Huanfeng Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4480948/publications.pdf

Version: 2024-02-01

528 papers 25,888 citations

80 h-index 120 g-index

544 all docs

544 docs citations

times ranked

544

14704 citing authors

#	Article	IF	CITATIONS
1	Covalent Cross-Linked Polymer Gels with Reversible Solâ^'Gel Transition and Self-Healing Properties. Macromolecules, 2010, 43, 1191-1194.	4.8	581
2	Dynamic Hydrogels with an Environmental Adaptive Self-Healing Ability and Dual Responsive Sol–Gel Transitions. ACS Macro Letters, 2012, 1, 275-279.	4.8	519
3	Palladium-Catalyzed Oxidation of Unsaturated Hydrocarbons Using Molecular Oxygen. Accounts of Chemical Research, 2012, 45, 1736-1748.	15.6	505
4	Transition metal-catalyzed C–H functionalization of N-oxyenamine internal oxidants. Chemical Society Reviews, 2015, 44, 1155-1171.	38.1	488
5	A Highly Active Heterogeneous Palladium Catalyst for the Suzuki–Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media. Angewandte Chemie - International Edition, 2010, 49, 4054-4058.	13.8	487
6	Metalâ^'Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols. Journal of Physical Chemistry C, 2010, 114, 13362-13369.	3.1	292
7	Copperâ€Catalyzed Coupling of Oxime Acetates with Sodium Sulfinates: An Efficient Synthesis of Sulfone Derivatives. Angewandte Chemie - International Edition, 2014, 53, 4205-4208.	13.8	277
8	Haloalkynes: A Powerful and Versatile Building Block in Organic Synthesis. Accounts of Chemical Research, 2014, 47, 2483-2504.	15.6	237
9	Palladium-Catalyzed Diacetoxylation of Alkenes with Molecular Oxygen as Sole Oxidant. Journal of the American Chemical Society, 2009, 131, 3846-3847.	13.7	226
10	Copper-Catalyzed Aerobic C(sp ²)â€"H Functionalization for Câ€"N Bond Formation: Synthesis of Pyrazoles and Indazoles. Journal of Organic Chemistry, 2013, 78, 3636-3646.	3.2	210
11	Copperâ€Catalyzed Aerobic Oxidative NS Bond Functionalization for CS Bond Formation: Regio―and Stereoselective Synthesis of Sulfones and Thioethers. Chemistry - A European Journal, 2014, 20, 7911-7915.	3.3	210
12	Palladium-Catalyzed Direct Oxidation of Alkenes with Molecular Oxygen: General and Practical Methods for the Preparation of 1,2-Diols, Aldehydes, and Ketones. Journal of Organic Chemistry, 2010, 75, 2321-2326.	3.2	199
13	TBHP/I ₂ -Mediated Domino Oxidative Cyclization for One-Pot Synthesis of Polysubstituted Oxazoles. Organic Letters, 2010, 12, 5561-5563.	4.6	180
14	Synthesis of Amides via Palladium-Catalyzed Amidation of Aryl Halides. Organic Letters, 2011, 13, 1028-1031.	4.6	171
15	Palladium-Catalyzed Cleavage Reaction of Carbonâ^Carbon Triple Bond with Molecular Oxygen Promoted by Lewis Acid. Journal of the American Chemical Society, 2008, 130, 5030-5031.	13.7	169
16	One-Pot Silver-Catalyzed and PIDA-Mediated Sequential Reactions: Synthesis of Polysubstituted Pyrroles Directly from Alkynoates and Amines. Organic Letters, 2010, 12, 312-315.	4.6	168
17	Recent advances in the synthesis of cyclopropanes. Organic and Biomolecular Chemistry, 2018, 16, 7315-7329.	2.8	167
18	Conversion of Pyridine to Imidazo[1,2- <i>a</i>]pyridines by Copper-Catalyzed Aerobic Dehydrogenative Cyclization with Oxime Esters. Organic Letters, 2013, 15, 6254-6257.	4.6	166

#	Article	IF	CITATIONS
19	Copper-Catalyzed Oxidative Carbon–Carbon and/or Carbon–Heteroatom Bond Formation with O ₂ or Internal Oxidants. Accounts of Chemical Research, 2018, 51, 1092-1105.	15.6	166
20	A Conjugated Polymeric Supramolecular Network with Aggregationâ€Induced Emission Enhancement: An Efficient Lightâ€Harvesting System with an Ultrahigh Antenna Effect. Angewandte Chemie - International Edition, 2020, 59, 9908-9913.	13.8	159
21	Copper-catalyzed sulfonamides formation from sodium sulfinates and amines. Chemical Communications, 2013, 49, 6102.	4.1	152
22	Palladium supported on an acidic metal–organic framework as an efficient catalyst in selective aerobic oxidation of alcohols. Green Chemistry, 2013, 15, 230-235.	9.0	148
23	Transition-metal-free synthesis of vinyl sulfones via tandem cross-decarboxylative/coupling reactions of sodium sulfinates and cinnamic acids. Green Chemistry, 2014, 16, 3720-3723.	9.0	148
24	Copper-Catalyzed Synthesis of Substituted Benzothiazoles via Condensation of 2-Aminobenzenethiols with Nitriles. Organic Letters, 2013, 15, 1598-1601.	4.6	132
25	Copper-Catalyzed Intermolecular Oxidative $[3 + 2]$ Cycloaddition between Alkenes and Anhydrides: A New Synthetic Approach to \hat{I}^3 -Lactones. Journal of the American Chemical Society, 2010, 132, 17652-17654.	13.7	130
26	Polystyreneâ€Supported Amino Acids as Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Advanced Synthesis and Catalysis, 2010, 352, 1925-1933.	4.3	128
27	A molecular Pd(<scp>ii</scp>) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C–Cl bond activation. Green Chemistry, 2014, 16, 3978.	9.0	127
28	Copper-Catalyzed C–O Bond Formation: An Efficient One-Pot Highly Regioselective Synthesis of Furans from (2-Furyl)Carbene Complexes. Organic Letters, 2013, 15, 1080-1083.	4.6	123
29	An efficient synthesis of polysubstituted pyrroles via copper-catalyzed coupling of oxime acetates with dialkyl acetylenedicarboxylates under aerobic conditions. Chemical Communications, 2013, 49, 9597.	4.1	121
30	Baseâ€Promoted Coupling of Carbon Dioxide, Amines, and <i>N</i> à€Tosylhydrazones: A Novel and Versatile Approach to Carbamates. Angewandte Chemie - International Edition, 2015, 54, 3084-3087.	13.8	121
31	Copper-Catalyzed Domino Rearrangement/Dehydrogenation Oxidation/Carbene Oxidation for One-Pot Regiospecific Synthesis of Highly Functionalized Polysubstituted Furans. Organic Letters, 2009, 11, 1931-1933.	4.6	115
32	A Tuneable Bifunctional Waterâ€Compatible Heterogeneous Catalyst for the Selective Aqueous Hydrogenation of Phenols. Advanced Synthesis and Catalysis, 2011, 353, 3107-3113.	4.3	112
33	Ag-Catalyzed Oxidative Cyclization Reaction of 1,6-Enynes and Sodium Sulfinate: Access to Sulfonylated Benzofurans. Organic Letters, 2017, 19, 2825-2828.	4.6	111
34	Copper(I)-Catalyzed Synthesis of 2,5-Disubstituted Furans and Thiophenes from Haloalkynes or 1,3-Diynes. Journal of Organic Chemistry, 2012, 77, 5179-5183.	3.2	110
35	Palladiumâ€Catalyzed Sequential Formation of CC Bonds: Efficient Assembly of 2â€Substituted and 2,3â€Disubstituted Quinolines. Angewandte Chemie - International Edition, 2012, 51, 7292-7296.	13.8	110
36	Copper-catalyzed oxidative $[2 + 2 + 1]$ cycloaddition: regioselective synthesis of 1,3-oxazoles from internal alkynes and nitriles. Chemical Science, 2012, 3, 3463.	7.4	109

