
Yoshinobu Tsujii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4482204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploiting the Synergy between Concentrated Polymer Brushes and Laser Surface Texturing to Achieve Durable Superlubricity. ACS Applied Materials & Interfaces, 2022, 14, 15818-15829.	4.0	13
2	Effect of surface texturing on the durability of concentrated polymer brushes. Tribology International, 2021, 155, 106668.	3.0	8
3	Water Lubricating and Biocompatible Films of Bacterial Cellulose Nanofibers Surface-Modified with Densely Grafted, Concentrated Polymer Brushes. ACS Applied Nano Materials, 2021, 4, 1503-1511.	2.4	16
4	Near-Zero Azimuthal Anchoring of Liquid Crystals Assisted by Viscoelastic Bottlebrush Polymers. ACS Applied Polymer Materials, 2021, 3, 2618-2625.	2.0	4
5	Nonbiofouling Coatings Using Bottlebrushes with Concentrated Polymer Brush Architecture. Biomacromolecules, 2021, 22, 2505-2514.	2.6	8
6	Concentrated-Polymer-Brush-Modified Silica Nanoparticles Self-Assembled in Ionic Liquid Containing Iodide/Triiodide (l–/I3–)-Redox System as Quasi-Solid Electrolytes for Dye-Sensitized Solar Cells. ACS Applied Nano Materials, 2021, 4, 6620-6628.	2.4	5
7	Regioselective synthesis of cellulosic janus bottlebrushes with polystyrene and poly (ε-caprolactone) side chains and their solid-state microphase separation. Cellulose, 2021, 28, 6857-6868.	2.4	4
8	Durability Improvement of Concentrated Polymer Brushes by Multiscale Texturing. Tribology Letters, 2021, 69, .	1.2	5
9	Enhancing durability of concentrated polymer brushes using microgrooved substrates. Wear, 2021, 482-483, 203984.	1.5	7
10	Concentrated Polymer Brush as Reciprocating Seal Material for Low Leakage and Low Friction. Tribology Transactions, 2020, 63, 20-27.	1.1	12
11	Controlled Synthesis of Concentrated Polymer Brushes with Ultralarge Thickness by Surface-Initiated Atom Transfer Radical Polymerization under High Pressure. Macromolecules, 2020, 53, 132-137.	2.2	17
12	Convenient Synthesis of Very-Thick Concentrated Polymer Brushes by Atom Transfer Radical Polymerization in an Ionic Liquid. Macromolecules, 2020, 53, 7936-7943.	2.2	5
13	Precise synthesis of double-armed polymers with fullerene C ₆₀ at the junction for controlled architecture. Polymer Chemistry, 2020, 11, 4417-4425.	1.9	0
14	Simultaneous Nanofibrillation and Compounding of Wood Pulp Fibers Using Polyols as Plasticizers:Fabricating High-Performance Cellulose-Nanofiber-Reinforced Polyethylene Composites. Journal of Fiber Science and Technology, 2020, 76, 23-31.	0.2	2
15	Lubrication Characteristics of Epoxy Resinâ€Based Monolithic Thin Films with a Wellâ€Defined Porous Morphology. Advanced Engineering Materials, 2019, 21, 1900683.	1.6	4
16	Effective Reinforcement of Poly(methyl methacrylate) Composites with a Well-Defined Bacterial Cellulose Nanofiber Network. ACS Sustainable Chemistry and Engineering, 2019, 7, 13351-13358.	3.2	18
17	Main-Chain Stiffness of Cellulosic Bottlebrushes with Polystyrene Side Chains Introduced Regioselectively at the <i>O</i> -6 Position. Macromolecules, 2019, 52, 8733-8740.	2.2	10
18	Controlling the Thermally Induced Phase Separation of Polymer/Ionic Liquid Blended Films with Concentrated-Polymer-Brush-Decorated Hybrid Particles. Langmuir, 2019, 35, 14566-14575.	1.6	5

#	Article	IF	CITATIONS
19	Well-defined monolith morphology regulates cell adhesion and its functions. Materials Science and Engineering C, 2019, 105, 110108.	3.8	1
20	pMAIRS Analysis on Chain-End Functionalization of Densely Grafted, Concentrated Polymer Brushes. Macromolecules, 2019, 52, 6673-6682.	2.2	7
21	Dynamics of lubricious, concentrated PMMA brush layers studied by surface forces and resonance shear measurements. Soft Matter, 2019, 15, 7765-7776.	1.2	5
22	Control of Phase Separation in Polystyrene/Ionic Liquid-Blended Films by Polymer Brush-Grafted Particles. Langmuir, 2019, 35, 3733-3747.	1.6	9
