
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4482681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of Acetyl-CoA carboxylase (AccB) from Streptomyces antibioticus and insights into the substrate-binding through in silico mutagenesis and biophysical investigations. Computers in Biology and Medicine, 2022, 145, 105439.	7.0	2
2	Structural and Mechanistic Insights into Chain Release of the Polyene PKS Thioesterase Domain. ACS Catalysis, 2022, 12, 762-776.	11.2	11
3	The Streptomyces viridochromogenes product template domain represents an evolutionary intermediate between dehydratase and aldol cyclase of type I polyketide synthases. Communications Biology, 2022, 5, .	4.4	3
4	Priming enzymes from the pikromycin synthase reveal how assembly-line ketosynthases catalyze carbon-carbon chemistry. Structure, 2022, 30, 1331-1339.e3.	3.3	11
5	Computational studies on the substrate specificity of an acyltransferase domain from salinomycin polyketide synthase. Catalysis Science and Technology, 2021, 11, 6782-6792.	4.1	3
6	Preparative production of an enantiomeric pair by engineered polyketide synthases. Chemical Communications, 2021, 57, 8762-8765.	4.1	11
7	Insights into modular polyketide synthase loops aided by repetitive sequences. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1099-1110.	2.6	4
8	How <i>cis</i> -Acyltransferase Assembly-Line Ketosynthases Gatekeep for Processed Polyketide Intermediates. ACS Chemical Biology, 2021, 16, 2515-2526.	3.4	10
9	Evidence for an Enzyme-Catalyzed Rauhut–Currier Reaction during the Biosynthesis of Spinosyn A. Journal of the American Chemical Society, 2021, 143, 20291-20295.	13.7	8
10	An alternative pathway for repair of deaminated bases in DNA triggered by archaeal NucS endonuclease. DNA Repair, 2020, 85, 102734.	2.8	15
11	General chemoenzymatic route to two-stereocenter triketides employing assembly line ketoreductases. Chemical Communications, 2020, 56, 157-160.	4.1	3
12	An in vitro platform for engineering and harnessing modular polyketide synthases. Nature Communications, 2020, 11, 80.	12.8	34
13	Structural and Biochemical Insight into the Recruitment of Acyl Carrier Protein‣inked Extender Units in Ansamitocin Biosynthesis. ChemBioChem, 2020, 21, 1309-1314.	2.6	9
14	Hexachlorobenzene Monooxygenase Substrate Selectivity and Catalysis: Structural and Biochemical Insights. Applied and Environmental Microbiology, 2020, 87, .	3.1	7
15	Structural Biology of Tailoring Domains in Polyketide Synthases. , 2020, , 47-60.		0
16	Biochemical characterization and mutational studies of the 8-oxoguanine DNA glycosylase from the hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans. Applied Microbiology and Biotechnology, 2019, 103, 8021-8033.	3.6	8
17	Employing 25-Residue Docking Motifs from Modular Polyketide Synthases as Orthogonal Protein Connectors. ACS Synthetic Biology, 2019, 8, 2017-2024.	3.8	5
18	Seven-enzyme <i>in vitro</i> cascade to (3 <i>R</i>)-3-hydroxybutyryl-CoA. Organic and Biomolecular Chemistry. 2019, 17, 1375-1378.	2.8	3

#	Article	IF	CITATIONS
19	Structural Insights into the Substrate Specificity of Acyltransferases from Salinomycin Polyketide Synthase. Biochemistry, 2019, 58, 2978-2986.	2.5	12
20	Crystal structure of the condensation domain from lovastatin polyketide synthase. Synthetic and Systems Biotechnology, 2019, 4, 10-15.	3.7	8
21	Structural and Functional Studies of a Pyran Synthase Domain from a <i>trans</i> -Acyltransferase Assembly Line. ACS Chemical Biology, 2018, 13, 975-983.	3.4	17
22	Substrate-bound structures of a ketoreductase from amphotericin modular polyketide synthase. Journal of Structural Biology, 2018, 203, 135-141.	2.8	13
23	Stereospecificity of Enoylreductase Domains from Modular Polyketide Synthases. ACS Chemical Biology, 2018, 13, 871-875.	3.4	10
24	The modules of <i>trans</i> â€acyltransferase assembly lines redefined with a central acyl carrier protein. Proteins: Structure, Function and Bioinformatics, 2018, 86, 664-675.	2.6	49
25	Structural and Functional Studies of a <i>gem</i> -Dimethylating Methyltransferase from a <i>trans</i> -Acyltransferase Assembly Line. ACS Chemical Biology, 2018, 13, 3306-3314.	3.4	6
