Craig A Aspinwall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4483075/publications.pdf

Version: 2024-02-01

279798 276875 1,745 61 23 41 citations h-index g-index papers 61 61 61 1931 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Inward and outward currents of native and cloned K(ATP) channels (Kir6.2/SUR1) share single-channel kinetic properties. Biochemistry and Biophysics Reports, 2022, 30, 101260.	1.3	1
2	Nanomechanical Properties of Artificial Lipid Bilayers Composed of Fluid and Polymerizable Lipids. Langmuir, 2022, 38, 100-111.	3.5	5
3	Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 1031-1037.	2.8	8
4	Direct interaction of the ATP-sensitive K+ channel by the tyrosine kinase inhibitors imatinib, sunitinib and nilotinib. Biochemical and Biophysical Research Communications, 2021, 557, 14-19.	2.1	4
5	Quantification of intracellular HNO delivery with capillary zone electrophoresis. Nitric Oxide - Biology and Chemistry, 2021, 118, 49-58.	2.7	O
6	Expression of truncated Kir6.2 promotes insertion of functionally inverted ATP-sensitive K+ channels. Scientific Reports, 2021, 11, 21539.	3.3	0
7	Nanodomain Formation in Planar Supported Lipid Bilayers Composed of Fluid and Polymerized Dienoyl Lipids. Langmuir, 2019, 35, 12483-12491.	3.5	5
8	Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34463-34470.	8.0	6
9	Hybrid Nanoparticle Platform for Nanoscale Scintillation Proximity Assay. ACS Applied Nano Materials, 2019, 2, 1259-1266.	5.0	4
10	Expression, purification, and electrophysiological characterization of a recombinant, fluorescent Kir6.2 in mammalian cells. Protein Expression and Purification, 2018, 146, 61-68.	1.3	3
11	Polystyrene-Core, Silica-Shell Scintillant Nanoparticles for Low-Energy Radionuclide Quantification in Aqueous Media. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4953-4960.	8.0	4
12	Rapid formation of polymer frits in fused silica capillaries using spatially defined thermal freeâ€radical initiated polymerization. Separation Science Plus, 2018, 1, 753-758.	0.6	0
13	Enhanced Fluorescent Protein Activity in Polymer Scaffold-Stabilized Phospholipid Nanoshells Using Neutral Redox Initiator Polymerization Conditions. ACS Omega, 2018, 3, 15890-15899.	3.5	0
14	Enhanced Temporal Resolution with Ion Channel-Functionalized Sensors Using a Conductance-Based Measurement Protocol. Analytical Chemistry, 2017, 89, 1315-1322.	6.5	7
15	Aptamer-functionalized porous phospholipid nanoshells for direct measurement of Hg2+ in urine. Analytical and Bioanalytical Chemistry, 2015, 407, 953-960.	3.7	5
16	Highly stabilized, polymer–lipid membranes prepared on silica microparticles as stationary phases for capillary chromatography. Journal of Chromatography A, 2015, 1385, 28-34.	3.7	7
17	Fate of fluorescent core-shell silica nanoparticles during simulated secondary wastewater treatment. Water Research, 2015, 77, 170-178.	11.3	17
18	Emerging trends in precision fabrication of microapertures to support suspended lipid membranes for sensors, sequencing, and beyond. Analytical and Bioanalytical Chemistry, 2015, 407, 647-652.	3.7	1