23	Novel in-plane switching liquid crystal display with an extremely high transmittance using a well-designed bottlebrush as a zero-azimuth anchoring material. Japanese Journal of Applied Physics, 2019, 58, 066503.	0.8	14
24	Preparation of High-Performance Polyethylene Composite Materials Reinforced with Cellulose Nanofiber: Simultaneous Nanofibrillation of Wood Pulp Fibers during Melt-Compounding Using Urea and Diblock Copolymer Dispersant. ACS Applied Polymer Materials, 2019, 1, 178-187.	2.0	16
25	Super-Low Friction of Thermal-Treatment-Concentrated Polymer Brushes (TT-CPBs) under Boundary Lubrication: A Practical Method to Shorten the Swelling Time of CPBs in Solvents. Tribology Online, 2019, 14, 226-236.	0.2	5
26	Shrinkage and swelling behavior of archaeological waterlogged wood preserved with slightly crosslinked sodium polyacrylate. Journal of Wood Science, 2018, 64, 294-300.	0.9	9
27	Versatile preparation of surface-skinless particles of epoxy resin-based monoliths using a well-defined diblock copolymer surfactant. Polymer Chemistry, 2018, 9, 414-419.	1.9	11
28	Strain Hardening of Highly Stretchable Elastomeric Composites Reinforced with Well-Defined Nanofiber Network of Bacterial Cellulose. Journal of Fiber Science and Technology, 2018, 74, 17-23.	0.2	7
29	Flocculation of Cells by Cellulose Nanofibers Modified with Concentrated Polymer Brushes. ACS Applied Nano Materials, 2018, 1, 1450-1455.	2.4	8
30	Facile Fabrication of Concentrated Polymer Brushes with Complex Patterning by Photocontrolled Organocatalyzed Living Radical Polymerization. Angewandte Chemie, 2018, 130, 13692-13696.	1.6	6
31	USAXS analysis of concentration-dependent self-assembling of polymer-brush-modified nanoparticles in ionic liquid: [I] concentrated-brush regime. Journal of Chemical Physics, 2018, 148, 124902.	1.2	12
32	Facile Fabrication of Concentrated Polymer Brushes with Complex Patterning by Photocontrolled Organocatalyzed Living Radical Polymerization. Angewandte Chemie - International Edition, 2018, 57, 13504-13508.	7.2	41
33	Organocatalyzed Living Radical Polymerization via in Situ Halogen Exchange of Alkyl Bromides to Alkyl Iodides. Macromolecules, 2017, 50, 1882-1891.	2.2	52
34	Synthesis and Radical Polymerization of Acrylamides Having One or Two 3-Carbazolylmethyl Moieties and Properties of the Formed Polymers. Chemistry Letters, 2017, 46, 85-87.	0.7	0
35	Fabrication of surface skinless membranes of epoxy resin-based mesoporous monoliths toward advanced separators for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 6866-6873.	5.2	33
36	Visualization of Individual Images in Patterned Organic–Inorganic Multilayers Using GISAXS-CT. Langmuir, 2017, 33, 4675-4681.	1.6	6

Уознінови Тяції

#	Article	IF	CITATIONS
37	83â€1L: <i>Lateâ€News Paper</i> : Electroâ€optic Characteristics of OZâ€IPS LCD Utilizing an Applicationâ€Type, Zeroâ€Azimuth Anchoring Material. Digest of Technical Papers SID International Symposium, 2017, 48, 704-707.	0.1	2
38	An in-plane switching liquid crystal cell with weakly anchored liquid crystals on the electrode substrate. Journal of Materials Chemistry C, 2017, 5, 4384-4387.	2.7	14
39	Strategy for the Improvement of the Mechanical Properties of Cellulose Nanofiber-Reinforced High-Density Polyethylene Nanocomposites Using Diblock Copolymer Dispersants. ACS Applied Materials & Interfaces, 2017, 9, 44079-44087.	4.0	53
40	Semisoft Colloidal Crystals in Ionic Liquids. Langmuir, 2017, 33, 7130-7136.	1.6	14
41	Synthesis of Monodisperse Silica Particles Grafted with Concentrated Ionic Liquid-Type Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization for Use as a Solid State Polymer Electrolyte. Polymers, 2016, 8, 146.	2.0	21
42	Assessment of endoglucanase activity by analyzing the degree of cellulose polymerization and high-throughput analysis by near-infrared spectroscopy. Cellulose, 2016, 23, 1565-1572.	2.4	8
