Marina GaliÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4483018/publications.pdf

Version: 2024-02-01

74163 50276 6,750 156 46 75 citations h-index g-index papers 157 157 157 4608 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Renewable polymeric materials from vegetable oils: a perspective. Materials Today, 2013, 16, 337-343.	14.2	434
2	Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current State-of-the-Art. Biomacromolecules, 2010, 11, 2825-2835.	5.4	387
3	Synthesis and characterization of polyurethanes from epoxidized methyl oleate based polyether polyols as renewable resources. Journal of Polymer Science Part A, 2006, 44, 634-645.	2.3	185
4	Vegetable oils as platform chemicals for polymer synthesis. European Journal of Lipid Science and Technology, 2011, 113, 46-58.	1.5	179
5	Vegetable oilâ€based thermosetting polymers. European Journal of Lipid Science and Technology, 2010, 112, 87-96.	1.5	150
6	Polybenzoxazines: new players in the bio-based polymer arena. Polymer Chemistry, 2014, 5, 6636-6644.	3.9	124
7	Silicon-containing flame retardant epoxy resins: Synthesis, characterization and properties. Polymer Degradation and Stability, 2006, 91, 2588-2594.	5.8	116
8	Poly(ether urethane) Networks from Renewable Resources as Candidate Biomaterials:Â Synthesis and Characterization. Biomacromolecules, 2007, 8, 686-692.	5.4	115
9	Bionanocomposites from Renewable Resources:Â Epoxidized Linseed Oilâ^'Polyhedral Oligomeric Silsesquioxanes Hybrid Materials. Biomacromolecules, 2006, 7, 3521-3526.	5.4	111
10	Polybenzoxazines from renewable diphenolic acid. Journal of Polymer Science Part A, 2011, 49, 1219-1227.	2.3	111
11	Chemically modified polymeric resin used as sorbent in a solid-phase extraction process to determine phenolic compounds in water. Journal of Chromatography A, 1997, 771, 55-61.	3.7	105
12	Novel phosphorilated flame retardant thermosets: epoxy–benzoxazine–novolac systems. Polymer, 2004, 45, 6103-6109.	3.8	103
13	Synthesis of novel benzoxazines containing glycidyl groups: A study of the crosslinking behavior. Journal of Polymer Science Part A, 2006, 44, 1529-1540.	2.3	100
14	Evaluation of a new hypercrosslinked polymer as a sorbent for solid-phase extraction of polar compounds. Journal of Chromatography A, 2005, 1075, 51-56.	3.7	99
15	Rapid Approach to Biobased Telechelics through Two One-Pot Thiolâ^'Ene Click Reactions. Biomacromolecules, 2010, 11, 1646-1653.	5.4	99
16	New chemically modified polymeric resin for solid-phase extraction of pesticides and phenolic compounds from water. Journal of Chromatography A, 1998, 803, 147-155.	3.7	98
17	Development of a DOPO-containing benzoxazine and its high-performance flame retardant copolybenzoxazines. Polymer Degradation and Stability, 2009, 94, 1693-1699.	5.8	97
18	Preparation, thermal properties and flame retardancy of phosphorus- and silicon-containing epoxy resins. Polymer Degradation and Stability, 2008, 93, 2025-2031.	5.8	92

#	Article	IF	CITATIONS
19	Renewable benzoxazine monomers from "lignin-like―naturally occurring phenolic derivatives. Journal of Polymer Science Part A, 2013, 51, 4894-4903.	2.3	88
20	Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes. Polymers, 2010, 2, 440-453.	4. 5	87
21	Cone calorimetry studies of benzoxazine–epoxy systems flame retarded by chemically bonded phosphorus or silicon. Polymer Degradation and Stability, 2009, 94, 102-106.	5.8	86
22	Monodisperse polymer beads as packing material for high-performance liquid chromotography: Effect of divinylbenzene content on the porous and chromatographic properties of poly(styrene-co-divinylbenzene) beads prepared in presence of linear polystyrene as a porogen. Journal of Polymer Science Part A, 1994, 32, 2169-2175.	2.3	85