26	Directed accumulation of less toxic pimaricin derivatives by improving the efficiency of a polyketide synthase dehydratase domain. Applied Microbiology and Biotechnology, 2017, 101, 2427-2436.	3.6	5
27	The Uncommon Enzymology of Cis-Acyltransferase Assembly Lines. Chemical Reviews, 2017, 117, 5334-5366.	47.7	71
28	Structural and Functional Trends in Dehydrating Bimodules from trans-Acyltransferase Polyketide Synthases. Structure, 2017, 25, 1045-1055.e2.	3.3	23
29	Polyketidsynthaseâ€Module: eine Neudefinition. Angewandte Chemie, 2017, 129, 4730-4732.	2.0	2
30	Polyketide Synthase Modules Redefined. Angewandte Chemie - International Edition, 2017, 56, 4658-4660.	13.8	56
31	Portability and Structure of the Four-Helix Bundle Docking Domains of <i>trans</i> -Acyltransferase Modular Polyketide Synthases. ACS Chemical Biology, 2016, 11, 2466-2474.	3.4	22
32	The Structural Relationship between Iterative and Modular PKSs. Cell Chemical Biology, 2016, 23, 540-542.	5.2	8
33	Methyltransferases excised from trans-AT polyketide synthases operate on N-acetylcysteamine-bound substrates. Journal of Antibiotics, 2016, 69, 567-570.	2.0	12
34	α-Methylation follows condensation in the gephyronic acid modular polyketide synthase. Chemical Communications, 2016, 52, 8822-8825.	4.1	17
35	Epimerase and Reductase Activities of Polyketide Synthase Ketoreductase Domains Utilize the Same Conserved Tyrosine and Serine Residues. Biochemistry, 2016, 55, 1179-1186.	2.5	23
36	Cloning, expression, and characterization of a thermostable glucose-6-phosphate dehydrogenase from Thermoanaerobacter tengcongensis. Extremophiles, 2016, 20, 149-156.	2.3	6

#	Article	IF	CITATIONS
37	The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex. Journal of Structural Biology, 2016, 193, 196-205.	2.8	21
38	Substrate structure–activity relationships guide rational engineering of modular polyketide synthase ketoreductases. Chemical Communications, 2016, 52, 792-795.	4.1	34
39	Stereocontrol within polyketide assembly lines. Natural Product Reports, 2016, 33, 141-149.	10.3	85
40	Coenzyme A-free activity, crystal structure, and rational engineering of a promiscuous β-ketoacyl thiolase from Ralstonia eutropha. Journal of Molecular Catalysis B: Enzymatic, 2015, 121, 113-121.	1.8	12
41	Structure of Salmonella FlhE, Conserved Member of a Flagellar Type III Secretion Operon. Journal of Molecular Biology, 2015, 427, 1254-1262.	4.2	17
42	Structural and Functional Analysis of the Loading Acyltransferase from Avermectin Modular Polyketide Synthase. ACS Chemical Biology, 2015, 10, 1017-1025.	3.4	45
43	The structure of SpnF, a standalone enzyme that catalyzes [4 + 2] cycloaddition. Nature Chemical Biology, 2015, 11, 256-258.	8.0	101
44	Molecular Dynamics Studies of Modular Polyketide Synthase Ketoreductase Stereospecificity. Biochemistry, 2015, 54, 2346-2359.	2.5	15
45	Mechanically Modulating the Photophysical Properties of Fluorescent Protein Biocomposites for Ratio―and Intensiometric Sensors. Angewandte Chemie - International Edition, 2014, 53, 5088-5092.	13.8	28
46	Crystallographic study of the phosphoethanolamine transferase EptC required for polymyxin resistance and motility in <i>Campylobacter jejuni</i> . Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2730-2739.	2.5	33
47	Structural and functional studies of a <i>trans</i> -acyltransferase polyketide assembly line enzyme that catalyzes stereoselective α- and β-ketoreduction. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2067-2077.	2.6	29
48	Investigating the reactivities of a polyketide synthase module through fluorescent click chemistry. Chemical Communications, 2014, 50, 5276-5278.	4.1	6
49	Elucidation of the Cryptic Epimerase Activity of Redox-Inactive Ketoreductase Domains from Modular Polyketide Synthases by Tandem Equilibrium Isotope Exchange. Journal of the American Chemical Society, 2014, 136, 10190-10193.	13.7	28
50	Antimicrobial Peptide Resistance of <i>Vibrio cholerae</i> Results from an LPS Modification Pathway Related to Nonribosomal Peptide Synthetases. ACS Chemical Biology, 2014, 9, 2382-2392.	3.4	51
