
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4483260/publications.pdf Version: 2024-02-01

OMID AKRADI

#	Article	IF	CITATIONS
1	LAIR-1 acts as an immune checkpoint on activated ILC2s and regulates the induction of airway hyperreactivity. Journal of Allergy and Clinical Immunology, 2022, 149, 223-236.e6.	2.9	18
2	Cannabinoid receptor 2 engagement promotes group 2 innate lymphoid cell expansion and enhances airway hyperreactivity. Journal of Allergy and Clinical Immunology, 2022, 149, 1628-1642.e10.	2.9	14
3	Adaptation of Imaging Mass Cytometry to Explore the Single Cell Alloimmune Landscape of Liver Transplant Rejection. Frontiers in Immunology, 2022, 13, 831103.	4.8	4
4	Autophagy impairment in liver CD11c+ cells promotes non-alcoholic fatty liver disease through production of IL-23. Nature Communications, 2022, 13, 1440.	12.8	16
5	Near-roadway air pollution, immune cells and adipokines among obese young adults. Environmental Health, 2022, 21, 36.	4.0	4
6	Analysis of the interplay between hepatitis B virus-positive hepatocytes and Kupffer cells ex vivo using mice as a model. STAR Protocols, 2022, 3, 101364.	1.2	1
7	IL-10 production by ILC2s requires Blimp-1 and cMaf, modulates cellular metabolism, and ameliorates airway hyperreactivity. Journal of Allergy and Clinical Immunology, 2021, 147, 1281-1295.e5.	2.9	40
8	CD52-targeted depletion by Alemtuzumab ameliorates allergic airway hyperreactivity and lung inflammation. Mucosal Immunology, 2021, 14, 899-911.	6.0	7
9	CD200–CD200R immune checkpoint engagement regulates ILC2 effector function and ameliorates lung inflammation in asthma. Nature Communications, 2021, 12, 2526.	12.8	22
10	Creation of a Single Cell RNASeq Meta-Atlas to Define Human Liver Immune Homeostasis. Frontiers in Immunology, 2021, 12, 679521.	4.8	11
11	Type 2 Innate Lymphoid Cells: Protectors in Type 2 Diabetes. Frontiers in Immunology, 2021, 12, 727008.	4.8	8
12	PD-1 Blockade on Tumor Microenvironment-Resident ILC2s Promotes TNF-α Production and Restricts Progression of Metastatic Melanoma. Frontiers in Immunology, 2021, 12, 733136.	4.8	16
13	Absence of CD28-CTLA4-PD-L1 Costimulatory Molecules Reduces Herpes Simplex Virus 1 Reactivation. MBio, 2021, 12, e0117621.	4.1	2
14	AMPK induces regulatory innate lymphoid cells after traumatic brain injury. JCI Insight, 2021, 6, .	5.0	21
15	Impact of a Demyelination-Inducing Central Nervous System Virus on Expression of Demyelination Genes in Type 2 Lymphoid Cells. Journal of Virology, 2021, 95, .	3.4	1
16	Autophagy is critical for group 2 innate lymphoid cell metabolic homeostasis and effector function. Journal of Allergy and Clinical Immunology, 2020, 145, 502-517.e5.	2.9	47
17	Type 2 Innate Lymphoid Cells Induce CNS Demyelination in an HSV-IL-2 Mouse Model of Multiple Sclerosis. IScience, 2020, 23, 101549.	4.1	14
18	Distinct Roles of LFA-1 and ICAM-1 on ILC2s Control Lung Infiltration, Effector Functions, and Development of Airway Hyperreactivity. Frontiers in Immunology, 2020, 11, 542818.	4.8	19