23	Novel Silicon-Containing Polyurethanes from Vegetable Oils as Renewable Resources. Synthesis and Properties. Biomacromolecules, 2006, 7, 2420-2426.	5.4	85
24	A renewable approach to thermosetting resins. Reactive and Functional Polymers, 2013, 73, 381-395.	4.1	85
25	Synthesis and characterization of benzoxazine-based phenolic resins: Crosslinking study. Journal of Applied Polymer Science, 2003, 90, 470-481.	2.6	82
26	Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: Comparison of additive and reactive approaches. Polymer Degradation and Stability, 2010, 95, 1269-1274.	5.8	78
27	Development of novel phosphorus-containing epoxy resins from renewable resources. Journal of Polymer Science Part A, 2006, 44, 6717-6727.	2.3	77
28	Polyurethane Networks from Fatty-Acid-Based Aromatic Triols:Â Synthesis and Characterization. Biomacromolecules, 2007, 8, 1858-1864.	5.4	75
29	Monomers and polymers from plant oils via click chemistry reactions. Journal of Polymer Science Part A, 2013, 51, 2111-2124.	2.3	70
30	Synthesis of Davankov-type hypercrosslinked resins using different isomer compositions of vinylbenzyl chloride monomer, and application in the solid-phase extraction of polar compounds. Journal of Polymer Science Part A, 2005, 43, 1718-1728.	2.3	69
31	A new route to acrylate oils: Crosslinking and properties of acrylate triglycerides from high oleic sunflower oil. Journal of Polymer Science Part A, 2009, 47, 1159-1167.	2.3	68
32	Self-foaming diphenolic acid benzoxazine. Polymer, 2012, 53, 3089-3095.	3.8	66
33	Solid-phase extraction of polar compounds with a hydrophilic copolymeric sorbent. Journal of Chromatography A, 2004, 1030, 63-68.	3.7	65
34	Synthesis and properties of thermosetting polymers from a phosphorous-containing fatty acid derivative. Journal of Polymer Science Part A, 2006, 44, 5630-5644.	2.3	64
35	Synthesis of novel boron-containing epoxy–novolac resins and properties of cured products. Journal of Polymer Science Part A, 2006, 44, 6332-6344.	2.3	64
36	Fatty acid derived phosphorusâ€containing polyesters via acyclic diene metathesis polymerization. Journal of Polymer Science Part A, 2009, 47, 5760-5771.	2.3	64

#	Article	IF	CITATIONS
37	A green approach toward oleic―and undecylenic acidâ€derived polyurethanes. Journal of Polymer Science Part A, 2011, 49, 2407-2416.	2.3	64
38	Phosphorusâ€containing renewable polyesterâ€polyols via ADMET polymerization: Synthesis, functionalization, and radical crosslinking. Journal of Polymer Science Part A, 2010, 48, 1649-1660.	2.3	63
39	Solid-phase Extraction of Phenols and Pesticides in Water With a Modified Polymeric Resin. Analyst, The, 1997, 122, 425-428.	3. 5	62
40	Development of novel flame-retardant thermosets based on benzoxazine-phenolic resins and a glycidyl phosphinate. Journal of Polymer Science Part A, 2004, 42, 279-289.	2.3	61
41	Study of lanthanide triflates as new curing initiators for DGEBA. Polymer, 2000, 41, 8465-8474.	3.8	55
42	Flame retardant epoxy resins based on diglycidyloxymethylphenylsilane. Journal of Polymer Science Part A, 2006, 44, 5580-5587.	2.3	53
43	Novel flame-retardant thermosets: Phosphine oxide-containing diglycidylether as curing agent of phenolic novolac resins. Journal of Polymer Science Part A, 2004, 42, 3516-3526.	2.3	52
44	Flame retardant epoxy resins based on diglycidyl ether of (2,5-dihydroxyphenyl)diphenyl phosphine oxide. Journal of Polymer Science Part A, 2007, 45, 2142-2151.	2.3	51
45	Renewable polybenzoxazines based in diphenolic acid. Polymer, 2012, 53, 1617-1623.	3.8	51