#	Article	IF	Citations
19	Methacrylate Polymer Scaffolding Enhances the Stability of Suspended Lipid Bilayers for Ion Channel Recordings and Biosensor Development. ACS Biomaterials Science and Engineering, 2015, 1, 955-963.	5.2	19
20	Glutathione sulfinamide serves as a selective, endogenous biomarker for nitroxyl after exposure to therapeutic levels of donors. Free Radical Biology and Medicine, 2014, 76, 299-307.	2.9	21
21	Hybrid phospholipid bilayer coatings for separations of cationic proteins in capillary zone electrophoresis. Electrophoresis, 2014, 35, 1099-1105.	2.4	11
22	Stabilized phospholipid membranes in chromatography: toward membrane protein-functionalized stationary phases. Analytical and Bioanalytical Chemistry, 2014, 406, 2223-2229.	3.7	7
23	Stabilized porous liposomes with encapsulated Gd-labeled dextran as a highly efficient MRI contrast agent. Chemical Communications, 2014, 50, 2502.	4.1	22
24	Photolithographic Fabrication of Microapertures with Well-Defined, Three-Dimensional Geometries for Suspended Lipid Membrane Studies. Analytical Chemistry, 2013, 85, 9078-9086.	6.5	22
25	Decreased Aperture Surface Energy Enhances Electrical, Mechanical, and Temporal Stability of Suspended Lipid Membranes. ACS Applied Materials & Suspended Lipid Membranes. ACS Applied Materials & Suspended Lipid Membranes.	8.0	36
26	Evidence for Ca2+-regulated ATP release in gastrointestinal stromal tumors. Experimental Cell Research, 2013, 319, 1229-1238.	2.6	13
27	Practical considerations for preparing polymerized phospholipid bilayer capillary coatings for protein separations. Analytica Chimica Acta, 2013, 772, 93-98.	5.4	17
28	Determination of Pore Sizes and Relative Porosity in Porous Nanoshell Architectures Using Dextran Retention with Single Monomer Resolution and Proton Permeation. Analytical Chemistry, 2012, 84, 9754-9761.	6.5	8
29	Online photolytic optical gating of caged fluorophores in capillary zone electrophoresis utilizing an ultraviolet lightâ€emitting diode. Electrophoresis, 2012, 33, 2903-2910.	2.4	2
30	Composite nanoparticles: the best of two worlds. Analytical and Bioanalytical Chemistry, 2012, 402, 83-89.	3.7	24
31	Polymerized Planar Suspended Lipid Bilayers for Single Ion Channel Recordings: Comparison of Several Dienoyl Lipids. Langmuir, 2011, 27, 1882-1890.	3.5	25
32	Analysis of protein kinase A activity in insulin-secreting cells using a cell-penetrating protein substrate and capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2010, 397, 3359-3367.	3.7	5
33	Highly Stable Poly(Lipid) Bilayers for Long-Term Ion Channel Recordings. Biophysical Journal, 2010, 98, 285a-286a.	0.5	0
34	Fractional Polymerization of a Suspended Planar Bilayer Creates a Fluid, Highly Stable Membrane for lon Channel Recordings. Journal of the American Chemical Society, 2010, 132, 7086-7093.	13.7	26
35	Polymer-Stabilized Phospholipid Vesicles with a Controllable, pH-Dependent Disassembly Mechanism. Langmuir, 2009, 25, 1908-1910.	3.5	21
36	Enhanced Long-Term Stability for Single Ion Channel Recordings Using Suspended Poly(lipid) Bilayers. Journal of the American Chemical Society, 2009, 131, 6662-6663.	13.7	25