51	A Double-Hotdog with a New Trick: Structure and Mechanism of the <i>trans</i> -Acyltransferase Polyketide Synthase Enoyl-isomerase. ACS Chemical Biology, 2014, 9, 2374-2381.	3.4	45
52	Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae. Plasmid, 2014, 76, 66-71.	1.4	10
53	A Close Look at a Ketosynthase from a Trans-Acyltransferase Modular Polyketide Synthase. Structure, 2014, 22, 444-451.	3.3	65
54	Generalized bacterial genome editing using mobile group II introns and Cre―lox. Molecular Systems Biology, 2013, 9, 685.	7.2	70

#	Article	IF	CITATIONS
55	The status of type I polyketide synthase ketoreductases. MedChemComm, 2013, 4, 34-40.	3.4	32
56	The Missing Linker: A Dimerization Motif Located within Polyketide Synthase Modules. ACS Chemical Biology, 2013, 8, 1263-1270.	3.4	37
57	Mechanobiochemistry: harnessing biomacromolecules for force-responsive materials. Polymer Chemistry, 2013, 4, 3916.	3.9	44
58	Structure and Stereospecificity of the Dehydratase Domain from the Terminal Module of the Rifamycin Polyketide Synthase. Biochemistry, 2013, 52, 8916-8928.	2.5	51
59	Structural Studies of an A2-Type Modular Polyketide Synthase Ketoreductase Reveal Features Controlling α-Substituent Stereochemistry. ACS Chemical Biology, 2013, 8, 1964-1971.	3.4	45
60	Monitoring Biocatalytic Transformations Mediated by Polyketide Synthase Enzymes in Cell Lysate via Fluorine NMR. Synlett, 2012, 23, 1840-1842.	1.8	3
61	Divergence of multimodular polyketide synthases revealed by a didomain structure. Nature Chemical Biology, 2012, 8, 615-621.	8.0	66
62	Preparative, in Vitro Biocatalysis of Triketide Lactone Chiral Building Blocks. ChemBioChem, 2012, 13, 2200-2203.	2.6	21
63	Employing a polyketide synthase module and thioesterase in the semipreparative biocatalysis of diverse triketide pyrones. MedChemComm, 2012, 3, 956.	3.4	19
64	The structures of type I polyketide synthases. Natural Product Reports, 2012, 29, 1050.	10.3	262
65	Structural and Functional Analysis of C2-Type Ketoreductases from Modular Polyketide Synthases. Journal of Molecular Biology, 2011, 410, 105-117.	4.2	49
66	Employing Modular Polyketide Synthase Ketoreductases as Biocatalysts in the Preparative Chemoenzymatic Syntheses of Diketide Chiral Building Blocks. Chemistry and Biology, 2011, 18, 1331-1340.	6.0	60
67	Enzymatic Extender Unit Generation for InÂVitro Polyketide Synthase Reactions: Structural and Func-tional Showcasing of Streptomyces coelicolor MatB. Chemistry and Biology, 2011, 18, 165-176.	6.0	94
68	Structural and Functional Analysis of A-Type Ketoreductases from the Amphotericin Modular Polyketide Synthase. Structure, 2010, 18, 913-922.	3.3	85
69	Stereospecificity of the Dehydratase Domain of the Erythromycin Polyketide Synthase. Journal of the American Chemical Society, 2010, 132, 14697-14699.	13.7	64
70	Crystal Structure of the Erythromycin Polyketide Synthase Dehydratase. Journal of Molecular Biology, 2008, 384, 941-953.	4.2	174
71	Stereospecificity of Ketoreductase Domains 1 and 2 of the Tylactone Modular Polyketide Synthase. Journal of the American Chemical Society, 2008, 130, 11598-11599.	13.7	43
72	A Tylosin Ketoreductase Reveals How Chirality Is Determined in Polyketides. Chemistry and Biology, 2007, 14, 898-908.	6.0	281

#	Article	IF	CITATIONS
73	The Structure of a Ketoreductase Determines the Organization of the β-Carbon Processing Enzymes of Modular Polyketide Synthases. Structure, 2006, 14, 737-748.	3.3	197
74	An antibiotic factory caught in action. Nature Structural and Molecular Biology, 2004, 11, 888-893.	8.2	162
75	Catalysis, Specificity, and ACP Docking Site of Streptomyces coelicolor Malonyl-CoA:ACP Transacylase. Structure, 2003, 11, 147-154.	3.3	125
76	Crystal Structure of the Priming Î ² -Ketosynthase from the R1128 Polyketide Biosynthetic Pathway. Structure, 2002, 10, 1559-1568.	3.3	75
77	High-Resolution Macromolecular NMR Spectroscopy Inside Living Cells. Journal of the American Chemical Society, 2001, 123, 2446-2447.	13.7	187
78	Precursor-directed biosynthesis of 12-ethyl erythromycin. Bioorganic and Medicinal Chemistry, 1998, 6, 1171-1177.	3.0	43