46	Development of flame retardant phosphorus- and silicon-containing polybenzoxazines. Polymer Degradation and Stability, 2009, 94, 145-150.	5.8	49
47	A new enoneâ€containing triglyceride derivative as precursor of thermosets from renewable resources. Journal of Polymer Science Part A, 2008, 46, 6843-6850.	2.3	48
48	Synthesis of New Epoxy Liquid-Crystalline Monomers with Azo Groups in the Central Mesogenic Core. Crosslinking with Amines. Macromolecular Chemistry and Physics, 2001, 202, 1649-1657.	2.2	46
49	Advanced flame-retardant epoxy resins from phosphorus-containing diol. Journal of Polymer Science Part A, 2005, 43, 3510-3515.	2.3	46
50	Phosphorus flame retardant polybenzoxazine foams based on renewable diphenolic acid. Polymer Degradation and Stability, 2013, 98, 2617-2626.	5.8	45
51	New cholesteric liquid-crystal epoxy resins derived from 6-hydroxy-2-naphthoic acid. Journal of Polymer Science Part A, 2001, 39, 2847-2858.	2.3	44
52	Polymerization of epoxidized vegetable oil derivatives: Ionicâ€coordinative polymerization of methylepoxyoleate. Journal of Polymer Science Part A, 2010, 48, 4995-5008.	2.3	42
53	Liquid-crystalline thermosets from liquid-crystalline epoxy resins containing bisazomethinebiphenylene mesogens in the central core: Copolymerization with a nonmesomorphic epoxy resin. Journal of Polymer Science Part A, 2004, 42, 3631-3643.	2.3	40
54	Studies on thermal and flame retardant behaviour of mixtures of bis(m-aminophenyl)methylphosphine oxide based benzoxazine and glycidylether or benzoxazine of Bisphenol A. Polymer Degradation and Stability, 2008, 93, 2158-2165.	5.8	40

#	Article	IF	Citations
55	Adaptive bio-based polyurethane elastomers engineered by ionic hydrogen bonding interactions. European Polymer Journal, 2017, 91, 408-419.	5 . 4	40
56	Synthesis and study of the thermal crosslinking of bis(⟨i⟩m⟨/i⟩â€aminophenyl) methylphosphine oxide based benzoxazine. Journal of Polymer Science Part A, 2008, 46, 7162-7172.	2.3	39
57	Silicon-Containing Soybean-Oil-Based Copolymers. Synthesis and Properties. Biomacromolecules, 2009, 10, 2678-2685.	5.4	39
58	Convenient and solventless preparation of pure carbon nanotube/polybenzoxazine nanocomposites with low percolation threshold and improved thermal and fire properties. Journal of Materials Chemistry A, 2014, 2, 6814-6822.	10.3	39
59	Flame retardant epoxy resins based on diglycidyl ether of isobutyl bis(hydroxypropyl)phosphine oxide. Journal of Applied Polymer Science, 2006, 99, 1367-1373.	2.6	38
60	Anisotropic thermosets from liquid-crystalline azomethynic epoxy resins and primary aromatic diamines. Journal of Polymer Science Part A, 2003, 41, 1-12.	2.3	37
61	Polyurethanes from polyols obtained by ADMET polymerization of a castor oilâ€based diene: Characterization and shape memory properties. Journal of Polymer Science Part A, 2011, 49, 518-525.	2.3	37
62	Thiol–yne reaction of alkyne-derivatized fatty acids: biobased polyols and cytocompatibility of derived polyurethanes. Polymer Chemistry, 2012, 3, 2471.	3.9	37
63	Synthesis and properties of boron-containing soybean oil based thermosetting copolymers. Polymer, 2010, 51, 6099-6106.	3 . 8	36
64	Preparation and characterization of highly polar polymeric sorbents from styrene-divinylbenzene and vinylpyridine-divinylbenzene for the solid-phase extraction of polar organic pollutants. Journal of Polymer Science Part A, 2003, 41, 1927-1933.	2.3	35
65	Synthesis, Characterization and Polymerization of a Novel Glycidyl Phosphinate. Macromolecular Rapid Communications, 2001, 22, 1265.	3.9	34
66	New hydrophilic polymeric resin based on 4-vinylpyridine–divinylbenzene for solid-phase extraction of polar compounds from water. Journal of Chromatography A, 2004, 1035, 281-284.	3.7	34