#	Article	IF	Citations
37	Copperâ€Catalyzed Intermolecular Oxidative Cyclization of Haloâ€alkynes: Synthesis of 2â€Haloâ€substituted Imidazo[1,2â€ <i>a</i>]pyridines, Imidazo[1,2â€ <i>a</i>]pyrazines and Imidazo[1,2â€ <i>a</i>)pyrimidines. Advanced Synthesis and Catalysis, 2013, 355, 2263-2273.	4.3	109
38	Copper-Catalyzed Coupling of Oxime Acetates with Isothiocyanates: A Strategy for 2-Aminothiazoles. Organic Letters, 2016, 18, 180-183.	4.6	107
39	Recent advances in organic synthesis with CO2 as C1 synthon. Current Opinion in Green and Sustainable Chemistry, 2017, 3, 22-27.	5.9	104
40	Palladiumâ€Catalyzed Bromoalkynylation of CC Double Bonds: Ringâ€6tructureâ€Dependent Synthesis of 7â€Alkynyl Norbornanes and Cyclobutenyl Halides. Angewandte Chemie - International Edition, 2011, 50, 6341-6345.	13.8	103
41	Palladiumâ€Catalyzed Cascade Annulation To Construct Functionalized β†and γâ€Lactones in Ionic Liquids. Angewandte Chemie - International Edition, 2014, 53, 7219-7222.	13.8	103
42	Cu-Catalyzed Three-Component Cascade Annulation Reaction: An Entry to Functionalized Pyridines. Journal of Organic Chemistry, 2015, 80, 8763-8771.	3.2	103
43	Copper-Catalyzed Formal C–N Bond Cleavage of Aromatic Methylamines: Assembly of Pyridine Derivatives. Journal of Organic Chemistry, 2013, 78, 3774-3782.	3.2	102
44	NHC–AuCl/Selectfluor: A Highly Efficient Catalytic System for Carbene-Transfer Reactions. Organic Letters, 2014, 16, 4472-4475.	4.6	102
45	Recent advances in three-component difunctionalization of <i>gem </i> -difluoroalkenes. Chemical Communications, 2020, 56, 10442-10452.	4.1	100
46	Palladium-Catalyzed Intermolecular Dehydrogenative Aminohalogenation of Alkenes under Molecular Oxygen: An Approach to Brominated Enamines. Journal of the American Chemical Society, 2013, 135, 5286-5289.	13.7	98
47	Rh(iii)-catalyzed ortho-oxidative alkylation of unactivated arenes with allylic alcohols. Chemical Science, 2013, 4, 2665.	7.4	98
48	Co(III)-Catalyzed Coupling-Cyclization of Aryl C–H Bonds with α-Diazoketones Involving Wolff Rearrangement. ACS Catalysis, 2018, 8, 1308-1312.	11.2	98
49	Recent developments in palladium-catalyzed C–S bond formation. Organic Chemistry Frontiers, 2020, 7, 1395-1417.	4.5	98
50	Expedient Synthesis of Functionalized Conjugated Enynes: Palladiumâ€Catalyzed Bromoalkynylation of Alkynes. Angewandte Chemie - International Edition, 2010, 49, 3338-3341.	13.8	97
51	A chiral mixed metal–organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances. Dalton Transactions, 2013, 42, 9930.	3.3	97
52	Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes. Chemical Communications, 2013, 49, 6611.	4.1	97
53	Rh(III)-Catalyzed [4 + 2] Annulation of Indoles with Diazo Compounds: Access to Pyrimido[1,6- <i>a</i>]indole-1(2 <i>H</i>)-ones. Organic Letters, 2016, 18, 192-195.	4.6	97
54	Copper-Catalyzed Regioselective C–H Sulfonylation of 8-Aminoquinolines. Journal of Organic Chemistry, 2016, 81, 946-955.	3.2	97