43	Surface Engineering of Cellulose Nanofiber by Adsorption of Diblock Copolymer Dispersant for Green Nanocomposite Materials. ACS Applied Materials & Interfaces, 2016, 8, 24893-24900.	4.0	65
44	Well-Defined Polymer-Brush-Coated Rod-Shaped Particles: Synthesis and Formation of Liquid Crystals. Macromolecules, 2016, 49, 8430-8439.	2.2	17
45	Development of Novel Nano-systems for Electrochemical Devices by Hierarchizing Concentrated Polymer Brushes. , 2016, , 195-215.		0
46	A Robust Lubrication System Using an Ionic Liquid Polymer Brush. Advanced Materials Interfaces, 2015, 2, 1500187.	1.9	28
47	Synthesis of Iron Oxide Rods Coated with Polymer Brushes and Control of Their Assembly in Thin Films. Langmuir, 2015, 31, 1172-1179.	1.6	11
48	Nematic liquid crystal anchoring strengths of high density polymer brush surfaces. Liquid Crystals, 2015, 42, 181-188.	0.9	11
49	High voltage electric double layer capacitor using a novel solid-state polymer electrolyte. Journal of Power Sources, 2015, 295, 108-116.	4.0	38
50	Uniaxial extensional flow behavior of comb-shaped poly(methyl methacrylate). Rheologica Acta, 2015, 54, 637-645.	1.1	1
51	Surface-Initiated Living Radical Polymerizations Using Iodine, Organotellurium, and Organic Catalysts. Advances in Polymer Science, 2015, , 107-122.	0.4	2
52	Rheological characterization of H-shaped poly(methyl methacrylate)s. Rheologica Acta, 2015, 54, 793-804.	1.1	1
53	Molecularly imprinted polymers by reversible chain transfer catalysed polymerization. Polymer, 2015, 78, 31-36.	1.8	14
54	Macromolecular Architectures Designed by Living Radical Polymerization with Organic Catalysts. Polymers, 2014, 6, 311-326.	2.0	26

Үозні Мови Тяції

#	Article	IF	CITATIONS
55	Controlled Polymerization of Protic Ionic Liquid Monomer by ARGETâ€ATRP and TERP. Macromolecular Rapid Communications, 2014, 35, 642-648.	2.0	16
56	Immobilization of Semisoft Colloidal Crystals Formed by Polymer-Brush-Afforded Hybrid Particles. Langmuir, 2014, 30, 7304-7312.	1.6	30
57	Synthesis of Concentrated Polymer Brushes via Surface-Initiated Organotellurium-Mediated Living Radical Polymerization. Macromolecules, 2013, 46, 6777-6785.	2.2	27
58	Fabrication of Contrast Agents for Magnetic Resonance Imaging from Polymer-Brush-Afforded Iron Oxide Magnetic Nanoparticles Prepared by Surface-Initiated Living Radical Polymerization. Biomacromolecules, 2013, 14, 3453-3462.	2.6	54
59	Light-Harvesting Nanorods Based on Pheophorbide-Appending Cellulose. Biomacromolecules, 2013, 14, 3223-3230.	2.6	14
60	High-density poly(hexyl methacrylate) brushes offering a surface for near-zero azimuthal anchoring of liquid crystals at room temperature. Journal of Materials Chemistry C, 2013, 1, 7992.	2.7	16
61	Surface-initiated living radical polymerization from silica particles functionalized with poly(ethylene) Tj ETQq1 1 ().784314 1.0	rgBT /Overloc
62	Living Radical Polymerizations with Organic Catalysts. RSC Polymer Chemistry Series, 2013, , 250-286.	0.1	3
63	Viscoelastic PS brush surface offering strong anchoring at low temperature and near-zero anchoring at high temperature for LC molecules. Liquid Crystals, 2013, 40, 221-227.	0.9	6
64	Synthesis and Characterization of Polystyrene Brushes for Organic Thin Film Transistors. Journal of Nanoscience and Nanotechnology, 2012, 12, 4137-4141.	0.9	8
65	Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent viscosity. Polymer Chemistry, 2012, 3, 148-153.	1.9	40
66	Blood Clearance and Biodistribution of Polymer Brush-Afforded Silica Particles Prepared by Surface-Initiated Living Radical Polymerization. Biomacromolecules, 2012, 13, 927-936.	2.6	39
67	Reversible Complexation Mediated Polymerization (RCMP) of Methyl Methacrylate. ACS Symposium Series, 2012, , 305-315.	0.5	12
68	Lubrication Mechanism of Concentrated Polymer Brushes in Solvents: Effect of Solvent Quality and Thereby Swelling State. Macromolecules, 2011, 44, 5013-5019.	2.2	114
69	Transformation of Nano- to Mesosized Iron Oxide Cores to α-Fe within Organic Shells Preserved Intact. Chemistry of Materials, 2011, 23, 1564-1569.	3.2	29