#	Article	IF	CITATIONS
19	PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nature Communications, 2020, 11, 3998.	12.8	101
20	Feasibility of quantifying change in immune white cells in abdominal adipose tissue in response to an immune modulator in clinical obesity. PLoS ONE, 2020, 15, e0237496.	2.5	4
21	Perinatal nicotine exposureâ€induced transgenerational asthma: Effects of reexposure in F1 gestation. FASEB Journal, 2020, 34, 11444-11459.	0.5	11
22	DR3 stimulation of adipose resident ILC2s ameliorates type 2 diabetes mellitus. Nature Communications, 2020, 11, 4718.	12.8	26
23	Repopulation of T, B, and NK cells following alemtuzumab treatment in relapsing-remitting multiple sclerosis. Journal of Neuroinflammation, 2020, 17, 189.	7.2	34
24	Role of Autophagy in Lung Inflammation. Frontiers in Immunology, 2020, 11, 1337.	4.8	43
25	Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nature Communications, 2020, 11, 1776.	12.8	119
26	Immunologic benefit of maternal donors in pediatric living donor liver transplantation. Pediatric Transplantation, 2019, 23, e13560.	1.0	12
27	Dietary Fiber-Induced Microbial Short Chain Fatty Acids Suppress ILC2-Dependent Airway Inflammation. Frontiers in Immunology, 2019, 10, 2051.	4.8	90
28	Roles of Type 1, 2, and 3 Innate Lymphoid Cells in Herpes Simplex Virus 1 Infection <i>In Vitro</i> and <i>In Vivo</i> . Journal of Virology, 2019, 93, .	3.4	14
29	Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nature Communications, 2019, 10, 1693.	12.8	119
30	Exposure to Nanoscale Particulate Matter from Gestation to Adulthood Impairs Metabolic Homeostasis in Mice. Scientific Reports, 2019, 9, 1816.	3.3	21
31	Costimulation of type-2 innate lymphoid cells by GITR promotes effector function and ameliorates type 2 diabetes. Nature Communications, 2019, 10, 713.	12.8	58
32	TNFR2 Signaling Enhances ILC2 Survival, Function, and Induction of Airway Hyperreactivity. Cell Reports, 2019, 29, 4509-4524.e5.	6.4	44
33	A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity. PLoS Genetics, 2019, 15, e1008528.	3.5	9
34	A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nature Communications, 2019, 10, 5681.	12.8	30
35	Mast cells regulate CD4+ T-cell differentiation in the absence of antigen presentation. Journal of Allergy and Clinical Immunology, 2018, 142, 1894-1908.e7.	2.9	23
36	Activated plasmacytoid dendritic cells regulate type 2 innate lymphoid cell–mediated airway hyperreactivity. Journal of Allergy and Clinical Immunology, 2018, 141, 893-905.e6.	2.9	61

#	Article	IF	CITATIONS
37	IL-10, TGF-β, and glucocorticoid prevent the production of type 2 cytokines in human group 2 innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2018, 141, 1147-1151.e8.	2.9	40
38	Social Networking of Group Two Innate Lymphoid Cells in Allergy and Asthma. Frontiers in Immunology, 2018, 9, 2694.	4.8	52
39	Herpes Simplex Virus 1 Specifically Targets Human CD1d Antigen Presentation To Enhance Its Pathogenicity. Journal of Virology, 2018, 92, .	3.4	10
40	Reply. Journal of Allergy and Clinical Immunology, 2017, 139, 712-713.	2.9	0
41	Regulatory T cells and type 2 innate lymphoid cellâ€dependent asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1148-1155.	5.7	84
42	Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps. Immunity, Inflammation and Disease, 2017, 5, 233-243.	2.7	105
43	Efficacy of Rhesus Theta-Defensin-1 in Experimental Models of Pseudomonas aeruginosa Lung Infection and Inflammation. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	22
44	Type two innate lymphoid cells: the Janus cells in health and disease. Immunological Reviews, 2017, 278, 192-206.	6.0	25
45	Type 2 innate lymphoid cell suppression by regulatory TÂcells attenuates airway hyperreactivity and requires inducible T-cell costimulator–inducible T-cell costimulator ligand interaction. Journal of Allergy and Clinical Immunology, 2017, 139, 1468-1477.e2.	2.9	153
46	Innate lymphoid cells: a paradigm for low SSI inÂcleft lip repair. Journal of Surgical Research, 2016, 205, 312-317.	1.6	12
47	ll̂ºB Kinase ε Is an NFATc1 Kinase that Inhibits T Cell Immune Response. Cell Reports, 2016, 16, 405-418.	6.4	54
48	lsoaspartylation appears to trigger small cell lung cancer-associated autoimmunity against neuronal protein ELAVL4. Journal of Neuroimmunology, 2016, 299, 70-78.	2.3	7
49	Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. Nature Communications, 2016, 7, 13202.	12.8	108
50	Lower omental tâ€regulatory cell count is associated with higher fasting glucose and lower β ell function in adults with obesity. Obesity, 2016, 24, 1274-1282.	3.0	28
51	Lack of autophagy induces steroid-resistant airway inflammation. Journal of Allergy and Clinical Immunology, 2016, 137, 1382-1389.e9.	2.9	63
52	A Subset of CD8αβ+ Invariant NKT Cells in a Humanized Mouse Model. Journal of Immunology, 2015, 195, 1459-1469.	0.8	11
53	Batf3 deficiency is not critical for the generation of CD8î±+ dendritic cells. Immunobiology, 2015, 220, 518-524.	1.9	18
54	ICOS:ICOS-Ligand Interaction Is Required for Type 2 Innate Lymphoid Cell Function, Homeostasis, and Induction of Airway Hyperreactivity. Immunity, 2015, 42, 538-551.	14.3	254

