
Brian J Sutton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485015/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lgE in allergy and asthma today. Nature Reviews Immunology, 2008, 8, 205-217.	22.7	947
2	Regulation of Cutaneous Malignancy by $\hat{I}^{3}\hat{I}$ T Cells. Science, 2001, 294, 605-609.	12.6	895
3	The Biology of IgE and the Basis of Allergic Disease. Annual Review of Immunology, 2003, 21, 579-628.	21.8	576
4	Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody—antigen interaction. Nature Structural and Molecular Biology, 1997, 4, 374-381.	8.2	200
5	The crystal structure of IgE Fc reveals an asymmetrically bent conformation. Nature Immunology, 2002, 3, 681-686.	14.5	152
6	The structure of human CD23 and its interactions with IgE and CD21. Journal of Experimental Medicine, 2005, 202, 751-760.	8.5	127
7	Complex between Peptostreptococcus magnus Protein L and a Human Antibody Reveals Structural Convergence in the Interaction Modes of Fab Binding Proteins. Structure, 2001, 9, 679-687.	3.3	121
8	Human IgG4: a structural perspective. Immunological Reviews, 2015, 268, 139-159.	6.0	119
9	Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcɛRI. Nature Structural and Molecular Biology, 2011, 18, 571-576.	8.2	105
10	Structural Determinants of Unique Properties of Human IgG4-Fc. Journal of Molecular Biology, 2014, 426, 630-644.	4.2	96
11	The structure and origin of rheumatoid factors. Trends in Immunology, 2000, 21, 177-183.	7.5	90
12	<scp>lgY</scp> : a key isotype in antibody evolution. Biological Reviews, 2017, 92, 2144-2156.	10.4	87
13	Cleavage of the lowâ€affinity receptor for human IgE (CD23) by a mite cysteine protease: Nature of the cleaved fragment in relation to the structure and function of CD23. European Journal of Immunology, 1997, 27, 584-588.	2.9	86
14	Structure and dynamics of IgE–receptor interactions: Fcε <scp>RI</scp> and <scp>CD</scp> 23/Fcε <scp>RII</scp> . Immunological Reviews, 2015, 268, 222-235.	6.0	85
15	Crystal structure of IgE bound to its B-cell receptor CD23 reveals a mechanism of reciprocal allosteric inhibition with high affinity receptor FcεRI. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12686-12691.	7.1	82
16	Bent Domain Structure of Recombinant Human IgE-Fc in Solution by X-ray and Neutron Scattering in Conjunction with an Automated Curve Fitting Procedure. Biochemistry, 1995, 34, 14449-14461.	2.5	77
17	Dynamics of Inter-heavy Chain Interactions in Human Immunoglobulin G (IgG) Subclasses Studied by Kinetic Fab Arm Exchange. Journal of Biological Chemistry, 2014, 289, 6098-6109.	3.4	76
18	lgG4 Characteristics and Functions in Cancer Immunity. Current Allergy and Asthma Reports, 2016, 16, 7.	5.3	76