70	Surface-Initiated Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization from Fine Particles Functionalized with Trithiocarbonates. Macromolecules, 2011, 44, 8944-8953.	2.2	140
71	Reversible Complexation Mediated Living Radical Polymerization (RCMP) Using Organic Catalysts. Macromolecules, 2011, 44, 8709-8715.	2.2	125
72	Living Radical Polymerizations with Organic Catalysts. Kobunshi Ronbunshu, 2011, 68, 223-231.	0.2	0

#	Article	IF	CITATIONS
73	Controlled synthesis of hydrophilic concentrated polymer brushes and their friction/lubrication properties in aqueous solutions. Journal of Polymer Science Part A, 2011, 49, 5284-5292.	2.5	26
74	Novel Solidâ€State Polymer Electrolyte of Colloidal Crystal Decorated with Ionicâ€Liquid Polymer Brush. Advanced Materials, 2011, 23, 4868-4872.	11.1	115
75	High-Density Poly(methyl methacrylate) Brushes as Anchoring Surfaces of Nematic Liquid Crystals. Japanese Journal of Applied Physics, 2011, 50, 071701.	0.8	10
76	High-Density Poly(methyl methacrylate) Brushes as Anchoring Surfaces of Nematic Liquid Crystals. Japanese Journal of Applied Physics, 2011, 50, 071701.	0.8	9
77	Suppression of Cell Adhesion on Well-defined Concentrated Polymer Brushes of Hydrophilic Polymers. Chemistry Letters, 2010, 39, 142-143.	0.7	23
78	Use of Alcohol as Initiator for Reversible Chain Transfer Catalyzed Polymerization. Macromolecular Reaction Engineering, 2010, 4, 272-277.	0.9	8
79	A Systematic Kinetic Study in Reversible Chain Transfer Catalyzed Polymerizations (RTCPs) with Germanium, Tin, Phosphorus, and Nitrogen Catalysts. Macromolecular Chemistry and Physics, 2010, 211, 594-600.	1.1	23
80	A Versatile Method of Initiator Fixation for Surface-Initiated Living Radical Polymerization on Polymeric Substrates. Macromolecules, 2010, 43, 5569-5574.	2.2	37
81	Phenols and Carbon Compounds as Efficient Organic Catalysts for Reversible Chain Transfer Catalyzed Living Radical Polymerization (RTCP). Macromolecules, 2010, 43, 7971-7978.	2.2	49
82	Surface-Initiated Living Radical Polymerization from Narrowly Size-Distributed Silica Nanoparticles of Diameters Less Than 100 nm. Macromolecules, 2010, 43, 8805-8812.	2.2	90
83	Synthesis of monodisperse zinc sulfide particles grafted with concentrated polystyrene brush by surface-initiated nitroxide-mediated polymerization. European Polymer Journal, 2009, 45, 2788-2796.	2.6	42
84	Reversible Chain Transfer Catalyzed Polymerization of Methyl Methacrylate with In-Situ Formed Alkyl Iodide Initiator. Australian Journal of Chemistry, 2009, 62, 1492.	0.5	13
85	Reversible Chain Transfer Catalyzed Polymerization (RTCP) with Alcohol Catalysts. ACS Symposium Series, 2009, , 159-168.	0.5	11
86	Reversible chain transfer catalyzed polymerization (RTCP): A new class of living radical polymerization. Polymer, 2008, 49, 5177-5185.	1.8	96
87	Structural analysis of polymer-brush-type cellulose β-ketoesters by molecular dynamics simulation. Cellulose, 2008, 15, 651-658.	2.4	4
88	High-pressure atom transfer radical polymerization of methyl methacrylate for well-defined ultrahigh molecular-weight polymers. Polymer, 2008, 49, 2426-2429.	1.8	81
89	Phase-separated structures of mixed LB films of silane-coupling agents with polymerization initiating groups and amphiphilic carboxylic acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 76-81.	2.3	3
90	Living Radical Polymerization with Nitrogen Catalyst: Reversible Chain Transfer Catalyzed Polymerization with <i>N</i> -Iodosuccinimide. Macromolecules, 2008, 41, 6261-6264.	2.2	66

#	Article	IF	CITATIONS
91	Structural Analysis of "Semisoft―Colloidal Crystals by Confocal Laser Scanning Microscopy. Macromolecules, 2008, 41, 3620-3626.	2.2	50
92	Reversible Chain Transfer Catalyzed Polymerizations (RTCPs) of Styrene and Methyl Methacrylate with Phosphorus Catalysts. Macromolecular Symposia, 2008, 261, 18-22.	0.4	29