#	Article	IF	Citations
55	Ni(salphen)-based metal–organic framework for the synthesis of cyclic carbonates by cycloaddition of CO2 to epoxides. RSC Advances, 2013, 3, 2167.	3.6	96
56	Direct Reductive Quinolyl β-C–H Alkylation by Multispherical Cavity Carbon-Supported Cobalt Oxide Nanocatalysts. ACS Catalysis, 2017, 7, 4780-4785.	11.2	95
57	Copper-Catalyzed Oxidative C(sp ³) $\hat{a}\in H$ Functionalization for Facile Synthesis of 1,2,4-Triazoles and 1,3,5-Triazines from Amidines. Organic Letters, 2015, 17, 2894-2897.	4.6	94
58	Copper-Catalyzed Aerobic Oxidative Regioselective Thiocyanation of Aromatics and Heteroaromatics. Journal of Organic Chemistry, 2017, 82, 9312-9320.	3.2	94
59	Recent Advances in Pdâ€Catalyzed Crossâ€Coupling Reaction in Ionic Liquids. European Journal of Organic Chemistry, 2018, 2018, 1284-1306.	2.4	94
60	Convenient One-Pot Synthesis of Multisubstituted Tetrahydropyrimidines via Catalyst-Free Multicomponent Reactions. Organic Letters, 2007, 9, 4111-4113.	4.6	92
61	Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur. Journal of Organic Chemistry, 2016, 81, 7771-7783.	3.2	92
62	Palladium-Catalyzed Allylation of Alkynes with Allyl Alcohol in Aqueous Media: Highly Regio- and Stereoselective Synthesis of 1,4-Dienes. Angewandte Chemie - International Edition, 2006, 45, 1945-1949.	13.8	89
63	Silver-Catalyzed Difunctionalization of Terminal Alkynes: Highly Regio- and Stereoselective Synthesis of (Z)- \hat{l}^2 -Haloenol Acetates. Organic Letters, 2010, 12, 3262-3265.	4.6	89
64	Switch of Selectivity in the Synthesis of αâ€Methyleneâ€Î³â€Lactones: Palladium atalyzed Intermolecular Carboesterification of Alkenes with Alkynes. Angewandte Chemie - International Edition, 2012, 51, 5696-5700.	13.8	89
65	Chemoselective Synthesis of Unsymmetrical Internal Alkynes or Vinyl Sulfones ⟨i⟩via⟨ i⟩ Palladiumâ€Catalyzed Crossâ€Coupling Reaction of Sodium Sulfinates with Alkynes. Advanced Synthesis and Catalysis, 2014, 356, 2029-2039.	4.3	89
66	Hydrogenâ€Transferâ€Mediated αâ€Functionalization of 1,8â€Naphthyridines by a Strategy Overcoming the Overâ€Hydrogenation Barrier. Angewandte Chemie - International Edition, 2017, 56, 14232-14236.	13.8	89
67	Polystyreneâ€Supported Nâ€Heterocyclic Carbene–Silver Complexes as Robust and Efficient Catalysts for the Reaction of Carbon Dioxide and Propargylic Alcohols. Advanced Synthesis and Catalysis, 2013, 355, 2019-2028.	4.3	87
68	A Novel Ruthenium-Catalyzed Dehydrogenative Synthesis of 2-Arylquinazolines from 2-Aminoaryl Methanols and Benzonitriles. Organic Letters, 2014, 16, 6028-6031.	4.6	87
69	Efficient synthesis of quinoxalines from 2-nitroanilines and vicinal diols via a ruthenium-catalyzed hydrogen transfer strategy. Green Chemistry, 2015, 17, 279-284.	9.0	87
70	Palladium-Catalyzed Intermolecular Aerobic Oxidative Cyclization of 2-Ethynylanilines with Isocyanides: Regioselective Synthesis of 4-Halo-2-aminoquinolines. Journal of Organic Chemistry, 2013, 78, 10319-10328.	3.2	86
71	Practical synthesis of pyrazoles via a copper-catalyzed relay oxidation strategy. Chemical Communications, 2014, 50, 14793-14796.	4.1	86
72	Reusable Polymerâ€Supported Amineâ€Copper Catalyst for the Formation of αâ€Alkylidene Cyclic Carbonates in Supercritical Carbon Dioxide. European Journal of Organic Chemistry, 2008, 2008, 2309-2312.	2.4	85

#	Article	IF	Citations
73	Transition-Metal-Free Homocoupling of 1-Haloalkynes: A Facile Synthesis of Symmetrical 1,3-Diynes. Journal of Organic Chemistry, 2010, 75, 6700-6703.	3.2	85
74	Cu(I)-Catalyzed Transannulation of <i>N</i> -Heteroaryl Aldehydes or Ketones with Alkylamines via C(sp ³)â€"H Amination. Organic Letters, 2014, 16, 6232-6235.	4.6	84
75	Ruthenium(II)-Catalyzed Direct Addition of Indole/Pyrrole C2–H Bonds to Alkynes. Journal of Organic Chemistry, 2014, 79, 9472-9480.	3.2	84
76	Iron-Catalyzed Synthesis of 2 <i>H</i> -Imidazoles from Oxime Acetates and Vinyl Azides under Redox-Neutral Conditions. Organic Letters, 2017, 19, 1370-1373.	4.6	84
77	Efficient synthesis of tertiary \hat{l} ±-hydroxy ketones through CO ₂ -promoted regioselective hydration of propargylic alcohols. Green Chemistry, 2014, 16, 3729-3733.	9.0	83
78	Highly Chemo―and Stereoselective Catalystâ€Controlled Allylic Câ^'H Insertion and Cyclopropanation Using Donor/Donor Carbenes. Angewandte Chemie - International Edition, 2018, 57, 12405-12409.	13.8	83
79	Silver-catalyzed activation of internal propargylic alcohols in supercritical carbon dioxide: efficient and eco-friendly synthesis of 4-alkylidene-1,3-oxazolidin-2-ones. Tetrahedron Letters, 2009, 50, 60-62.	1.4	82
80	Iron-Catalyzed Domino Process for the Synthesis of \hat{l}_{\pm} -Carbonyl Furan Derivatives via One-Pot Cyclization Reaction. Journal of Organic Chemistry, 2010, 75, 5347-5350.	3.2	82
81	Dual Catalysis: Proton/Metal-Catalyzed Tandem Benzofuran Annulation/Carbene Transfer Reaction. Organic Letters, 2016, 18, 1322-1325.	4.6	82
82	Silverâ€Assisted Difunctionalization of Terminal Alkynes: Highly Regio―and Stereoselective Synthesis of Bromofluoroalkenes. Advanced Synthesis and Catalysis, 2012, 354, 2683-2688.	4.3	80
83	Synthesis of 2-Aminobenzoxazoles and 3-Aminobenzoxazines via Palladium-Catalyzed Aerobic Oxidation of <i>o</i> -Aminophenols with Isocyanides. Journal of Organic Chemistry, 2013, 78, 3009-3020.	3.2	78
84	Co(II)-Catalyzed Regioselective Cross-Dehydrogenative Coupling of Aryl C–H Bonds with Carboxylic Acids. Organic Letters, 2017, 19, 4279-4282.	4.6	76
85	Highly efficient two-step synthesis of (Z)-2-halo-1-iodoalkenes from terminal alkynes. Chemical Communications, 2010, 46, 8049.	4.1	75
86	Synthesis of sulfonamides via I ₂ -mediated reaction of sodium sulfinates with amines in an aqueous medium at room temperature. Green Chemistry, 2015, 17, 1400-1403.	9.0	75
87	Copperâ€Catalyzed Aerobic Oxidative Transformation of Ketoneâ€Derived <i>N</i> à€Tosyl Hydrazones: An Entry to Alkynes. Angewandte Chemie - International Edition, 2014, 53, 14485-14489.	13.8	74
88	Pd-catalyzed and CsF-promoted reaction of bromoalkynes with isocyanides: regioselective synthesis of substituted 5-iminopyrrolones. Chemical Communications, 2012, 48, 3545.	4.1	73
89	Assembly of 3-Sulfenylbenzofurans and 3-Sulfenylindoles by Palladium-Catalyzed Cascade Annulation/Arylthiolation Reaction. Journal of Organic Chemistry, 2016, 81, 2875-2887.	3.2	73
90	Synthesis of enaminones via copper-catalyzed decarboxylative coupling reaction under redox-neutral conditions. Chemical Communications, 2017, 53, 3228-3231.	4.1	73

