.	7.0	55

#	Article	IF	CITATIONS
37	Role of Histone Deacetylase-Mediated Gene Silencing in Chronic Lymphocytic Leukemia Progression. Blood, 2016, 128, 2705-2705.	1.4	1
38	Histone Deacetylase Inhibitors Induce microRNAs Targeting BTK in Acute Myeloid Leukemia. Blood, 2015, 126, 1222-1222.	1.4	1
39	Targeting BTK By a microRNA Mechanism in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 1232-1232.	1.4	1
40	The Aberrantly Expressed Long Noncoding RNA, TRERNA1, Predicts for Aggressive Disease in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 2911-2911.	1.4	2
41	HDAC Inhibition Induces microRNA-182 Which Targets Rad51 Protein and Impairs Homologous Recombination Repair to Sensitize Cells to the Double Strand Break Inducing Nucleoside Analog, Sapacitabine in AML. Blood, 2015, 126, 3639-3639.	1.4	1
42	Expression of PRMT5 in B-Cell Chronic Lymphocytic Leukemia and Its Significance in Disease Progression and Richter's Transformation. Blood, 2014, 124, 2197-2197.	1.4	3
43	Phase I clinical, pharmacokinetic, and pharmacodynamic study of the Akt-inhibitor triciribine phosphate monohydrate in patients with advanced hematologic malignancies. Leukemia Research, 2013, 37, 1461-1467.	0.8	32
44	Epigenetic regulation of CD133/PROM1 expression in glioma stem cells by Sp1/myc and promoter methylation. Oncogene, 2013, 32, 3119-3129.	5.9	65
45	MicroRNA in Leukemias. , 2013, , 97-118.		2
46	Panobinostat, An Oral Pan-Histone Deacetylase (HDAC) Inhibitor Activates a Microrna Signature That Targets Rad51 To Attenuate Homologous DNA Repair and Sensitize AML Cells To Sapacitabine. Blood, 2013, 122, 822-822.	1.4	3
47	Therapy for older patients with acute myeloblastic leukemia: a problem in search of a solution. Leukemia and Lymphoma, 2012, 53, 1013-1014.	1.3	Ο
48	Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood, 2012, 119, 1162-1172.	1.4	188
49	MiRly regulating metabolism. Blood, 2012, 120, 2540-2541.	1.4	2
50	2.53 HDAC-Mediated Silencing of miR-17 and miR-20a in Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, S193-S194.	0.4	0
51	Killing of Chronic Lymphocytic Leukemia by the Combination of Fludarabine and Oxaliplatin Is Dependent on the Activity of XPF Endonuclease. Clinical Cancer Research, 2011, 17, 4731-4741.	7.0	11
52	Vorinostat modulates cell cycle regulatory proteins in glioma cells and human glioma slice cultures. Journal of Neuro-Oncology, 2011, 105, 241-251.	2.9	37
53	Association of a MicroRNA/TP53 Feedback Circuitry With Pathogenesis and Outcome of B-Cell Chronic Lymphocytic Leukemia. JAMA - Journal of the American Medical Association, 2011, 305, 59.	7.4	256
54	Efficacy of adenovirally expressed soluble TRAIL in human glioma organotypic slice culture and glioma xenografts. Cell Death and Disease, 2011, 2, e121-e121.	6.3	27

#	Article	IF	CITATIONS
55	microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood, 2010, 116, 945-952.	1.4	200
56	Coding and noncoding: the CLL mix. Blood, 2010, 115, 3858-3859.	1.4	1
57	A phase I study of immune gene therapy for patients with CLL using a membrane-stable, humanized CD154. Leukemia, 2010, 24, 1893-1900.	7.2	50
58	Dialing resistance up a Notch. Leukemia and Lymphoma, 2009, 50, 158-159.	1.3	0
59	Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood, 2009, 113, 3744-3753.	1.4	85
60	miRs: fine-tuning prognosis in CLL. Blood, 2009, 113, 5035-5036.	1.4	9
61	Response: Context-dependent actions of miR-106b in CLL. Blood, 2009, 113, 6499-6500.	1.4	3
62	Nucleoside analogs: molecular mechanisms signaling cell death. Oncogene, 2008, 27, 6522-6537.	5.9	188
63	ATM and the Mre11-Rad50-Nbs1 Complex Respond to Nucleoside Analogue–Induced Stalled Replication Forks and Contribute to Drug Resistance. Cancer Research, 2008, 68, 7947-7955.	0.9	41
64	Phase I Study of the Akt-Inhibitor Triciribine Phosphate Monohydrate in Patients with Advanced Hematologic Malignancy. Blood, 2008, 112, 2987-2987.	1.4	3
65	Active Immune Gene Therapy Using ISF35: Responses Associated with Priming for Death Receptor-Induced Apoptosis and Sensitivity to Fludarabine in Patients with CLL and Del 17p. Blood, 2008, 112, 3530-3530.	1.4	0
66	H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Molecular Cancer Therapeutics, 2007, 6, 1239-1248.	4.1	180
67	miRNAs and their potential for use against cancer and other diseases. Future Oncology, 2007, 3, 521-537.	2.4	99
68	The role of DNA repair in chronic lymphocytic leukemia pathogenesis and chemotherapy resistance. Current Oncology Reports, 2007, 9, 361-367.	4.0	13
69	Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood, 2006, 107, 2517-2524.	1.4	142
70	Fludarabine increases oxaliplatin cytotoxicity in normal and chronic lymphocytic leukemia lymphocytes by suppressing interstrand DNA crosslink removal. Blood, 2006, 108, 4187-4193.	1.4	39
71	TRAIL-induced apoptosis in gliomas is enhanced by Akt-inhibition and is independent of JNK activation. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 233-243.	4.9	59
72	Mechanisms of apoptosis induction by nucleoside analogs. Oncogene, 2003, 22, 9063-9074.	5.9	189

#	Article	IF	CITATIONS
73	Inhibition of Cyclin-Dependent Kinase 2 by the Chk1-Cdc25A Pathway during the S-Phase Checkpoint Activated by Fludarabine: Dysregulation by 7-Hydroxystaurosporine. Molecular Pharmacology, 2002, 62, 680-688.	2.3	58
74	Design of new anticancer therapies targeting cell cycle checkpoint pathways. Current Opinion in Oncology, 2001, 13, 484-490.	2.4	37
75	Regulation of antioxidant enzyme expression by NGF. Neurochemical Research, 1997, 22, 351-362.	3.3	43
76	Nerve Growth Factor and Oxidative Stress in the Nervous System. Advances in Experimental Medicine and Biology, 1997, 429, 173-193.	1.6	22
77	Effect of a spinal cord photolesion injury on catalase. International Journal of Developmental Neuroscience, 1995, 13, 645-654.	1.6	4
78	Effects of nerve growth factor on catalase and glutathione peroxidase in a hydrogen peroxide-resistant pheochromocytoma subclone. Brain Research, 1994, 634, 69-76.	2.2	44
79	Effects of Nerve Growth Factor on Glutathione Peroxidase and Catalase in PC 12 Cells. Journal of Neurochemistry, 1994, 62, 2476-2479.	3.9	106
80	Neurotrophin Regulation of Energy Homeostasis in the Central Nervous System. Developmental Neuroscience, 1994, 16, 285-290.	2.0	44