Jintong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/448305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–Organic Framework (MOF) Hybrid as a Tandem Catalyst for Enhanced Therapy against Hypoxic Tumor Cells. Angewandte Chemie - International Edition, 2019, 58, 7808-7812.	13.8	139
2	Multifunctional metal–organic framework heterostructures for enhanced cancer therapy. Chemical Society Reviews, 2021, 50, 1188-1218.	38.1	138
3	A porphyrin photosensitized metal–organic framework for cancer cell apoptosis and caspase responsive theranostics. Chemical Communications, 2015, 51, 10831-10834.	4.1	125
4	Metal–Organic Framework (MOF) Hybrid as a Tandem Catalyst for Enhanced Therapy against Hypoxic Tumor Cells. Angewandte Chemie, 2019, 131, 7890-7894.	2.0	125
5	Multifunctional Metal–Organic Framework Nanoprobe for Cathepsin B-Activated Cancer Cell Imaging and Chemo-Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 2150-2158.	8.0	118
6	A black phosphorus/manganese dioxide nanoplatform: Oxygen self-supply monitoring, photodynamic therapy enhancement and feedback. Biomaterials, 2019, 192, 179-188.	11.4	116
7	Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials, 2018, 172, 83-91.	11.4	86
8	Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer. Biomaterials, 2015, 67, 323-334.	11.4	67
9	Developing a Novel Nanoscale Porphyrinic Metal–Organic Framework: A Bifunctional Platform with Sensitive Fluorescent Detection and Elimination of Nitenpyram in Agricultural Environment. Journal of Agricultural and Food Chemistry, 2020, 68, 5572-5578.	5.2	57
10	Uptake of atrazine in a paddy crop activates an epigenetic mechanism for degrading the pesticide in plants and environment. Environment International, 2019, 131, 105014.	10.0	48
11	Biodegrading Two Pesticide Residues in Paddy Plants and the Environment by a Genetically Engineered Approach. Journal of Agricultural and Food Chemistry, 2019, 67, 4947-4957.	5.2	45
12	Physiochemical assessment of environmental behaviors of herbicide atrazine in soils associated with its degradation and bioavailability to weeds. Chemosphere, 2021, 262, 127830.	8.2	44
13	Sensitive detection of intracellular microRNA based on a flowerlike vector with catalytic hairpin assembly. Chemical Communications, 2018, 54, 2550-2553.	4.1	42
14	A core–shell nanoparticle–peptide@metal–organic framework as pH and enzyme dual-recognition switch for stepwise-responsive imaging in living cells. Chemical Communications, 2018, 54, 9155-9158.	4.1	39
15	MicroRNA-Responsive Cancer Cell Imaging and Therapy with Functionalized Gold Nanoprobe. ACS Applied Materials & Interfaces, 2015, 7, 19016-19023.	8.0	38
16	A cerium oxide@metal–organic framework nanoenzyme as a tandem catalyst for enhanced photodynamic therapy. Chemical Communications, 2021, 57, 2820-2823.	4.1	30
17	In situ activation and monitoring of the evolution of the intracellular caspase family. Chemical Science, 2015, 6, 3365-3372.	7.4	28
18	Detection of bisphenol A in food packaging based on fluorescent conjugated polymer PPESO3 and enzyme system. Food Chemistry, 2015, 185, 233-238.	8.2	28

Jintong Liu

#	Article	IF	CITATIONS
19	Adsorption, mobility, biotic and abiotic metabolism and degradation of pesticide exianliumi in three types of farmland. Chemosphere, 2020, 254, 126741.	8.2	28
20	ldentification of a novel function of a component in the jasmonate signaling pathway for intensive pesticide degradation in rice and environment through an epigenetic mechanism. Environmental Pollution, 2021, 268, 115802.	7.5	27
21	Insight into metabolism pathways of pesticide fomesafen in rice: Reducing cropping and environmental risks. Environmental Pollution, 2021, 283, 117128.	7.5	24
22	OsPAL as a key salicylic acid synthetic component is a critical factor involved in mediation of isoproturon degradation in a paddy crop. Journal of Cleaner Production, 2020, 262, 121476.	9.3	24
23	Highly sensitive fluorescent quantification of acid phosphatase activity and its inhibitor pesticide Dufulin by a functional metal–organic framework nanosensor for environment assessment and food safety. Food Chemistry, 2022, 370, 131034.	8.2	20
24	Nonenzymatic Target-Driven DNA Nanomachine for Monitoring Malathion Contamination in Living Cells and Bioaccumulation in Foods. Analytical Chemistry, 2022, 94, 5667-5673.	6.5	17
25	Genome-wide identification of Oryza sativa: A new insight for advanced analysis of ABC transporter genes associated with the degradation of four pesticides. Gene, 2022, 834, 146613.	2.2	16
26	Expression of <i>CYP76C6</i> Facilitates Isoproturon Metabolism and Detoxification in Rice. Journal of Agricultural and Food Chemistry, 2022, 70, 4599-4610.	5.2	12
27	Target-triggered cascade assembly of a catalytic network as an artificial enzyme for highly efficient sensing. Chemical Science, 2017, 8, 4833-4839.	7.4	11
28	A self-calibrated 2D nanoarchitecture for label-free SERS quantitation and distribution imaging of target. Sensors and Actuators B: Chemical, 2018, 273, 211-219.	7.8	11
29	Glutathioneâ€Responsive Heterogeneous Metal–Organic Framework Hybrids for Photodynamicâ€Gene Synergetic Cell Apoptosis. Chemistry - A European Journal, 2022, 28, .	3.3	8
30	Minimized Atrazine Risks to Crop Security and Its Residue in the Environment by a Rice Methyltransferase as a Regulation Factor. Journal of Agricultural and Food Chemistry, 2022, 70, 87-98.	5.2	4
31	Identification, characterization and expression of rice (Oryza sativa) acetyltransferase genes exposed to realistic environmental contamination of mesotrione and fomesafen. Ecotoxicology and Environmental Safety, 2022, 233, 113349.	6.0	3
32	Photovoltage-triggered electrochromic tablet for visualized photoelectrochemical sensing. Analytica Chimica Acta, 2019, 1049, 91-97.	5.4	2