93	Effect of Surface Treatments on Viscoelastic Measurements of Thread-like Micellar Solutions. Nihon Reoroji Gakkaishi, 2008, 36, 187-190.	0.2	1
94	Suspensions of Silica Particles Grafted with Concentrated Polymer Brush:  Effects of Graft Chain Length on Brush Layer Thickness and Colloidal Crystallization. Macromolecules, 2007, 40, 9143-9150.	2.2	264
95	Size-Exclusion Effect and Protein Repellency of Concentrated Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization. Macromolecular Symposia, 2007, 248, 189-198.	0.4	28
96	Living Radical Polymerizations with Germanium, Tin, and Phosphorus Catalysts â^' Reversible Chain Transfer Catalyzed Polymerizations (RTCPs). Journal of the American Chemical Society, 2007, 129, 13347-13354.	6.6	127
97	Monodisperse Silica Particles Grafted with Concentrated Oxetane-Carrying Polymer Brushes:Â Their Synthesis by Surface-Initiated Atom Transfer Radical Polymerization and Use for Fabrication of Hollow Spheres. Macromolecules, 2007, 40, 1159-1164.	2.2	101
98	Two-dimensional ordered arrays of monodisperse silica particles grafted with concentrated polymer brushes. European Polymer Journal, 2007, 43, 243-248.	2.6	38
99	Surface interaction of wellâ€defined, concentrated poly(2â€hydroxyethyl methacrylate) brushes with proteins. Journal of Polymer Science Part A, 2007, 45, 4795-4803.	2.5	62
100	Structure and Properties of High-Density Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization. Advances in Polymer Science, 2006, , 1-45.	0.4	551
101	Suspensions of Silica Particles Grafted with Concentrated Polymer Brush:Â A New Family of Colloidal Crystals. Macromolecules, 2006, 39, 1245-1249.	2.2	162
102	Protein Repellency of Well-Defined, Concentrated Poly(2-hydroxyethyl methacrylate) Brushes by the Size-Exclusion Effect. Macromolecules, 2006, 39, 2284-2290.	2.2	201
103	Langmuirâ^'Blodgett Films of a Novel Cellulose Derivative with Dihydrophytyl Group:Â The Ability to Anchor β-Carotene Molecules. Biomacromolecules, 2006, 7, 1960-1967.	2.6	11
104	Fabrication and Electrochemical Properties of High-density Graft Films with Ferrocene Moieties on ITO Substrates. Chemistry Letters, 2005, 34, 1366-1367.	0.7	29
105	Preparation and Characterization of 6-O-(4-stearyloxytrityl)Cellulose acetate Langmuir–Blodgett Films. Cellulose, 2005, 12, 361-369.	2.4	3
106	Preparation and characterization of redox cellulose Langmuir-Blodgett films containing a ferrocene derivative. Journal of Polymer Science Part A, 2005, 43, 5023-5031.	2.5	25
107	Physicochemical Characterization of an Anatase TiO2Surface and the Adsorption of a Nonionic Surfactant:Â An Atomic Force Microscopy Study. Langmuir, 2005, 21, 11283-11288.	1.6	30
108	Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate). Macromolecules, 2005, 38, 1264-1270.	2.2	132

#	Article	IF	CITATIONS
109	Synthesis of Monodisperse Silica Particles Coated with Well-Defined, High-Density Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 2137-2142.	2.2	528
110	Preparation and Characterization of Monolayer and Multilayer Langmuirâ^'Blodgett Films of a Series of 6-O-Alkylcelluloses. Biomacromolecules, 2005, 6, 2067-2073.	2.6	11
111	Fabrication of High-Density Polymer Brush on Polymer Substrate by Surface-Initiated Living Radical Polymerization. Macromolecules, 2005, 38, 4604-4610.	2.2	110
112	Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer, 2004, 45, 2231-2235.	1.8	192
113	Some aspects of nitroxide-mediated living radical polymerization of N-(p-vinylbenzyl)phthalimide. European Polymer Journal, 2004, 40, 81-88.	2.6	21
114	Synthesis of well-defined polymers with protected silanol groups by atom transfer radical polymerization and their use for the fabrication of polymeric nanoparticles. European Polymer Journal, 2004, 40, 2665-2670.	2.6	7
115	Interaction Forces between Two Hard Surfaces in Particle-Containing Aqueous Systems. Langmuir, 2004, 20, 1953-1962.	1.6	56
