
Julia Reichelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4482653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating a Targeted Cancer Therapy Approach Mediated by RNA trans-Splicing In Vitro and in a Xenograft Model for Epidermolysis Bullosa-Associated Skin Cancer. International Journal of Molecular Sciences, 2022, 23, 575.	4.1	4
2	Paired nicking-mediated COL17A1 reframing for junctional epidermolysis bullosa. Molecular Therapy, 2022, 30, 2680-2692.	8.2	11
3	Advancing novel therapies for ichthyoses. British Journal of Dermatology, 2021, 184, 998-999.	1.5	3
4	Impact of low-dose calcipotriol ointment on wound healing, pruritus and pain in patients with dystrophic epidermolysis bullosa: A randomized, double-blind, placebo-controlled trial. Orphanet Journal of Rare Diseases, 2021, 16, 473.	2.7	7
5	Gene expression is stable in a complete CIB1 knockout keratinocyte model. Scientific Reports, 2020, 10, 14952.	3.3	2
6	A cancer stem cell-like phenotype is associated with miR-10b expression in aggressive squamous cell carcinomas. Cell Communication and Signaling, 2020, 18, 61.	6.5	20
7	An <i>exÂvivo</i> <scp>RNA</scp> <i>trans</i> â€splicing strategy to correct human generalized severe epidermolysis bullosa simplex. British Journal of Dermatology, 2019, 180, 141-148.	1.5	25
8	Gene Editing–Mediated Disruption of Epidermolytic Ichthyosis–Associated KRT10 Alleles Restores Filament Stability in Keratinocytes. Journal of Investigative Dermatology, 2019, 139, 1699-1710.e6.	0.7	30
9	Improved Double-Nicking Strategies for COL7A1-Editing by Homologous Recombination. Molecular Therapy - Nucleic Acids, 2019, 18, 496-507.	5.1	34
10	Arginine―but not alanineâ€rich carboxyâ€ŧermini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti. Journal of Cellular and Molecular Medicine, 2019, 23, 8442-8452.	3.6	9
11	Deubiquitinating Enzyme UCH-L1 Promotes Dendritic Cell Antigen Cross-Presentation by Favoring Recycling of MHC Class I Molecules. Journal of Immunology, 2019, 203, 1730-1742.	0.8	10
12	Epidermolysis bullosa: Advances in research and treatment. Experimental Dermatology, 2019, 28, 1176-1189.	2.9	51
13	Advances on potential therapeutic options for epidermolysis bullosa. Expert Opinion on Orphan Drugs, 2018, 6, 283-293.	0.8	3
14	Extracellular Vesicles as Biomarkers for the Detection of a Tumor Marker Gene in Epidermolysis Bullosa-Associated Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2018, 138, 1197-1200.	0.7	12
15	Gene editing for skin diseases: designer nucleases as tools for gene therapy of skin fragility disorders. Experimental Physiology, 2018, 103, 449-455.	2.0	28
16	Low-dose calcipotriol can elicit wound closure, anti-microbial, and anti-neoplastic effects in epidermolysis bullosa keratinocytes. Scientific Reports, 2018, 8, 13430.	3.3	24
17	Reduced Microbial Diversity Is a Feature of Recessive Dystrophic Epidermolysis Bullosa-Involved Skin and Wounds. Journal of Investigative Dermatology, 2018, 138, 2492-2495.	0.7	25
18	Cancer-type organic anion transporting polypeptide 1B3 is a target for cancer suicide gene therapy using RNA trans -splicing technology. Cancer Letters, 2018, 433, 107-116.	7.2	8