#	Article	IF	CITATIONS
55	ICOS regulates ILC2s in asthma. Oncotarget, 2015, 6, 24584-24585.	1.8	12
56	Inclusion of CD80 in HSV Targets the Recombinant Virus to PD-L1 on DCs and Allows Productive Infection and Robust Immune Responses. PLoS ONE, 2014, 9, e87617.	2.5	23
57	Response to "CD8 subunit expression by plasmacytoid dendritic cells is variable, and does not define stable subsets― Mucosal Immunology, 2014, 7, 1278-1279.	6.0	1
58	Role of plasmacytoid dendritic cell subsets in allergic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 695-701.	5.7	22
59	Programmed cell death ligand 2 regulates TH9 differentiation and induction of chronic airway hyperreactivity. Journal of Allergy and Clinical Immunology, 2013, 131, 1048-1057.e2.	2.9	85
60	Lack of PD-L1 Expression by iNKT Cells Improves the Course of Influenza A Infection. PLoS ONE, 2013, 8, e59599.	2.5	21
61	Effects of Systemic versus Local Administration of Corticosteroids on Mucosal Tolerance. Journal of Immunology, 2012, 188, 470-476.	0.8	16
62	CD8α+βâ^' and CD8α+β+ plasmacytoid dendritic cells induce Foxp3+ regulatory T cells and prevent the induction of airway hyper-reactivity. Mucosal Immunology, 2012, 5, 432-443.	6.0	69
63	Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 155-162.	5.7	103
64	A CD1d-Dependent Antagonist Inhibits the Activation of Invariant NKT Cells and Prevents Development of Allergen-Induced Airway Hyperreactivity. Journal of Immunology, 2010, 184, 2107-2115.	0.8	43
65	PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions. Mucosal Immunology, 2010, 3, 81-91.	6.0	157
66	Natural killer T cells in the lungs of patients with asthma. Journal of Allergy and Clinical Immunology, 2009, 123, 1181-1185.e1.	2.9	72
67	Activation of Nonclassical CD1d-Restricted NK T Cells Induces Airway Hyperreactivity in β2-Microglobulin-Deficient Mice. Journal of Immunology, 2008, 181, 4560-4569.	0.8	27
68	ICOS/ICOSL Interaction Is Required for CD4+ Invariant NKT Cell Function and Homeostatic Survival. Journal of Immunology, 2008, 180, 5448-5456.	0.8	79
69	Glycolipid activation of invariant T cell receptor ⁺ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2782-2787.	7.1	206
70	The role of iNKT cells in development of bronchial asthma: a translational approach from animal models to human. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 962-968.	5.7	17
71	Reply to Natural killer T cells and CD8+ T cells are dispensable for T cell–dependent allergic airway inflammation. Nature Medicine, 2006, 12, 1347-1347.	30.7	4
72	Role of regulatory dendritic cells in allergy and asthma. Current Allergy and Asthma Reports, 2005, 5, 56-61.	5.3	52

#	Article	IF	CITATIONS
73	Induction of T helper type 1–like regulatory cells that express Foxp3 and protect against airway hyper-reactivity. Nature Immunology, 2004, 5, 1149-1156.	14.5	287
74	Role of regulatory dendritic cells in allergy and asthma. Current Opinion in Allergy and Clinical Immunology, 2004, 4, 533-538.	2.3	22
75	Role of regulatory T cells in allergy and asthma. Current Opinion in Immunology, 2003, 15, 627-633.	5.5	176
76	Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nature Medicine, 2003, 9, 582-588.	30.7	639
77	Mucosal Tolerance and Immunity: Regulating the Development of Allergic Disease and Asthma. International Archives of Allergy and Immunology, 2003, 130, 108-118.	2.1	52
78	CD4 T-helper cells engineered to produce IL-10 prevent allergen-induced airway hyperreactivity and inflammation. Journal of Allergy and Clinical Immunology, 2002, 110, 460-468.	2.9	202
79	Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nature Medicine, 2002, 8, 1024-1032.	30.7	728
80	Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunology, 2001, 2, 725-731.	14.5	1,145
81	Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nature Immunology, 2001, 2, 1109-1116.	14.5	460