116	Living Radical Polymerization by Polyhedral Oligomeric Silsesquioxane-Holding Initiators:  Precision Synthesis of Tadpole-Shaped Organic/Inorganic Hybrid Polymers. Macromolecules, 2004, 37, 8517-8522.	2.2	99
117	Interaction Forces between Two Silica Surfaces in an Apolar Solvent Containing an Anionic Surfactant. Langmuir, 2004, 20, 1791-1798.	1.6	44
118	AFM Observation of Band-Like Cellulose Assemblies Produced byAcetobacter xylinum. Biomacromolecules, 2004, 5, 2079-2081.	2.6	9
119	Fabrication of Ordered Arrays of Gold Nanoparticles Coated with High-Density Polymer Brushes. Angewandte Chemie - International Edition, 2003, 42, 2751-2754.	7.2	185
120	Precision Synthesis of Organic/Inorganic Hybrid Nanocapsules with a Silanol-Functionalized Micelle Template. Angewandte Chemie - International Edition, 2003, 42, 4194-4197.	7.2	52
121	Mechanisms and Kinetics of Living Radical Polymerization: Absolute Comparison of Theory and Experiment. ACS Symposium Series, 2003, , 24-39.	0.5	11
122	Living Polymerization of Photofunctional Carbazole Polymers by Atom Transfer Radical Polymerization Technique Kobunshi Ronbunshu, 2002, 59, 421-426.	0.2	3
123	Glass Transition Temperatures of High-Density Poly(methyl methacrylate) Brushes. Macromolecules, 2002, 35, 6077-6079.	2.2	91
124	Fabrication of Patterned High-Density Polymer Graft Surfaces. 1. Amplification of Phase-Separated Morphology of Organosilane Blend Monolayer by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2002, 35, 1412-1418.	2.2	72
125	Comparative Study on Decomposition Rate Constants for Some Alkoxyamines. Macromolecules, 2002, 35, 3520-3525.	2.2	63
126	Elastic Properties of Well-Defined, High-Density Poly(methyl methacrylate) Brushes Studied by Electromechanical Interferometry. Macromolecules, 2002, 35, 9459-9465.	2.2	40

#	Article	IF	CITATIONS
127	Synthesis of Gold Nanoparticles Coated with Well-Defined, High-Density Polymer Brushes by Surface-Initiated Living Radical Polymerization. Macromolecules, 2002, 35, 8989-8993.	2.2	286
128	A Kinetic Study on the Rate Retardation in Radical Polymerization of Styrene with Additionâ [^] Fragmentation Chain Transfer. Macromolecules, 2002, 35, 3026-3029.	2.2	252
129	Fabrication of patterned high-density polymer graft surfaces. II. Amplification of EB-patterned initiator monolayer by surface-initiated atom transfer radical polymerization. Polymer, 2002, 43, 3837-3841.	1.8	45
130	Mechanism and Kinetics of RAFT-Mediated Graft Polymerization of Styrene on a Solid Surface. 1. Experimental Evidence of Surface Radical Migration. Macromolecules, 2001, 34, 8872-8878.	2.2	305
131	Mechanism and Kinetics of RAFT-Based Living Radical Polymerizations of Styrene and Methyl Methacrylate. Macromolecules, 2001, 34, 402-408.	2.2	313
132	Interaction Forces and Zeta Potentials of Cationic Polyelectrolyte Coated Silica Surfaces in Water and in Ethanol:Â Effects of Chain Length and Concentration of Perfluorinated Anionic Surfactants on Their Binding to the Surface. Langmuir, 2001, 17, 6220-6227.	1.6	37
133	Free-Radical Copolymerization of Styrene and Diethyl Fumarate. Penultimate-Unit Effects on Both Propagation and Termination Processes. Macromolecules, 2001, 34, 4749-4756.	2.2	21
134	Characteristic phase-separated monolayer structure observed for blends of rodlike and flexible polymers. Polymer, 2001, 42, 2007-2013.	1.8	22
135	Controlled grafting of a well-defined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization. Polymer, 2001, 42, 6811-6815.	1.8	131
136	Effects of Acetic Anhydride on the Activation and Polymerization Rates in Nitroxide-Mediated Polymerization of Styrene. Chemistry Letters, 2000, 29, 788-789.	0.7	13
137	Surface Interaction Forces of Well-Defined, High-Density Polymer Brushes Studied by Atomic Force Microscopy. 1. Effect of Chain Length. Macromolecules, 2000, 33, 5602-5607.	2.2	207
138	Surface Interaction Forces of Well-Defined, High-Density Polymer Brushes Studied by Atomic Force Microscopy. 2. Effect of Graft Density. Macromolecules, 2000, 33, 5608-5612.	2.2	291