#	Article	IF	CITATIONS
91	Copperâ€Catalyzed C(sp ³)â^'H/C(sp ³)â^'H Crossâ€Dehydrogenative Coupling with Internal Oxidants: Synthesis of 2â€Trifluoromethylâ€Substituted Dihydropyrrolâ€2â€ols. Angewandte Chemie - International Edition, 2017, 56, 13324-13328.	13.8	72
92	Palladium-catalyzed Heck-type reaction of oximes with allylic alcohols: synthesis of pyridines and azafluorenones. Chemical Communications, 2016, 52, 84-87.	4.1	71
93	MOF-Derived Nanocobalt for Oxidative Functionalization of Cyclic Amines to Quinazolinones with 2-Aminoarylmethanols. ACS Catalysis, 2018, 8, 5869-5874.	11.2	71
94	Facile Synthesis of (<i>E</i>)-Alkenyl Aldehydes from Allyl Arenes or Alkenes via Pd(II)-Catalyzed Direct Oxygenation of Allylic Câ ⁻ H Bond. Organic Letters, 2011, 13, 992-994.	4.6	70
95	Practical Synthesis of Polysubstituted Imidazoles <i>via</i> lodine―Catalyzed Aerobic Oxidative Cyclization of Aryl Ketones and Benzylamines. Advanced Synthesis and Catalysis, 2013, 355, 170-180.	4.3	70
96	Palladium-Catalyzed Oxidative Coupling of Aromatic Primary Amines and Alkenes under Molecular Oxygen: Stereoselective Assembly of (<i>Z</i>)-Enamines. Journal of Organic Chemistry, 2013, 78, 11155-11162.	3.2	70
97	Pd-Catalyzed Highly Regio- and Stereoselective Formation of C–C Double Bonds: An Efficient Method for the Synthesis of Benzofuran-, Dihydrobenzofuran-, and Indoline-Containing Alkenes. Journal of Organic Chemistry, 2015, 80, 7456-7467.	3.2	69
98	Macroscopic Organohydrogel Hybrid from Rapid Adhesion between Dynamic Covalent Hydrogel and Organogel. ACS Macro Letters, 2015, 4, 467-471.	4.8	69
99	Silverâ€Catalyzed Oneâ€Pot Cyclization Reaction of Electron―Deficient Alkynes and 2â€Ynâ€1â€ols: An Efficien Domino Process to Polysubstituted Furans. Advanced Synthesis and Catalysis, 2010, 352, 143-152.	t _{4.3}	68
100	Palladium-catalyzed tandem reaction of o-aminophenols, bromoalkynes and isocyanides to give 4-amine-benzo[b][1,4]oxazepines. Chemical Communications, 2012, 48, 11446.	4.1	68
101	Bioinspired Intramolecular Diels–Alder Reaction: A Rapid Access to the Highlyâ€6trained Cyclopropaneâ€Fused Polycyclic Skeleton. Chemistry - A European Journal, 2014, 20, 2425-2430.	3.3	68
102	A Novel Straightforward Synthesis of 2,4-Disubstituted-1,3,5-triazines via Aerobic Copper-Catalyzed Cyclization of Amidines with DMF. Organic Letters, 2014, 16, 3540-3543.	4.6	68
103	Palladium-Catalyzed Sequential Nucleophilic Addition/Oxidative Annulation of Bromoalkynes with Benzoic Acids To Construct Functionalized Isocoumarins. Organic Letters, 2017, 19, 4440-4443.	4.6	68
104	Mechanistic Insight into Transition Metal-Catalyzed Reaction of Enynal/Enynone with Alkenes: Metal-Dependent Reaction Pathway. Journal of Organic Chemistry, 2014, 79, 6113-6122.	3.2	67
105	Access to Thiazole via Copper-Catalyzed [3+1+1]-Type Condensation Reaction under Redox-Neutral Conditions. Journal of Organic Chemistry, 2016, 81, 11461-11466.	3.2	67
106	A novel iridium/acid co-catalyzed transfer hydrogenative $C(sp < sup > 3 < /sup >)$ â \in "H bond alkylation to access functionalized N-heteroaromatics. Chemical Communications, 2016, 52, 9359-9362.	4.1	67
107	1,1â€Diphenylvinylsulfide as a Functional AlEgen Derived from the Aggregation ausedâ€Quenching Molecule 1,1â€Diphenylethene through Simple Thioetherification. Angewandte Chemie - International Edition, 2020, 59, 2338-2343.	13.8	67
108	Efficient synthesis of \hat{l}^2 -oxopropylcarbamates in compressed CO2 without any additional catalyst and solvent. Green Chemistry, 2007, 9, 1284.	9.0	66

