
Martin Horak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4482815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure, Function, and Pharmacology of NMDA Receptor Channels. Physiological Research, 2014, 63, S191-S203.	0.9	216
2	Caveolae Are Involved in the Trafficking of Mouse Polyomavirus Virions and Artificial VP1 Pseudocapsids toward Cell Nuclei. Journal of Virology, 2001, 75, 10880-10891.	3.4	151
3	MAGUKs, Synaptic Development, and Synaptic Plasticity. Neuroscientist, 2011, 17, 493-512.	3.5	147
4	Subtype-dependence of N-methyl-d-aspartate receptor modulation by pregnenolone sulfate. Neuroscience, 2006, 137, 93-102.	2.3	106
5	Molecular Mechanism of Pregnenolone Sulfate Action at NR1/NR2B Receptors. Journal of Neuroscience, 2004, 24, 10318-10325.	3.6	88
6	Cholesterol modulates open probability and desensitization of NMDA receptors. Journal of Physiology, 2015, 593, 2279-2293.	2.9	86
7	ER to synapse trafficking of NMDA receptors. Frontiers in Cellular Neuroscience, 2014, 8, 394.	3.7	70
8	Neurosteroid modulation of N-methyl-d-aspartate receptors: Molecular mechanism and behavioral effects. Steroids, 2011, 76, 1409-1418.	1.8	63
9	Masking of the Endoplasmic Reticulum Retention Signals during Assembly of the NMDA Receptor. Journal of Neuroscience, 2008, 28, 3500-3509.	3.6	61
10	Different Roles of C-terminal Cassettes in the Trafficking of Full-length NR1 Subunits to the Cell Surface. Journal of Biological Chemistry, 2009, 284, 9683-9691.	3.4	60
11	20-Oxo-5Â-Pregnan-3Â-yl Sulfate Is a Use-Dependent NMDA Receptor Inhibitor. Journal of Neuroscience, 2005, 25, 8439-8450.	3.6	59
12	Temperature dependence of NR1/NR2B NMDA receptor channels. Neuroscience, 2008, 151, 428-438.	2.3	52
13	Access of inhibitory neurosteroids to the NMDA receptor. British Journal of Pharmacology, 2012, 166, 1069-1083.	5.4	52
14	Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Scientific Reports, 2015, 5, 10935.	3.3	52
15	Key Amino Acid Residues within the Third Membrane Domains of NR1 and NR2 Subunits Contribute to the Regulation of the Surface Delivery of N-methyl-d-aspartate Receptors. Journal of Biological Chemistry, 2012, 287, 26423-26434.	3.4	51
16	The pharmacology of tacrine at N -methyl- d -aspartate receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 75, 54-62.	4.8	49
17	Two N-glycosylation Sites in the GluN1 Subunit Are Essential for Releasing N-methyl-d-aspartate (NMDA) Receptors from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2015, 290, 18379-18390.	3.4	47
18	Preferential Inhibition of Tonically over Phasically Activated NMDA Receptors by Pregnane Derivatives. Journal of Neuroscience, 2016, 36, 2161-2175.	3.6	44