BRIAN J SUTTON

#	Article	IF	CITATIONS
19	The structure of the IgE Cepsilon2 domain and its role in stabilizing the complex with its high-affinity receptor FcepsilonRIalpha. Nature Structural Biology, 2001, 8, 437-441.	9.7	73
20	Participation of the N-Terminal Region of Cε3 in the Binding of Human IgE to Its High-Affinity Receptor FcεRlâ€. Biochemistry, 1997, 36, 15568-15578.	2.5	71
21	Soluble CD23 Controls IgE Synthesis and Homeostasis in Human B Cells. Journal of Immunology, 2012, 188, 3199-3207.	0.8	67
22	Soluble CD23 Monomers Inhibit and Oligomers Stimulate IGE Synthesis in Human B Cells. Journal of Biological Chemistry, 2007, 282, 24083-24091.	3.4	66
23	Role of IgE receptors in IgE antibody-dependent cytotoxicity and phagocytosis of ovarian tumor cells by human monocytic cells. Cancer Immunology, Immunotherapy, 2007, 57, 247-263.	4.2	65
24	Interaction of the Low-Affinity Receptor CD23/FcεRII Lectin Domain with the Fcε3â^'4 Fragment of Human Immunoglobulin Eâ€. Biochemistry, 1997, 36, 2112-2122.	2.5	62
25	IgE Antibodies: From Structure to Function and Clinical Translation. Antibodies, 2019, 8, 19.	2.5	62
26	Endocytosis and recycling of the complex between CD23 and HLA-DR in human B cells. Immunology, 2001, 103, 319-331.	4.4	61
27	Biased use of VH5 IgE-positive B cells in the nasal mucosa in allergic rhinitis. Journal of Allergy and Clinical Immunology, 2005, 116, 445-452.	2.9	61
28	Crystal Structure of a Human Autoimmune Complex between IgM Rheumatoid Factor RF61 and IgG1 Fc Reveals a Novel Epitope and Evidence for Affinity Maturation. Journal of Molecular Biology, 2007, 368, 1321-1331.	4.2	61
29	Allosteric mechanism of action of the therapeutic anti-IgE antibody omalizumab. Journal of Biological Chemistry, 2017, 292, 9975-9987.	3.4	61
30	The Crystal Structure of an Avian IgY-Fc Fragment Reveals Conservation with both Mammalian IgG and IgE. Biochemistry, 2009, 48, 558-562.	2.5	54
31	Human immunoglobulin E flexes between acutely bent and extended conformations. Nature Structural and Molecular Biology, 2014, 21, 397-404.	8.2	52
32	Secretion of recombinant human IgE-Fc by mammalian cells and biological activity of glycosylation site mutants. Protein Engineering, Design and Selection, 1995, 8, 193-199.	2.1	51
33	The Allergic March from Staphylococcus aureus Superantigens to Immunoglobulin E. , 2007, 93, 106-136.		51
34	A Fluorescent Biosensor Reveals Conformational Changes in Human Immunoglobulin E Fc. Journal of Biological Chemistry, 2012, 287, 17459-17470.	3.4	49
35	Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. Journal of Immunological Methods, 2007, 323, 160-171.	1.4	45
36	Antibodies and superantibodies in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2017, 139, 1195-1204.e11.	2.9	42

BRIAN J SUTTON

#	Article	IF	CITATIONS
37	Conformation of the Isolated Cε3 Domain of IgE and Its Complex with the High-Affinity Receptor, FcεRIâ€. Biochemistry, 2000, 39, 7406-7413.	2.5	40
38	Asp-120 Locates Zn2 for Optimal Metallo-β-lactamase Activity. Journal of Biological Chemistry, 2007, 282, 18276-18285.	3.4	40
39	Crystal structure of the human IgG4 CH3 dimer reveals the role of Arg409 in the mechanism of Fab-arm exchange. Molecular Immunology, 2013, 54, 1-7.	2.2	39
40	A Massâ€5pectrometryâ€Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angewandte Chemie - International Edition, 2018, 57, 17194-17199.	13.8	39
41	Crystal structure of deglycosylated human IgG4-Fc. Molecular Immunology, 2014, 62, 46-53.	2.2	35
42	Prediction of domain organisation and secondary structure of thyroid peroxidase, a human autoantigen involved in destructive thyroiditis. FEBS Letters, 1990, 266, 133-141.	2.8	33
43	Total synthesis of (±)-aspercyclide A and its C19 methyl ether. Chemical Communications, 2010, 46, 1824-1826.	4.1	31
44	Disulfide Linkage Controls the Affinity and Stoichiometry of IgE Fcl̈µ3–4 Binding to Fcl̈µRI. Journal of Biological Chemistry, 2005, 280, 16808-16814.	3.4	30
45	Structure of a patient-derived antibody in complex with allergen reveals simultaneous conventional and superantigen-like recognition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8707-E8716.	7.1	29
46	Ca2+-dependent Structural Changes in the B-cell Receptor CD23 Increase Its Affinity for Human Immunoglobulin E. Journal of Biological Chemistry, 2013, 288, 21667-21677.	3.4	27
47	Mechanism of the Antigen-Independent Cytokinergic SPE-7 IgE Activation of Human Mast Cells in Vitro. Scientific Reports, 2015, 5, 9538.	3.3	27
48	The crystal structure of rabbit IgG-Fc. Biochemical Journal, 2009, 417, 77-83.	3.7	25
49	IgE binds asymmetrically to its B cell receptor CD23. Scientific Reports, 2017, 7, 45533.	3.3	25
50	Structural basis for selective inhibition of immunoglobulin E-receptor interactions by an anti-IgE antibody. Scientific Reports, 2018, 8, 11548.	3.3	22
51	Mapping of the CD23 Binding Site on Immunoglobulin E (IgE) and Allosteric Control of the IgE-FcïµRI Interaction. Journal of Biological Chemistry, 2012, 287, 31457-31461.	3.4	21
52	Synthesis and Incorporation into Cyclic Peptides of Tolan Amino Acids and Their Hydrogenated Congeners: Construction of an Array of A–B-loop Mimetics of the Cε3 Domain of Human IgE. Journal of Organic Chemistry, 2012, 77, 3197-3214.	3.2	21
53	Analysis of the interaction between RGD-expressing adenovirus type 5 fiber knob domains and αvβ3 integrin reveals distinct binding profiles and intracellular trafficking. Journal of General Virology, 2006, 87, 2497-2505.	2.9	19
54	Mutations in an avian IgY-Fc fragment reveal the locations of monocyte Fc receptor binding sites. Developmental and Comparative Immunology, 2010, 34, 97-101.	2.3	18