#	Article	IF	CITATIONS
109	Highly regioselective palladium-catalysed oxidative allylic C–H carbonylation of alkenes. Chemical Communications, 2011, 47, 12224.	4.1	66
110	Csp ³ â€"P versus Csp ² â€"P Bond Formation: Catalyst-Controlled Highly Regioselective Tandem Reaction of Ene-Yne-Ketones with <i>H</i> -Phosphonates. Organic Letters, 2016, 18, 400-403.	4.6	66
111	Synthesis of Sulfonylated Lactones via Ag-Catalyzed Cascade Sulfonylation/Cyclization of 1,6-Enynes with Sodium Sulfinates. Journal of Organic Chemistry, 2017, 82, 1224-1230.	3.2	65
112	Iron-catalyzed Benzannulation Reactions of 2-Alkylbenzaldehydes and Alkynes Leading to Naphthalene Derivatives. Organic Letters, 2013, 15, 898-901.	4.6	64
113	NBS-promoted halosulfonylation of terminal alkynes: highly regio- and stereoselective synthesis of (E)- \hat{l}^2 -halo vinylsulfones. Organic Chemistry Frontiers, 2014, 1, 361-364.	4.5	64
114	Palladium-Catalyzed Oxidative Annulation of Acrylic Acid and Amide with Alkynes: A Practical Route to Synthesize α-Pyrones and Pyridones. Organic Letters, 2014, 16, 2146-2149.	4.6	64
115	Palladium-Catalyzed C–H Functionalization of Aromatic Oximes: A Strategy for the Synthesis of Isoquinolines. Journal of Organic Chemistry, 2016, 81, 1401-1409.	3.2	64
116	Palladium-Catalyzed Oxidative Allylation of Sulfoxonium Ylides: Regioselective Synthesis of Conjugated Dienones. Organic Letters, 2019, 21, 872-875.	4.6	64
117	A Novel Entry to Spirofurooxindoles Involving Tandem Dearomatization of Furan Ring and Intramolecular Friedel– Crafts Reaction. Advanced Synthesis and Catalysis, 2011, 353, 1961-1965.	4.3	63
118	A Novel Entry to Functionalized Benzofurans and Indoles <i>via</i> Palladium(0)-Catalyzed Arylative Dearomatization of Furans. Organic Letters, 2012, 14, 1098-1101.	4.6	63
119	Copperâ€Promoted Coupling of Carbon Dioxide and Propargylic Alcohols: Expansion of Substrate Scope and Trapping of Vinyl Copper Intermediate. Advanced Synthesis and Catalysis, 2015, 357, 2556-2565.	4.3	63
120	A New Type of Lewis Acid–Base Bifunctional M(salphen) (M=Zn, Cu and Ni) Catalysts for CO ₂ Fixation. ChemCatChem, 2015, 7, 1535-1538.	3.7	62
121	Silverâ€Catalyzed Regio―and Stereoselective Thiocyanation of Haloalkynes: Access to (<i>Z</i>)â€Vinyl Thiocyanates. Advanced Synthesis and Catalysis, 2017, 359, 1208-1212.	4.3	62
122	Goldâ€Catalyzed Reactions of Enynals/Enynones with Norbornenes: Generation and Trapping of Cyclic <i>o</i> â€Quinodimethanes (<i>o</i> â€QDMs). Chemistry - A European Journal, 2013, 19, 4695-4700.	3.3	61
123	Ruthenium-Catalyzed Dehydrogenative \hat{I}^2 -Benzylation of 1,2,3,4-Tetrahydroquinolines with Aryl Aldehydes: Access to Functionalized Quinolines. Organic Letters, 2016, 18, 3174-3177.	4.6	61
124	Hydrogen-Transfer-Mediated Direct \hat{l}^2 -Alkylation of Aryl-1,8-naphthyridines with Alcohols under Transition Metal Catalyst Free Conditions. Organic Letters, 2016, 18, 724-727.	4.6	61
125	Visible light-promoted synthesis of organic carbamates from carbon dioxide under catalyst- and additive-free conditions. Green Chemistry, 2020, 22, 4890-4895.	9.0	61
126	Palladium-catalyzed acetoxylation of sp3 C–H bonds using molecular oxygen. Chemical Communications, 2010, 46, 7259.	4.1	60