MARTIN HORAK

#	Article	IF	CITATIONS
19	Surface Expression, Function, and Pharmacology of Disease-Associated Mutations in the Membrane Domain of the Human GluN2B Subunit. Frontiers in Molecular Neuroscience, 2018, 11, 110.	2.9	41
20	Cholesterol modulates presynaptic and postsynaptic properties of excitatory synaptic transmission. Scientific Reports, 2020, 10, 12651.	3.3	38
21	Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer's disease treatment. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 607-619.	3.8	37
22	Intracellular spermine decreases open probability ofN-methyl-d-aspartate receptor channels. Neuroscience, 2004, 125, 879-887.	2.3	31
23	Biochemical and electrophysiological characterization of <i>Nâ€</i> glycans on <scp>NMDA</scp> receptor subunits. Journal of Neurochemistry, 2016, 138, 546-556.	3.9	25
24	The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate. Frontiers in Molecular Neuroscience, 2018, 11, 113.	2.9	25
25	Pregnenolone sulfate modulation of N-methyl-d-aspartate receptors is phosphorylation dependent. Neuroscience, 2009, 160, 616-628.	2.3	24
26	7-Methoxyderivative of tacrine is a â€~foot-in-the-door' open-channel blocker of GluN1/GluN2 and GluN1/GluN3 NMDA receptors with neuroprotective activity in vivo. Neuropharmacology, 2018, 140, 217-232.	4.1	23
27	Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors. Scientific Reports, 2019, 9, 12303.	3.3	23
28	Distinct regions within the GluN2C subunit regulate the surface delivery of NMDA receptors. Frontiers in Cellular Neuroscience, 2014, 8, 375.	3.7	21
29	N-Glycosylation Regulates the Trafficking and Surface Mobility of GluN3A-Containing NMDA Receptors. Frontiers in Molecular Neuroscience, 2018, 11, 188.	2.9	21
30	Combination of Memantine and 6-Chlorotacrine as Novel Multi-Target Compound against Alzheimer's Disease. Current Alzheimer Research, 2019, 16, 821-833.	1.4	17
31	Pregnenolone Sulfate Activates NMDA Receptor Channels. Physiological Research, 2013, 62, 731-736.	0.9	17
32	Morphology and physiology of lamina I neurons of the caudal part of the trigeminal nucleus. Neuroscience, 2007, 147, 325-333.	2.3	16
33	Single amino acid residue in the M4 domain of GluN1 subunit regulates the surface delivery of <scp>NMDA</scp> receptors. Journal of Neurochemistry, 2012, 123, 385-395.	3.9	16
34	The pathogenic S688Y mutation in the ligand-binding domain of the GluN1 subunit regulates the properties of NMDA receptors. Scientific Reports, 2020, 10, 18576.	3.3	13
35	7-phenoxytacrine is a dually acting drug with neuroprotective efficacy in vivo. Biochemical Pharmacology, 2021, 186, 114460.	4.4	12
36	Nâ€linked glycosylation of the mGlu7 receptor regulates the forward trafficking and transsynaptic interaction with Elfn1. FASEB Journal, 2020, 34, 14977-14996.	0.5	11

MARTIN HORAK

#	Article	IF	CITATIONS
37	Lectins modulate the functional properties of GluN1/GluN3-containing NMDA receptors. Neuropharmacology, 2019, 157, 107671.	4.1	9
38	Specific pathogenic mutations in the M3 domain of the GluN1 subunit regulate the surface delivery and pharmacological sensitivity of NMDA receptors. Neuropharmacology, 2021, 189, 108528.	4.1	9
39	Structure-activity relationships of dually-acting acetylcholinesterase inhibitors derived from tacrine on N-methyl-d-Aspartate receptors. European Journal of Medicinal Chemistry, 2021, 219, 113434.	5.5	9
40	Pax2-Islet1 Transgenic Mice Are Hyperactive and Have Altered Cerebellar Foliation. Molecular Neurobiology, 2017, 54, 1352-1368.	4.0	8
41	The Extracellular Domains of GluN Subunits Play an Essential Role in Processing NMDA Receptors in the ER. Frontiers in Neuroscience, 2021, 15, 603715.	2.8	6
42	Pregnaneâ€based steroids are novel positive NMDA receptor modulators that may compensate for the effect of lossâ€ofâ€function diseaseâ€associated <i>GRIN</i> mutations. British Journal of Pharmacology, 2022, 179, 3970-3990.	5.4	6
43	Pursuing the Complexity of Alzheimer's Disease: Discovery of Fluoren-9-Amines as Selective Butyrylcholinesterase Inhibitors and N-Methyl-d-Aspartate Receptor Antagonists. Biomolecules, 2021, 11, 3.	4.0	4
44	Role of the fourth membrane domain of the NR2B subunit in the assembly of the NMDA receptor. Channels, 2008, 2, 159-160.	2.8	3
45	Trafficking of Glutamate Receptors and Associated Proteins in Synaptic Plasticity. , 2014, , 221-279.		1
46	Counting NMDA Receptors at the Cell Surface. Neuromethods, 2016, , 31-44.	0.3	1
47	N-glycosylation regulates the trafficking, surface mobility and function of GluN3A-containing NMDA receptors, IBRO Reports, 2019, 6, S533.	0.3	0