67	Biobased polyurethanes from polyether polyols obtained by ionicâ€coordinative polymerization of epoxidized methyl oleate. Journal of Polymer Science Part A, 2010, 48, 5009-5017.	2.3	34
68	Polyacrylates Derived from Biobased Ethyl Lactate Solvent via SET-LRP. Biomacromolecules, 2019, 20, 2135-2147.	5. 4	33
69	Synthesis, characterization and polymerization of isobutylbis(glycidylpropylether) phosphine oxide. Polymer, 2003, 44, 7291-7298.	3.8	32
70	Curing studies of epoxy resins with phosphorus-containing amines. Journal of Polymer Science Part A, 2006, 44, 1676-1685.	2.3	32
71	Polyâ€2â€oxazolineâ€derived polyurethanes: A versatile synthetic approach to renewable polyurethane thermosets. Journal of Polymer Science Part A, 2011, 49, 3069-3079.	2.3	32
72	Integrating plant oils into thermally curable main-chain benzoxazine polymers via ADMET polymerization. European Polymer Journal, 2015, 67, 503-512.	5.4	32

#	Article	IF	Citations
73	Influence of chemical modification of polymeric resin on retention of polar compounds in solid-phase extraction. Chromatographia, 1999, 50, 21-26.	1.3	31
74	Novel organic-inorganic hybrid materials from renewable resources: Hydrosilylation of fatty acid derivatives. Journal of Polymer Science Part A, 2005, 43, 6295-6307.	2.3	31
75	Shape Memory Polyurethanes from Renewable Polyols Obtained by ATMET Polymerization of Glyceryl Triundecâ€10â€enoate and 10â€Undecenol. Macromolecular Chemistry and Physics, 2011, 212, 1392-1399.	2.2	31
76	Phosphorusâ€containing soybeanâ€oil copolymers: Crossâ€metathesis of fatty acid derivatives as an alternative to phosphorusâ€containing reactive flame retardants. Journal of Applied Polymer Science, 2011, 122, 1649-1658.	2.6	31
77	New liquid-crystalline thermosets from liquid-crystalline bisazomethynic epoxy resins with naphthylene disruptors in the central core. Journal of Polymer Science Part A, 2003, 41, 1536-1544.	2.3	30
78	Comparison of Hydrophilic Polymeric Sorbents for On-Line Solid-Phase Extraction of Polar Compounds from Aqueous Samples. Chromatographia, 2004, 60, 511-515.	1.3	30
79	A straightforward strategy for the efficient synthesis of acrylate and phosphine oxideâ€containing vegetable oils and their crosslinked materials. Journal of Polymer Science Part A, 2009, 47, 4051-4063.	2.3	30
80	"Click―Synthesis of Fatty Acid Derivatives as Fastâ€Degrading Polyanhydride Precursors. Macromolecular Rapid Communications, 2011, 32, 1343-1351.	3.9	27
81	Upgrading castor oil: From heptanal to non-isocyanate poly(amide-hydroxyurethane)s. Polymer, 2017, 124, 226-234.	3.8	27
82	SET-LRP of the Hydrophobic Biobased Menthyl Acrylate. Biomacromolecules, 2018, 19, 1256-1268.	5.4	27
83	Replacing Cu(II)Br ₂ with Me ₆ -TREN in Biphasic Cu(0)/TREN Catalyzed SET-LRP Reveals the Mixed-Ligand Effect. Biomacromolecules, 2020, 21, 250-261.	5.4	26
84	Synthesis and characterization of a hybrid material based on a trimethoxysilane functionalized benzoxazine. Journal of Applied Polymer Science, 2012, 126, 1369-1376.	2.6	25
85	Synthesis of hydrophilic sorbents from N -vinylimidazole/divinylbenzene and the evaluation of their sorption properties in the solid-phase extraction of polar compounds. Journal of Polymer Science Part A, 2004, 42, 2019-2025.	2.3	23
86	SET-LRP in the Neoteric Ethyl Lactate Alcohol. Biomacromolecules, 2017, 18, 3447-3456.	5.4	23
87	BF ₃ ·OEt ₂ in alcoholic media, an efficient initiator in the cationic polymerization of phenylâ€1,3â€benzoxazines. Journal of Polymer Science Part A, 2013, 51, 5075-5084.	2.3	22