3

#	Article	IF	Citations
37	Preparation and Characterization of Poly(lipid)-Coated, Fluorophore-Doped Silica Nanoparticles for Biolabeling and Cellular Imaging. Langmuir, 2007, 23, 12624-12633.	3.5	55
38	Fabrication and Characterization of Spatially Defined, Multiple Component, Chemically Functionalized Domains in Enclosed Silica Channels Using Cross-Linked Phospholipid Membranes. Langmuir, 2007, 23, 11326-11333.	3 . 5	9
39	Preparation and Characterization of Cross-Linked Phospholipid Bilayer Capillary Coatings for Protein Separations. Analytical Chemistry, 2007, 79, 3135-3141.	6.5	39
40	Design, characterization, and utilization of a fast fluorescence derivatization reaction utilizingo-phthaldialdehyde coupled with fluorescent thiols. Electrophoresis, 2007, 28, 1100-1106.	2.4	8
41	Highâ€sensitivity detection of biological amines using fast Hadamard transform CE coupled with photolytic optical gating. Electrophoresis, 2007, 28, 3115-3121.	2.4	14
42	Nanometre-sized molecular oxygen sensors prepared from polymer stabilized phospholipid vesicles. Analyst, The, 2006, 131, 236-243.	3. 5	47
43	High-Speed Capillary Zone Electrophoresis with Online Photolytic Optical Injection. Analytical Chemistry, 2006, 78, 3674-3680.	6.5	13
44	Stabilized Porous Phospholipid Nanoshells. Langmuir, 2006, 22, 9507-9511.	3.5	17
45	Fast Hadamard Transform Capillary Electrophoresis for On-Line, Time-Resolved Chemical Monitoring. Analytical Chemistry, 2006, 78, 1628-1635.	6.5	29
46	Capillary electrophoresis with a UV light-emitting diode source for chemical monitoring of native and derivatized fluorescent compounds. Electrophoresis, 2006, 27, 4052-4059.	2.4	25
47	Screening populations of individual cells for secretory heterogeneity. Analytical and Bioanalytical Chemistry, 2005, 381, 660-666.	3.7	8
48	In Situ Fabrication of Three-Dimensional Chemical Patterns in Fused Silica Separation Capillaries with Polymerized Phospholipids. Journal of the American Chemical Society, 2005, 127, 16756-16757.	13.7	25
49	Removal of Ca2+ Channel \hat{I}^2 3 Subunit Enhances Ca2+ Oscillation Frequency and Insulin Exocytosis. Cell, 2004, 119, 273-284.	28.9	105
50	Roles of Insulin Receptor Substrate-1, Phosphatidylinositol 3-Kinase, and Release of Intracellular Ca2+ Stores in Insulin-stimulated Insulin Secretion in \hat{I}^2 -Cells. Journal of Biological Chemistry, 2000, 275, 22331-22338.	3.4	149
51	Detection of Secretion from Single Pancreatic \hat{l}^2 -Cells Using Extracellular Fluorogenic Reactions and Confocal Fluorescence Microscopy. Analytical Chemistry, 2000, 72, 711-717.	6.5	100
52	Insulin-stimulated Insulin Secretion in Single Pancreatic Beta Cells. Journal of Biological Chemistry, 1999, 274, 6360-6365.	3.4	194
53	Oxygen Microsensor and Its Application to Single Cells and Mouse Pancreatic Islets. Analytical Chemistry, 1999, 71, 3642-3649.	6.5	79
54	Comparison of Amperometric Methods for Detection of Exocytosis from Single Pancreatic \hat{l}^2 -Cells of Different Species. Analytical Chemistry, 1999, 71, 5551-5556.	6.5	44

#	Article	IF	CITATION
55	Detection of Multiple Patterns of Oscillatory Oxygen Consumption in Single Mouse Islets of Langerhans. Biochemical and Biophysical Research Communications, 1999, 259, 331-335.	2.1	43
56	Secretion from Islets and Single Islet Cells following Cryopreservation. Cell Transplantation, 1999, 8, 691-698.	2.5	10
57	On-line competitive immunoassay based on capillary electrophoresis applied to monitoring insulin secretion from single islets of Langerhans. Electrophoresis, 1998, 19, 403-408.	2.4	53
58	Effects of Intravesicular H+ and Extracellular H+ and Zn2+ on Insulin Secretion in Pancreatic Beta Cells. Journal of Biological Chemistry, 1997, 272, 31308-31314.	3.4	82
59	Dual microcolumn immunoassay applied to determination of insulin secretion from single islets of Langerhans and insulin in serum. Biomedical Applications, 1997, 689, 295-303.	1.7	29
60	Ruthenium catalyst for amperometric determination of insulin at physiological pH. Journal of Electroanalytical Chemistry, 1997, 425, 191-199.	3.8	71
61	Extracellular pH Is Required for Rapid Release of Insulin from Znâ^Insulin Precipitates in β-Cell Secretory Vesicles during Exocytosis. Journal of the American Chemical Society, 1996, 118, 1795-1796.	13.7	116