#	Article	IF	CITATIONS
127	Palladium-Catalyzed Intermolecular Aerobic Annulation of o-Alkenylanilines and Alkynes for Quinoline Synthesis. Organic Letters, 2016, 18, 3514-3517.	4.6	60
128	An efficient ruthenium-catalyzed dehydrogenative synthesis of 2,4,6-triaryl-1,3,5-triazines from aryl methanols and amidines. Organic and Biomolecular Chemistry, 2014, 12, 2761-2768.	2.8	59
129	Nanoâ€Cu ₂ Oâ€Catalyzed Formation of CC and CO Bonds: Oneâ€Pot Domino Process for Regioselective Synthesis of αâ€Carbonyl Furans from Electronâ€Deficient Alkynes and 2â€Ynâ€Îâ€ols. Chemistry A European Journal, 2010, 16, 10553-10559.	8.3	58
130	Highly Selective \hat{I}^2 -Hydride Elimination in Pd-Catalyzed Decarboxylative Heck-Type Reaction. Organic Letters, 2013, 15, 2330-2333.	4.6	58
131	A [4 + 1] Cyclative Capture Access to Indolizines via Cobalt(III)-Catalyzed Csp ² –H Bond Functionalization. Organic Letters, 2016, 18, 4742-4745.	4.6	58
132	A Fourâ€Component Reaction Strategy for Pyrimidine Carboxamide Synthesis. Angewandte Chemie - International Edition, 2017, 56, 1289-1293.	13.8	58
133	The first porphyrin–salen based chiral metal–organic framework for asymmetric cyanosilylation of aldehydes. Chemical Communications, 2017, 53, 8223-8226.	4.1	58
134	A Route to Polysubstituted Aziridines from Carbenes and Imines through a Nondiazo Approach. Organic Letters, 2016, 18, 5208-5211.	4.6	57
135	Iridium(III)â€Catalyzed Regioselective Intermolecular Unactivated Secondary Csp ³ â^'H Bond Amidation. Angewandte Chemie - International Edition, 2016, 55, 11897-11901.	13.8	57
136	Development of Isostructural Porphyrin–Salen Chiral Metal–Organic Frameworks through Postsynthetic Metalation Based on Single-Crystal to Single-Crystal Transformation. Inorganic Chemistry, 2018, 57, 1203-1212.	4.0	57
137	Development, Scope and Mechanisms of Multicomponent Reactions of Asymmetric Electronâ€Deficient Alkynes with Amines and Formaldehyde. Chemistry - A European Journal, 2008, 14, 11623-11633.	3.3	56
138	Palladium-catalyzed regioselective azidation of allylic C–H bonds under atmospheric pressure of dioxygen. Organic and Biomolecular Chemistry, 2014, 12, 3340-3343.	2.8	56
139	Calcium carbide as the acetylide source: transition-metal-free synthesis of substituted pyrazoles via [1,5]-sigmatropic rearrangements. Green Chemistry, 2016, 18, 6445-6449.	9.0	56
140	Pd-Catalyzed Câ€"H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines. Chemical Communications, 2014, 50, 8370.	4.1	55
141	Copper-Catalyzed Oxysulfenylation of Enolates with Sodium Sulfinates: A Strategy To Construct Sulfenylated Cyclic Ethers. Organic Letters, 2016, 18, 1158-1161.	4.6	55
142	Nucleopalladation Triggering the Oxidative Heck Reaction: A General Strategy to Diverse \hat{l}^2 -Indole Ketones. Organic Letters, 2013, 15, 5940-5943.	4.6	54
143	Pd(II)-Catalyzed Sequential C–C/C–O Bond Formations: A New Strategy to Construct Trisubstituted Furans. Organic Letters, 2013, 15, 1838-1841.	4.6	54
144	Water-Triggered, Counter-Anion-Controlled, and Silverâ [^] Phosphines Complex-Catalyzed Stereoselective Cascade Alkynylation/Cyclization of Terminal Alkynes with Salicylaldehydes. Journal of Organic Chemistry, 2009, 74, 3378-3383.	3.2	53

#	Article	IF	CITATIONS
145	Palladiumâ€Catalyzed Alkenylation of 1,2,3â€Trizoles with Terminal Conjugated Alkenes by Direct C–H Bond Functionalization. European Journal of Organic Chemistry, 2010, 2010, 1227-1230.	2.4	53
146	Palladium $\hat{a} \in \mathbb{C}$ atalyzed CC Coupling of Aryl Halides with Isocyanides: An Alternative Method for the Stereoselective Synthesis of $(3 < i > E < i >) \hat{a} \in \mathbb{C}$ (Imino)isoindolin $\hat{a} \in \mathbb{C}$ and $(3 < i > E < i >) \hat{a} \in \mathbb{C}$ (Imino)thiaisoindoline 1,1 $\hat{a} \in \mathbb{C}$ (Dioxides. Advanced Synthesis and Catalysis, 2012, 354, 2288-2300.	4.3	53
147	Palladium-catalyzed Csp2–H carbonylation of aromatic oximes: selective access to benzo[d][1,2]oxazin-1-ones and 3-methyleneisoindolin-1-ones. Chemical Communications, 2015, 51, 6843-6846.	4.1	53
148	Diastereospecific and Enantioselective Access to Dispirooxindoles from Furfurylcyclobutanols by Means of a Pd-Catalyzed Arylative Dearomatization/Ring Expansion Cascade. Organic Letters, 2016, 18, 6440-6443.	4.6	53
149	Copperâ€Catalyzed C(sp ³)â^'H/C(sp ³)â^'H Crossâ€Dehydrogenative Coupling with Internal Oxidants: Synthesis of 2â€Trifluoromethylâ€Substituted Dihydropyrrolâ€2â€ols. Angewandte Chemie, 2017, 129, 13509-13513.	2.0	53
150	Single C(sp ³)–F Bond Activation in a CF ₃ Group: <i> pso</i> -Defluorooxylation of (Trifluoromethyl)alkenes with Oximes. Organic Letters, 2019, 21, 1130-1133.	4.6	53
151	Palladium atalyzed Oxidation Reactions of Alkenes with Green Oxidants. ChemSusChem, 2019, 12, 2911-2935.	6.8	53
152	Acetoxypalladation of unactivated alkynes and capture with alkenes to give 1-acetoxy-1,3-dienes taking dioxygen as terminal oxidant. Chemical Communications, 2011, 47, 1003-1005.	4.1	52
153	Palladium-Catalyzed Sequential C–N/C–O Bond Formations: Synthesis of Oxazole Derivatives from Amides and Ketones. Organic Letters, 2014, 16, 5906-5909.	4.6	52
154	Palladium-catalyzed aerobic oxidative allylic C–H arylation of alkenes with polyfluorobenzenes. Chemical Communications, 2014, 50, 7202-7204.	4.1	52
155	Ruthenium-Catalyzed Straightforward Synthesis of 1,2,3,4-Tetrahydronaphthyridines via Selective Transfer Hydrogenation of Pyridyl Ring with Alcohols. Organic Letters, 2015, 17, 4054-4057.	4.6	52
156	Palladium-Catalyzed Multicomponent Reaction (MCR) of Propargylic Carbonates with Isocyanides. Organic Letters, 2016, 18, 5924-5927.	4.6	52
157	Palladium-Catalyzed Allylic C–H Oxidative Annulation for Assembly of Functionalized 2-Substituted Quinoline Derivatives. Journal of Organic Chemistry, 2016, 81, 12189-12196.	3.2	52
158	Regioselective Synthesis of 3-Trifluoromethylpyrazole by Coupling of Aldehydes, Sulfonyl Hydrazides, and 2-Bromo-3,3,3-trifluoropropene. Organic Letters, 2020, 22, 809-813.	4.6	52
159	l-Proline-catalyzed synthesis of highly functionalized multisubstituted 1,4-dihydropyridines. Organic and Biomolecular Chemistry, 2009, 7, 4943.	2.8	51
160	An Efficient Route to Polysubstituted Tetrahydronaphthols: Silverâ€Catalyzed [4+2] Cyclization of 2â€Alkylbenzaldehydes and Alkenes. Angewandte Chemie - International Edition, 2012, 51, 10861-10865.	13.8	51
161	Facile Synthesis of 3a,6a-Dihydro-furo[2,3-b]furans and Polysubstituted Furans Involving Dearomatization of Furan Ring via Electrocyclic Ring-Closure. Organic Letters, 2012, 14, 616-619.	4.6	51
162	Palladium-Catalyzed Intermolecular Oxyvinylcyclization of Alkenes with Alkynes: An Approach to 3-Methylene \hat{l}^3 -Lactones and Tetrahydrofurans. Journal of Organic Chemistry, 2014, 79, 10734-10742.	3.2	51