BRIAN J SUTTON

#	Article	IF	CITATIONS
55	Antibody mimetics: promising complementary agents to animal-sourced antibodies. Critical Reviews in Biotechnology, 2016, 36, 268-275.	9.0	18
56	Conformational plasticity at the IgE-binding site of the B-cell receptor CD23. Molecular Immunology, 2013, 56, 693-697.	2.2	16
57	The Structure of a Human Rheumatoid Factor Bound to IgG Fc. Advances in Experimental Medicine and Biology, 1998, 435, 41-50.	1.6	15
58	Crystal structures of murine and human Histamine-Releasing Factor (HRF/TCTP) and a model for HRF dimerisation in mast cell activation. Molecular Immunology, 2018, 93, 216-222.	2.2	15
59	IgE Trimers Drive SPE-7 Cytokinergic Activity. Scientific Reports, 2017, 7, 8164.	3.3	13
60	Interplay between Affinity and Valency in Effector Cell Degranulation: A Model System with Polcalcin Allergens and Human Patient–Derived IgE Antibodies. Journal of Immunology, 2019, 203, 1693-1700.	0.8	13
61	A range of Câ^Š3–Câ^Š4 interdomain angles in IgE Fc accommodate binding to its receptor CD23. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 305-309.	0.8	12
62	Attenuation of IgE Affinity for FcΪμRI Radically Reduces the Allergic Response in Vitro and in Vivo. Journal of Biological Chemistry, 2008, 283, 29882-29887.	3.4	11
63	Identification of Amino Acid Residues in Human IgM Fc Receptor (FcÂμR) Critical for IgM Binding. Frontiers in Immunology, 2020, 11, 618327.	4.8	11
64	Synthesis of the C19 methyl ether of aspercyclide A via germyl-Stille macrocyclisation and ELISA evaluation of both enantiomers following optical resolution. Organic and Biomolecular Chemistry, 2011, 9, 6814.	2.8	10
65	Thermal sensitivity and flexibility of the Cε3 domains in immunoglobulin E. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1336-1347.	2.3	10
66	Differences between Human and Mouse IgM Fc Receptor (FcµR). International Journal of Molecular Sciences, 2021, 22, 7024.	4.1	9
67	Mapping of the binding site for FcμR in human IgM-Fc. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140266.	2.3	8
68	Room temperature structure of human IgG4-Fc from crystals analysed in situ. Molecular Immunology, 2017, 81, 85-91.	2.2	7
69	A Massâ€Spectrometryâ€Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angewandte Chemie, 2018, 130, 17440-17445.	2.0	5
70	Engineering the Fab fragment of the anti-IgE omalizumab to prevent Fab crystallization and permit IgE-Fc complex crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 116-129.	0.8	5
71	The structure of PghL hydrolase bound to its substrate polyâ€Î³â€glutamate. FEBS Journal, 2018, 285, 4575-4589.	4.7	2
72	Reviving lost binding sites: Exploring calciumâ€binding site transitions between human and murine CD23. FEBS Open Bio, 2021, 11, 1827-1840.	2.3	2

#	Article	IF	CITATIONS
73	Allergy's Achilles' heel?. Nature Chemical Biology, 2013, 9, 757-759.	8.0	1