88	SET-LRP mediated by TREN in biphasic water–organic solvent mixtures provides the most economical and efficient process. Polymer Chemistry, 2017, 8, 7559-7574.	3.9	22
89	Photoinduced Upgrading of Lactic Acid-Based Solvents to Block Copolymer Surfactants. ACS Sustainable Chemistry and Engineering, 2020, 8, 1276-1284.	6.7	22
90	Quinolineâ€containing networks from enone and aldehyde triglyceride derivatives. Journal of Polymer Science Part A, 2010, 48, 869-878.	2.3	21

#	Article	IF	CITATIONS
91	Synthesis of castor-oil based polyurethanes bearing alkene/alkyne groups and subsequent thiol-ene/yne post-modification. Polymer, 2016, 103, 163-170.	3.8	19
92	Synthesis and crosslinking of polyethers that have mesogenic cores and propargyl groups. Journal of Polymer Science Part A, 2002, 40, 3883-3892.	2.3	18
93	Comparison of mixed-mode anion-exchange performance of N-vinylimidazole-divinylbenzene sorbent. Journal of Separation Science, 2006, 29, 1622-1629.	2.5	18
94	Phosphaâ€Michael addition to enoneâ€containing triglyceride derivatives as an efficient route to flame retardant renewable thermosets. Journal of Polymer Science Part A, 2012, 50, 3206-3213.	2.3	17
95	An efficient nonisocyanate route to polyurethanes via thiolâ€ene selfâ€addition. Journal of Polymer Science Part A, 2014, 52, 3017-3025.	2.3	17
96	SET-LRP of Bio- and Petroleum-Sourced Methacrylates in Aqueous Alcoholic Mixtures. Biomacromolecules, 2019, 20, 1816-1827.	5.4	17
97	Enhancement of Fatty Acidâ€based Polyurethanes Cytocompatibility by Nonâ€covalent Anchoring of Chondroitin Sulfate. Macromolecular Bioscience, 2012, 12, 1697-1705.	4.1	16
98	Cytocompatible polyurethanes from fatty acids through covalent immobilization of collagen. Reactive and Functional Polymers, 2013, 73, 690-697.	4.1	16
99	Flame retardant high oleic sunflower oilâ€based thermosetting resins through aza―and phosphaâ€michael additions. Journal of Polymer Science Part A, 2013, 51, 1808-1815.	2.3	16
100	Macromonomers, telechelics and more complex architectures of PMA by a combination of biphasic SET-LRP and biphasic esterification. Polymer Chemistry, 2018, 9, 1885-1899.	3.9	16
101	Acrylate-macromonomers and telechelics of PBA by merging biphasic SET-LRP of BA, chain extension with MA and biphasic esterification. Polymer Chemistry, 2018, 9, 1961-1971.	3.9	16
102	SET-LRP in biphasic mixtures of fluorinated alcohols with water. Polymer Chemistry, 2018, 9, 2313-2327.	3.9	16
103	Hydrolytic and enzymatic degradation studies of aliphatic 10-undecenoic acid-based polyesters. Polymer Degradation and Stability, 2018, 155, 84-94.	5. 8	16
104	Functionalized Polymeric Sorbents for Solid-Phase Extraction of Polar Pollutants. Journal of High Resolution Chromatography, 1999, 22, 547-552.	1.4	15
105	SET-LRP from Programmed Difunctional Initiators Encoded with Double Single-Cleavage and Double Dual-Cleavage Groups. Biomacromolecules, 2019, 20, 3200-3210.	5.4	15
106	Reactivity of silicon-based epoxy monomers as studied by near-infrared spectroscopy and multivariate curve resolution methods. Journal of Polymer Science Part A, 2006, 44, 1447-1456.	2.3	14
107	Non-isocyanate route to biobased polyurethanes and polyureas via AB-type self-polycondensation. European Polymer Journal, 2016, 84, 837-848.	5.4	14
108	Linear and branched acetal polymers from castor oil via acetal metathesis polymerization. European Polymer Journal, 2018, 108, 348-356.	5 . 4	14

#	Article	IF	CITATIONS
109	Crosslinking of trimellitimide glycidyl ester derivatives. Journal of Applied Polymer Science, 1999, 72, 537-542.	2.6	13
110	Kinetic analysis of reactions of Si-based epoxy resins by near-infrared spectroscopy, 13C NMR and soft–hard modelling. Analytica Chimica Acta, 2007, 583, 392-401.	5.4	13