#	Article	IF	CITATIONS
163	Palladium-Catalyzed Oxidative Carbonylation for the Synthesis of Polycyclic Aromatic Hydrocarbons (PAHs). Journal of Organic Chemistry, 2014, 79, 11246-11253.	3.2	50
164	Baseâ€Promoted Coupling of Carbon Dioxide, Amines, and Diaryliodonium Salts: A Phosgene―and Metalâ€Free Route to <i>O</i> â€Aryl Carbamates. Chemistry - A European Journal, 2015, 21, 14314-14318.	3.3	50
165	Access to αâ€Amino Acid Esters through Palladiumâ€Catalyzed Oxidative Amination of Vinyl Ethers with Hydrogen Peroxide as the Oxidant and Oxygen Source. Angewandte Chemie - International Edition, 2017, 56, 15926-15930.	13.8	50
166	Copper-catalyzed coupling of oxime acetates and aryldiazonium salts: an azide-free strategy toward <i>N</i> -2-aryl-1,2,3-triazoles. Organic Chemistry Frontiers, 2018, 5, 571-576.	4.5	50
167	Enhanced Activity and Enantioselectivity of Henry Reaction by the Postsynthetic Reduction Modification for a Chiral Cu(salen)-Based Metal–Organic Framework. Inorganic Chemistry, 2018, 57, 11986-11994.	4.0	50
168	Aerobic Copper-Catalyzed Halocyclization of Methyl $\langle i \rangle N \langle i \rangle$ -Heteroaromatics with Aliphatic Amines: Access to Functionalized Imidazo-Fused $\langle i \rangle N \langle i \rangle$ -Heterocycles. Journal of Organic Chemistry, 2016, 81, 9939-9946.	3.2	49
169	An annulative transfer hydrogenation strategy enables straightforward access to tetrahydro fused-pyrazine derivatives. Chemical Communications, 2016, 52, 10636-10639.	4.1	49
170	Palladium-Catalyzed Fluoroalkylative Cyclization of Olefins. Organic Letters, 2017, 19, 1008-1011.	4.6	49
171	Copper-catalyzed synthesis of thiazol-2-yl ethers from oxime acetates and xanthates under redox-neutral conditions. Chemical Communications, 2018, 54, 3767-3770.	4.1	49
172	Recent advances in aminative difunctionalization of alkenes. Organic and Biomolecular Chemistry, 2021, 19, 3036-3054.	2.8	49
173	1,4-Phenylenediacetate-Based Ln MOFs - Synthesis, Structures, Luminescence, and Catalytic Activity. European Journal of Inorganic Chemistry, 2011, 2011, 4369-4376.	2.0	48
174	Ligand-free coupling of phenols and alcohols with aryl halides by a recyclable heterogeneous copper catalyst. RSC Advances, 2012, 2, 5528.	3.6	48
175	Highly Stereoselective Ruthenium(II)-Catalyzed Direct C2- <i>syn</i> -Alkenylation of Indoles with Alkynes. Organic Letters, 2015, 17, 1349-1352.	4.6	48
176	Transition-Metal-Free Cyclopropanation of 2-Aminoacrylates with $\langle i \rangle N \langle i \rangle$ -Tosylhydrazones: A General Route to Cyclopropane Î \pm -Amino Acid with Contiguous Quaternary Carbon Centers. Organic Letters, 2016, 18, 1470-1473.	4.6	48
177	Palladium-catalyzed selective aminoamidation and aminocyanation of alkenes using isonitrile as amide and cyanide sources. Chemical Communications, 2014, 50, 15348-15351.	4.1	47
178	Palladium-Catalyzed Redox-Neutral N–O/C(sp ³)–H Functionalization of Aryl Oximes with Isocyanides. Organic Letters, 2017, 19, 678-681.	4.6	47
179	lodine-catalyzed cascade annulation of alkynes with sodium arylsulfinates: assembly of 3-sulfenylcoumarin and 3-sulfenylquinolinone derivatives. Organic Chemistry Frontiers, 2017, 4, 1751-1756.	4.5	47
180	Regioselective Câ€"H Bond Alkynylation of Carbonyl Compounds through Ir(III) Catalysis. Journal of Organic Chemistry, 2017, 82, 13003-13011.	3.2	47