139	Atomic Force Microscopic Study of Stretching a Single Polymer Chain in a Polymer Brush. Macromolecules, 2000, 33, 5995-5998.	2.2	97
140	Controlled Grafting of a Well-Defined Glycopolymer on a Solid Surface by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2000, 33, 2870-2874.	2.2	253
141	Effect of Fiber Structure on Heat of Wetting of Cotton and Regenerated Cellulosic Fibers. Textile Reseach Journal, 1999, 69, 559-564.	1.1	11
142	Synthesis of a well-defined anthracene-labelled polystyrene by atomtransfer radical polymerization. Polymer, 1999, 40, 759-763.	1.8	33
143	Influence of a Fluorescent Probe on the Local Relaxation Times for a Polystyrene Chain in the Fluorescence Depolarization Method. Macromolecules, 1999, 32, 2270-2274.	2.2	7
144	Synthesis of a well-defined glycopolymer by atom transfer radical polymerization. Journal of Polymer Science Part A, 1998, 36, 2473-2481.	2.5	176

Үозні Мови Тяції

#	Article	lF	CITATIONS
145	Controlled Graft Polymerization of Methyl Methacrylate on Silicon Substrate by the Combined Use of the Langmuirâ`'Blodgett and Atom Transfer Radical Polymerization Techniques. Macromolecules, 1998, 31, 5934-5936.	2.2	551
146	Synthesis of a Well-Defined Glycopolymer by Nitroxide-Controlled Free Radical Polymerization. Macromolecules, 1998, 31, 1064-1069.	2.2	191
147	Mechanism and Kinetics of Nitroxide-Controlled Free Radical Polymerization. Thermal Decomposition of 2,2,6,6-Tetramethyl-1-polystyroxypiperidines. Macromolecules, 1997, 30, 2503-2506.	2.2	95
148	Applicability of Near-infrared Spectroscopic Method to Unfreezable Water Measurements in Egg White Lysozyme and Soluble Starch. LWT - Food Science and Technology, 1997, 30, 406-410.	2.5	5
149	Gelation of Styrene-Acrylonitrile Copolymer via Cyclodiborazane Formation. Nihon Reoroji Gakkaishi, 1997, 25, 197-198.	0.2	0
150	Mechanisms and Kinetics of Nitroxide-Controlled Free Radical Polymerization. Macromolecules, 1996, 29, 6393-6398.	2.2	302
151	Celation Processes of Polymer Solutions. 1. Photodimerization of Free and Polymer-Bound Anthryl Groups. Macromolecules, 1996, 29, 3851-3856.	2.2	11
152	Orientation-Dependent Interactions in Polymer Systems. 6. Effect of Segmental Orientation on Polymer Miscibility. Macromolecules, 1996, 29, 3300-3302.	2.2	5
153	Langmuirâ^'Blodgett Films of a Glucose Residue-Carrying Amphiphilic Block Copolymer Studied by Surface Plasmons and Transmission Electron Microscopy. Langmuir, 1996, 12, 3671-3674.	1.6	12
154	Well-Defined Block Copolymers Comprising Styreneâ^'Acrylonitrile Random Copolymer Sequences Synthesized by "Living―Radical Polymerization. Macromolecules, 1996, 29, 3050-3052.	2.2	212
155	A trough with radial compression for studies of monolayers and fabrication of Langmuir-Blodgett films. Thin Solid Films, 1996, 280, 238-243.	0.8	21
156	Structural characteristics of polysaccharideâ€based thermotropic liquid crystals. Macromolecular Symposia, 1995, 99, 257-267.	0.4	9
157	Orientation-Dependent Interactions in Polymer Systems. 4. Chain-Length Dependence of the Nematic-Isotropic Transition Behavior of Thermotropic Semiflexible Polymers. Macromolecules, 1995, 28, 3387-3393.	2.2	9
158	Thermal Relaxation Process of Stearate LB Films Sandwiched by Chromophoric Polymer LB Layers Studied by the Energy Transfer Method and Transmission Electron Microscopy. Langmuir, 1994, 10, 4142-4147.	1.6	4
159	Exterplex formation of poly(3,6-di-tert-butyl-9-vinylcarbazole) and its dimeric model compounds with dimethyl terephthalate studied by fluorescence spectroscopy. Macromolecules, 1993, 26, 1411-1416.	2.2	5
160	Orientation-dependent interactions in polymer systems. 3. Segmental orientation in poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene miscible blends. Macromolecules, 1993, 26, 3980-3985.	2.2	15
161	Mono- and Multilayer Langmuir-Blodgett Films of Cellulose Tri-n-alkyl Esters Studied by Transmission Electron Microscopy Polymer Journal, 1992, 24, 641-652.	1.3	25