111	Thermoplastic Polyurethanes From Undecylenic Acidâ€Based Soft Segments: Structural Features and Release Properties. Macromolecular Bioscience, 2013, 13, 614-622.	4.1	13
112	Castor oil-derived benzoxazines: Synthesis, self-metathesis and properties of the resulting thermosets. European Polymer Journal, 2016, 75, 56-66.	5.4	13
113	PEG-modified poly $(10,11$ -dihydroxyundecanoic acid) amphiphilic copolymers. Grafting versus macromonomer copolymerization approaches using CALB. European Polymer Journal, 2018, 109, 179-190.	5.4	13
114	Study on the interaction between gelatin and polyurethanes derived from fatty acids. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1036-1046.	4.0	12
115	Polyketoesters from oleic acid. Synthesis and functionalization. Green Chemistry, 2014, 16, 1847-1853.	9.0	12
116	Orthogonally functionalizable polyacetals: a versatile platform for the design of acid sensitive amphiphilic copolymers. Polymer Chemistry, 2019, 10, 5215-5227.	3.9	12
117	Modification of poly(epichlorohydrin) with nadimide derivatives and their curing reaction. Journal of Polymer Science Part A, 1994, 32, 829-840.	2.3	11
118	Synthesis and crosslinking of new bis (4,5-epoxytetrahydrophthalimides). Macromolecular Chemistry and Physics, 1995, 196, 1051-1061.	2.2	11
119	Polybenzoxazines with Enhanced Flame Retardancy. , 2011, , 556-576.		11
120	Fully biobased triblock copolyesters from l-lactide and sulfur-containing castor oil derivatives: Preparation, oxidation and characterization. Polymer, 2015, 68, 101-110.	3.8	11
121	Cellulose nano-biocomposites from high oleic sunflower oil-derived thermosets. European Polymer Journal, 2016, 79, 109-120.	5.4	11
122	SET-LRP in Biphasic Mixtures of the Nondisproportionating Solvent Hexafluoroisopropanol with Water. Biomacromolecules, 2018, 19, 4480-4491.	5.4	11
123	Synthesis of diglicydilesters with alicyclic imide structure and their thermal and tertiary amine catalyzed curing. Journal of Applied Polymer Science, 1995, 56, 193-200.	2.6	10
124	Rapid Soybean Oil Copolymers Synthesis by Microwaveâ€Assisted Cationic Polymerization. Macromolecular Chemistry and Physics, 2010, 211, 801-808.	2.2	10
125	Antimicrobial Polyurethane Thermosets Based on Undecylenic Acid: Synthesis and Evaluation. Macromolecular Bioscience, 2014, 14, 1170-1180.	4.1	10
126	Vinylsulfideâ€Containing Polyesters and Copolyesters from Fatty Acids: Thiolâ€yne Monomer Synthesis and Thiolâ€ene Functionalization. Macromolecular Chemistry and Physics, 2014, 215, 2248-2259.	2.2	10

#	Article	IF	Citations
127	Carboxylic Acid Ionic Modification of Castorâ€Oilâ€Based Polyurethanes Bearing Amine Groups: Chemically Tunable Physical Properties and Recyclability. Macromolecular Chemistry and Physics, 2017, 218, 1700379.	2.2	10
128	Synthesis of acid degradable oxidation responsive poly(\hat{l}^2 -thioether ester)s from castor oil. European Polymer Journal, 2019, 110, 183-191.	5.4	10
129	Programming Self-Assembly and Stimuli-Triggered Response of Hydrophilic Telechelic Polymers with Sequence-Encoded Hydrophobic Initiators. Macromolecules, 2020, 53, 7285-7297.	4.8	10
130	Synthesis and functionalization of vinylsulfide and ketone-containing aliphatic copolyesters from fatty acids. Polymer, 2015, 79, 290-298.	3.8	9
131	Hydroxyl functionalized renewable polyesters derived from 10-undecenoic acid: Polymer structure and post-polymerization modification. European Polymer Journal, 2018, 105, 68-78.	5.4	9
132	Biosourced All-Acrylic ABA Block Copolymers with Lactic Acid-Based Soft Phase. Molecules, 2020, 25, 5740.	3.8	9