#	Article	IF	CITATIONS
19	RNA Trans-Splicing Modulation via Antisense Molecule Interference. International Journal of Molecular Sciences, 2018, 19, 762.	4.1	15
20	535 Ex vivo COL7A1 editing via CRISPR/Cas9 in recessive dystrophic epidermolysis bullosa. Journal of Investigative Dermatology, 2017, 137, S92.	0.7	0
21	An RNA-targeted therapy for dystrophic epidermolysis bullosa. Nucleic Acids Research, 2017, 45, 10259-10269.	14.5	21
22	560 Transcriptome profiling in recessive dystrophic epidermolysis bullosa patients. Journal of Investigative Dermatology, 2017, 137, S288.	0.7	0
23	599 Deregulation of miR-10b affects HOXD10 expression in squamous cell carcinoma from epidermolysis bullosa patients. Journal of Investigative Dermatology, 2017, 137, S294.	0.7	0
24	185 CRISPR/Cas9 mediated gene correction of COL7A1. Journal of Investigative Dermatology, 2017, 137, S224.	0.7	0
25	189 Improved safety profile: An efficient CRISPR/Cas9 double nicking approach for KRT14 repair in EB simplex. Journal of Investigative Dermatology, 2017, 137, S225.	0.7	0
26	198 TALEN-mediated gene editing in epidermolytic ichthyosis patient-derived keratinocytes. Journal of Investigative Dermatology, 2017, 137, S226.	0.7	0
27	205 Altering the splice pattern of COL17A1 with antisense oligonucleotides. Journal of Investigative Dermatology, 2017, 137, S227.	0.7	0
28	212 Antisense RNA-mediated improvement of SMaRT therapy for KRT14 correction. Journal of Investigative Dermatology, 2017, 137, S229.	0.7	0
29	214 RNA trans-splicing-mediated COL7A1 repair in a dystrophic epidermolysis bullosa mouse model. Journal of Investigative Dermatology, 2017, 137, S229.	0.7	0
30	117 Using a bivalent DNA aptamer to reduce blister formation in recessive dystrophic epidermolysis bullosa. Journal of Investigative Dermatology, 2017, 137, S212.	0.7	0
31	548 Viral antigen-specific pre-vaccination prevents engraftment of tumor cells expressing the cognate antigen in mice. Journal of Investigative Dermatology, 2017, 137, S286.	0.7	0
32	Cut and Paste: Efficient Homology-Directed Repair of a Dominant Negative KRT14 Mutation via CRISPR/Cas9 Nickases. Molecular Therapy, 2017, 25, 2585-2598.	8.2	73
33	COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa. Molecular Therapy, 2017, 25, 2573-2584.	8.2	81
34	534 TALEN-mediated gene editing of keratinocyte stem cells for a novel e x vivo epidermolytic ichthyosis therapy. Journal of Investigative Dermatology, 2017, 137, S92.	0.7	0
35	Traceless Targeting and Isolation of Gene-Edited Immortalized Keratinocytes from Epidermolysis Bullosa Simplex Patients. Molecular Therapy - Methods and Clinical Development, 2017, 6, 112-123.	4.1	40
36	Regeneration of the entire human epidermis using transgenic stem cells. Nature, 2017, 551, 327-332.	27.8	544

#	Article	IF	CITATIONS
37	Current and Future Perspectives of Stem Cell Therapy in Dermatology. Annals of Dermatology, 2017, 29, 667.	0.9	20
38	Designing Efficient Double RNA trans-Splicing Molecules for Targeted RNA Repair. International Journal of Molecular Sciences, 2016, 17, 1609.	4.1	7
39	164 CRISPR/Cas9-mediated gene repair in the COL7A1 gene. Journal of Investigative Dermatology, 2016, 136, S189.	0.7	Ο
40	165 Combining antisense molecules with splicing modulation for KRT14 repair in epidermolysis bullosa. Journal of Investigative Dermatology, 2016, 136, S189.	0.7	0
41	190 Optimised TALEN-mediated gene editing of keratinocyte stem cells for a novel ex vivo epidermolytic ichthyosis therapy. Journal of Investigative Dermatology, 2016, 136, S193.	0.7	0
42	069 miRNA-10 as potential therapeutic target in recessive dystrophic epidermolysis bullosa. Journal of Investigative Dermatology, 2016, 136, S172.	0.7	0
43	162 A keratinocyte culture model for epidermodysplasia verruciformis. Journal of Investigative Dermatology, 2016, 136, S188.	0.7	0
44	477 Developing a cancer immunogene therapy approach for Epidermolysis bullosa-associated squamous cell carcinoma. Journal of Investigative Dermatology, 2016, 136, S242.	0.7	0
45	Construction and validation of an RNA trans-splicing molecule suitable to repair a large number of COL7A1 mutations. Gene Therapy, 2016, 23, 775-784.	4.5	31
46	LB795 TALEN-mediated elimination of mutant keratin 14 as a gene therapy for epidermolysis bullosa simplex. Journal of Investigative Dermatology, 2016, 136, B8.	0.7	0
47	155 Identification of isomiRs in recessive dystrophic epidermolysis bullosa. Journal of Investigative Dermatology, 2016, 136, S187.	0.7	0
48	Keratins K2 and K10 are essential for the epidermal integrity of plantar skin. Journal of Dermatological Science, 2016, 81, 10-16.	1.9	19
49	A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for Col7a1 Repair. Molecular Therapy - Nucleic Acids, 2016, 5, e287.	5.1	35
50	Loss of Keratin K2 Expression Causes Aberrant Aggregation of K10, Hyperkeratosis, and Inflammation. Journal of Investigative Dermatology, 2014, 134, 2579-2588.	0.7	31
51	The Formation of Endoderm-Derived Taste Sensory Organs Requires a Pax9-Dependent Expansion of Embryonic Taste Bud Progenitor Cells. PLoS Genetics, 2014, 10, e1004709.	3.5	30
52	New facets of keratin K77: interspecies variations of expression and different intracellular location in embryonic and adult skin of humans and mice. Cell and Tissue Research, 2013, 354, 793-812.	2.9	13
53	The c-Rel Subunit of NF-κB Regulates Epidermal Homeostasis and Promotes Skin Fibrosis in Mice. American Journal of Pathology, 2013, 182, 2109-2120.	3.8	34
54	Using 3D Culture to Investigate the Role of Mechanical Signaling in Keratinocyte Stem Cells. Methods in Molecular Biology, 2013, 989, 153-164.	0.9	4