162	Reversible gelation of short-chain O-(2,3-dihydroxypropyl)cellulose/borax solutions. 1. A 11B-NMR study on polymer-ion interactions. Macromolecules, 1992, 25, 3890-3895.	2.2	22

#	Article	IF	CITATIONS
163	Preparation and dielectric properties of cellulose derivatives with high-polarity substituents. Die Makromolekulare Chemie, 1992, 193, 647-658.	1.1	16
164	Orientation-dependent interactions in polymer systems. 2. Segmental orientation in binary blends. Macromolecules, 1992, 25, 2196-2199.	2.2	6
165	Multilayer films of chromophoric cellulose octadecanoates studied by fluorescence spectroscopy. Langmuir, 1992, 8, 936-941.	1.6	51
166	Reversible gelation of short-chain O-(2,3-dihydroxypropyl) cellulose/borax solutions. 2. Sol-gel transition. Macromolecules, 1992, 25, 5970-5973.	2.2	7
167	Structure and stability of dimer radical cations of poly(vinylnaphthalene)s studied by charge-resonance band measurement and radical-cation-transfer method. Macromolecules, 1991, 24, 4061-4066.	2.2	35
168	Dielectric relaxation of liquid crystalline cyanoethylated O-(2,3-dihydroxypropyl)cellulose. Macromolecules, 1991, 24, 4691-4697.	2.2	34
169	Conformation of linear aggregates of thermally denatured ovalbumin. Macromolecules, 1991, 24, 6786-6787.	2.2	4
170	Triplet energy transfer of the intramolecular system having benzophenone and dibenz[b,f]azepine at the chain ends: chain length dependence. The Journal of Physical Chemistry, 1991, 95, 3480-3486.	2.9	13
171	Fluorescence spectroscopy for a cellulose trioctadecanoate monolayer at the air/water interface. Langmuir, 1991, 7, 2803-2807.	1.6	12
172	Laser photolysis studies on the intramolecular dimer radical cations formed in 1,3-dipyrenylpropanes. The Journal of Physical Chemistry, 1991, 95, 5797-5802.	2.9	45
173	Studies of conformation and electronic structure of the radical cations of 2,4-di(N-carbazolyl)pentane and 1,3-dinaphthylpropanes in fluids and in rigid matrices by optical spectroscopy and molecular orbital analyses. The Journal of Physical Chemistry, 1991, 95, 8635-8640.	2.9	24
174	Steric Effect on Dimer Radical Cation Formation of Poly(3,6-di-tert-butyl-9-vinylcarbazole) and Its Dimeric Model Compounds Studied by Laser Photolysis. Polymer Journal, 1990, 22, 319-325.	1.3	16
175	Excimer formation in sterically hindered poly(9-vinylcarbazole) and its dimer model compounds. Macromolecules, 1990, 23, 2666-2673.	2.2	25
176	Stabilization of carbazole radical cation formed in poly(N-vinylcarbazole) by charge delocalization. Macromolecules, 1990, 23, 4019-4023.	2.2	56
177	The behavior of the intra-and intermolecular pyrene dimer cation radical as studied by nanosecond laser photolysis in near-IR region Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1989, 1989, 1285-1291.	0.1	1
178	Near-infrared charge resonance band of intramolecular carbazole dimer radical cations studied by nanosecond laser photolysis. Chemical Physics Letters, 1989, 154, 559-562.	1.2	48
179	Conformations of naphthalene dimer cation radicals studies by laser photolysis. The Journal of Physical Chemistry, 1989, 93, 1244-1248.	2.9	36
180	Exciplex formation of polymers having carbazole or terephthalate chromophore. Neighboring chromophore interaction Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1989, 1989, 1304-1310.	0.1	1

#	Article	IF	CITATIONS
181	Estimate of the stabilization energy of cation radicals formed in poly(N-vinylcarbazole) and its dimer model compounds by an ion radical transfer method. Macromolecules, 1988, 21, 665-670.	2.2	38
182	Stabilization of an Anion Radical Formed in Poly(vinyl methyl terephthalate) Studied by Anion Radical Transfer Method. Polymer Journal, 1988, 20, 837-844.	1.3	5
183	Conformational characteristics of regioselectively PEG/PS-grafted cellulosic bottlebrushes in solution: cross-sectional structure and main-chain stiffness. Polymer Journal, 0, , .	1.3	2