133	Synthesis and curing of new epoxycycloaliphatic polyesterimides with dianhydrides and diisocyanates as hardeners. Journal of Applied Polymer Science, 1996, 61, 2179-2184.	2.6	8
134	Thiol-yne Reaction of Alkyne-derivatized Fatty Acids. Journal of Renewable Materials, 2013, 1, 187-194.	2.2	8
135	Fatty acid-derived α,ω-bis-benzoxazines through hydrosilylation; curing and thermoset properties. European Polymer Journal, 2015, 69, 341-353.	5.4	8
136	pH-Responsive Micellar Nanoassemblies from Water-Soluble Telechelic Homopolymers Endcoding Acid-Labile Middle-Chain Groups in Their Hydrophobic Sequence-Defined Initiator Residue. ACS Macro Letters, 2019, 8, 1200-1208.	4.8	8
137	Versatile post-polymerization modifications of a functional polyester from castor oil. European Polymer Journal, 2015, 72, 64-71.	5.4	7
138	Acetone: a solvent or a reagent depending on the addition order in SET-LRP. Polymer Chemistry, 2018, 9, 5411-5417.	3.9	7
139	Synthesis and crosslinking of polyethers with nadimide derivative pendant groups. Journal of Polymer Science Part A, 1992, 30, 2379-2387.	2.3	6
140	Synthesis and thermal crosslinking of oxazolidineâ€functionalized polyurethanes. Journal of Polymer Science Part A, 2007, 45, 4965-4973.	2.3	6
141	Synthesis and oxirane ring-opening polymerization of tetrahydrophthalimide glycidyl derivatives. European Polymer Journal, 1992, 28, 175-181.	5.4	5
142	Dual Biochemically Breakable Drug Carriers from Programmed Telechelic Homopolymers. Biomacromolecules, 2020, 21, 4313-4325.	5.4	5
143	Crosslinking of poly(epibromohydrin) containing the aryl prop-2-ynyl ether terminated side group. Macromolecular Chemistry and Physics, 1998, 199, 1291-1300.	2.2	5
144	Curing reaction of diglycidylesters containing alicyclic imide structures with anhydrides and amines as hardeners. Journal of Applied Polymer Science, 1995, 57, 413-420.	2.6	3

#	Article	IF	CITATIONS
145	Modification of DGEBA with diimide-diacids derived from bicyclo [2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride and crosslinking study. Journal of Applied Polymer Science, 1996, 60, 2177-2183.	2.6	3
146	Oleic Acid and Undecylenic Acid as Platform Chemicals for Thermoplastic Polyurethanes. ACS Symposium Series, 2012, , 269-280.	0.5	3
147	Determination of antioxidants in polyolefins by pressurized liquid extraction prior to high performance liquid chromatography. Polymer Testing, 2015, 46, 21-25.	4.8	3
148	Tailoring Polybenzoxazine Chemical Structure. , 2017, , 65-74.		3
149	Highly reactive α-bromoacrylate monomers and Michael acceptors obtained by Cu(ii)Br2-dibromination of acrylates and instantaneous E2 by a ligand. Polymer Chemistry, 2018, 9, 2082-2086.	3.9	3
150	Synthesis and Crosslinking of Polyethers with Ethynylphenyl Pendant Groups. Macromolecular Chemistry and Physics, 2001, 202, 3363-3370.	2.2	2
151	Synthesis and characterization of castor oil-derived oxidation-responsive amphiphilic block copolymers: Poly(ethylene glycol)-b-poly(11-((2-hydroxyethyl)thio)undecanoate). European Polymer Journal, 2020, 133, 109736.	5.4	2
152	Tetramethyl guanidineâ€assisted synthesis and thermal crosslinking of multifunctional benzoxazine monomers based on natural phloretic acid. Journal of Polymer Science, 0, , .	3.8	2
153	Preparation and thermal behaviour of copolymers from glycidylether and glycidylimide. European Polymer Journal, 1993, 29, 1351-1357.	5.4	1
154	Polybenzoxazine Materials From Renewable Diphenolic Acid., 2017,, 427-449.		1
155	Improving the Flame Retardancy of Plant Oil Based Polymers. , 2014, , 775-800.		0
156	Polybenzoxazine foams: Modeling mechanical properties. Journal of Cellular Plastics, 2016, 52, 657-669.	2.4	0