#	Article	IF	CITATIONS
55	Deletion of K1/K10 does not impair epidermal stratification but affects desmosomal structure and nuclear integrity. Journal of Cell Science, 2012, 125, 1750-8.	2.0	66
56	Keratin 1 maintains skin integrity and participates in an inflammatory network in skin <i>via</i> interleukin-18. Journal of Cell Science, 2012, 125, 5269-79.	2.0	134
57	Akt-Mediated Regulation of Autophagy and Tumorigenesis Through Beclin 1 Phosphorylation. Science, 2012, 338, 956-959.	12.6	630
58	Highly Efficient Zinc-Finger Nuclease-Mediated Disruption of an eGFP Transgene in Keratinocyte Stem Cells without Impairment of Stem Cell Properties. Stem Cell Reviews and Reports, 2012, 8, 426-434.	5.6	13
59	Two- and Three-Dimensional Culture of Keratinocyte Stem and Precursor Cells Derived from Primary Murine Epidermal Cultures. Stem Cell Reviews and Reports, 2012, 8, 402-413.	5.6	27
60	Establishment of Spontaneously Immortalized Keratinocyte Lines from Wild-Type and Mutant Mice. Methods in Molecular Biology, 2010, 585, 59-69.	0.9	21
61	Pathological consequences of VCP mutations on human striated muscle. Brain, 2007, 130, 381-393.	7.6	148
62	Mechanotransduction of keratinocytes in culture and in the epidermis. European Journal of Cell Biology, 2007, 86, 807-816.	3.6	73
63	Different early pathogenesis in myotilinopathy compared to primary desminopathy. Neuromuscular Disorders, 2006, 16, 361-367.	0.6	29
64	Loss of Keratin 10 Leads to Mitogen-activated Protein Kinase (MAPK) Activation, Increased Keratinocyte Turnover, and Decreased Tumor Formation in Mice. Journal of Investigative Dermatology, 2004, 123, 973-981.	0.7	75
65	Loss of keratin 10 is accompanied by increased sebocyte proliferation and differentiation. European Journal of Cell Biology, 2004, 83, 747-759.	3.6	38
66	Emerging functions: diseases and animal models reshape our view of the cytoskeleton. Experimental Cell Research, 2004, 301, 91-102.	2.6	46
67	Developing Mouse Models to Study Intermediate Filament Function. Methods in Cell Biology, 2004, 78, 65-94.	1.1	5
68	Keratins: a structural scaffold with emerging functions. Cellular and Molecular Life Sciences, 2003, 60, 56-71.	5.4	155
69	Keratins: a structural scaffold with emerging functions. , 2003, 60, 56.		1
70	Defolliculated (Dfl): A Dominant Mouse Mutation Leading to Poor Sebaceous Gland Differentiation and Total Elimination of Pelage Follicles. Journal of Investigative Dermatology, 2002, 119, 32-37.	0.7	50
71	Hyperproliferation, induction of c-Myc and 14-3-3σ, but no cell fragility in keratin-10-null mice. Journal of Cell Science, 2002, 115, 2639-2650.	2.0	106
72	Hyperproliferation, induction of c-Myc and 14-3-3sigma, but no cell fragility in keratin-10-null mice. Journal of Cell Science, 2002, 115, 2639-50.	2.0	95

#	Article	IF	CITATIONS
73	Energetic stress induces premature aging of diploid human fibroblasts (Wi-38) in vitro. Archives of Gerontology and Geriatrics, 2001, 32, 219-231.	3.0	10
74	Formation of a Normal Epidermis Supported by Increased Stability of Keratins 5 and 14 in Keratin 10 Null Mice. Molecular Biology of the Cell, 2001, 12, 1557-1568.	2.1	117
75	Normal Ultrastructure, but Altered Stratum Corneum Lipid and Protein Composition in a Mouse Model for Epidermolytic Hyperkeratosis. Journal of Investigative Dermatology, 1999, 113, 329-334.	0.7	32
76	The Relationship Between Hyperproliferation and Epidermal Thickening in a Mouse Model for BCIE. Journal of Investigative Dermatology, 1998, 110, 951-957.	0.7	40
77	Out of balance: consequences of a partial keratin 10 knockout. Journal of Cell Science, 1997, 110, 2175-2186.	2.0	42
78	Out of balance: consequences of a partial keratin 10 knockout. Journal of Cell Science, 1997, 110 (Pt) Tj ETQqC	0 0 rgBT	Overlock 10 T

79	Small nuclear ribonucleoprotein (RNP) U2 contains numerous additional proteins and has a bipartite RNP structure under splicing conditions Molecular and Cellular Biology, 1993, 13, 307-319.	2.3	118
80	Small Nuclear Ribonucleoprotein (RNP) U2 Contains Numerous Additional Proteins and Has a Bipartite RNP Structure Under Splicing Conditions. Molecular and Cellular Biology, 1993, 13, 307-319.	2.3	97