#	Article	IF	CITATIONS
181	Highly Stable Chiral Zirconium–Metallosalen Frameworks for CO ₂ Conversion and Asymmetric C–H Azidation. ACS Applied Materials & Interfaces, 2018, 10, 36047-36057.	8.0	47
182	Carbon–Carbon Bond Formation: Palladiumâ€Catalyzed Oxidative Crossâ€Coupling of <i>N</i> â€Tosylhydrazones with Allylic Alcohols. Chemistry - A European Journal, 2012, 18, 10497-10500.	3.3	46
183	Synergistic Catalysis: Metal/Protonâ€Catalyzed Cyclization of Alkynones Toward Bicyclo[3. <i>n</i>).1]alkanones. Angewandte Chemie - International Edition, 2015, 54, 9414-9418.	13.8	46
184	Palladium-Catalyzed Tandem Annulation: A Strategy To Construct 2,3-Difunctionalized Benzofuran Derivatives in Ionic Liquids. Journal of Organic Chemistry, 2015, 80, 3870-3879.	3.2	46
185	Transition-Metal-Free Tandem Chlorocyclization of Amines with Carboxylic Acids: Access to Chloroimidazo[1,2-α]pyridines. Organic Letters, 2015, 17, 3998-4001.	4.6	45
186	Convenient Synthesis of Quinolines from αâ€2â€Nitroaryl Alcohols and Alcohols via a Rutheniumâ€catalyzed Hydrogen Transfer Strategy. ChemCatChem, 2015, 7, 349-353.	3.7	45
187	Palladium-catalyzed dearomatizing 2,5-alkoxyarylation of furan rings: diastereospecific access to spirooxindoles. Chemical Communications, 2016, 52, 9550-9553.	4.1	45
188	Synthesis of 2,3-Difunctionalized Benzofuran Derivatives through Palladium-Catalyzed Double Isocyanide Insertion Reaction. Organic Letters, 2018, 20, 3500-3503.	4.6	45
189	MOF-Derived Subnanometer Cobalt Catalyst for Selective Câ€"H Oxidative Sulfonylation of Tetrahydroquinoxalines with Sodium Sulfinates. ACS Catalysis, 2019, 9, 2718-2724.	11,2	45
190	Highly Chemoselective Palladium-Catalyzed Cross-Trimerization between Alkyne and Alkenes Leading to 1,3,5-Trienes or 1,2,4,5-Tetrasubstituted Benzenes with Dioxygen. Journal of Organic Chemistry, 2010, 75, 8279-8282.	3.2	44
191	PdCl ₂ (HNMe ₂) ₂ -Catalyzed Highly Selective Cross [2 + 2 + 2] Cyclization of Alkynoates and Alkenes under Molecular Oxygen. Journal of Organic Chemistry, 2010, 75, 1321-1324.	3.2	44
192	Palladium-Catalyzed Coupling of Alkynes with Unactivated Alkenes in Ionic Liquids: A Regio- and Stereoselective Synthesis of Functionalized 1,6-Dienes and Their Analogues. Journal of Organic Chemistry, 2013, 78, 12477-12486.	3.2	44
193	A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities. Dalton Transactions, 2017, 46, 7821-7832.	3.3	44
194	Copper-catalyzed cyanothiolation to incorporate a sulfur-substituted quaternary carbon center. Chemical Science, 2017, 8, 7047-7051.	7.4	44
195	Copper-Catalyzed Synthesis of Substituted Quinazolines from Benzonitriles and 2-Ethynylanilines via Carbon–Carbon Bond Cleavage Using Molecular Oxygen. Journal of Organic Chemistry, 2018, 83, 5458-5466.	3.2	44
196	Controllable assembly of the benzothiazole framework using a Cî€,C triple bond as a one-carbon synthon. Chemical Communications, 2018, 54, 1742-1745.	4.1	44
197	Recent advances in metal catalyzed or mediated cyclization/functionalization of alkynes to construct isoxazoles. Organic Chemistry Frontiers, 2020, 7, 2325-2348.	4.5	44
198	Palladium-catalyzed 1,4-addition of terminal alkynes to unsaturated carbonyl compounds promoted by electron-rich ligands. Organic and Biomolecular Chemistry, 2008, 6, 2969.	2.8	43

#	Article	IF	Citations
199	Efficient access to 1H-indazoles via copper-catalyzed cross-coupling/cyclization of 2-bromoaryl oxime acetates and amines. Organic Chemistry Frontiers, 2014, 1, 1295-1298.	4.5	43
200	Rh(<scp>iii</scp>)-catalyzed chelation-assisted intermolecular carbenoid functionalization of α-imino Csp ³ â€"H bonds. Chemical Communications, 2015, 51, 15328-15331.	4.1	43
201	Transition Metal Free Intermolecular Direct Oxidative C–N Bond Formation to Polysubstituted Pyrimidines Using Molecular Oxygen as the Sole Oxidant. Journal of Organic Chemistry, 2016, 81, 5538-5546.	3.2	43
202	Palladiumâ€Catalyzed Cascade Cyclization/Alkynylation Reactions. Chemistry - an Asian Journal, 2019, 14, 4114-4128.	3.3	43
203	Synthesis of δ-Bromo γ,δ-Unsaturated Carbonyl Compounds via Palladium-Catalyzed Bromoalkylation of Alkynoates. Journal of Organic Chemistry, 2012, 77, 2029-2034.	3.2	42
204	Divergent Syntheses of Isoquinolines and Indolo $[1,2-\langle i\rangle a\langle i\rangle]$ quinazolines by Copper-Catalyzed Cascade Annulation from 2-Haloaryloxime Acetates with Active Methylene Compounds and Indoles. Journal of Organic Chemistry, 2016, 81, 2053-2061.	3.2	42
205	A copper-catalyzed oxidative coupling reaction of arylboronic acids, amines and carbon dioxide using molecular oxygen as the oxidant. Green Chemistry, 2017, 19, 1642-1646.	9.0	42
206	Synthesis of Polysubstituted 3-Amino Pyrroles via Palladium-Catalyzed Multicomponent Reaction. Journal of Organic Chemistry, 2017, 82, 3581-3588.	3.2	42
207	One-Pot Synthesis of Spirocyclic or Fused Pyrazoles from Cyclic Ketones: Calcium Carbide as the Carbon Source in Ring Expansion. Journal of Organic Chemistry, 2017, 82, 9479-9486.	3.2	42
208	Novel palladium-catalyzed cascade carboxylative annulation to construct functionalized \hat{I}^3 -lactones in ionic liquids. Chemical Communications, 2014, 50, 1381-1383.	4.1	41
209	Copper-Mediated [3 + 2] Oxidative Cyclization Reaction of <i>N</i> -Tosylhydrazones and \hat{l}^2 -Ketoesters: Synthesis of 2,3,5-Trisubstituted Furans. Journal of Organic Chemistry, 2016, 81, 5014-5020.	3.2	41
210	Aerobic Copper-Catalyzed Synthesis of Benzimidazoles from Diaryl- and Alkylamines via Tandem Triple C–H Aminations. ACS Catalysis, 2018, 8, 2242-2246.	11.2	41
211	Palladium-catalyzed regioselective hydroboration of aryl alkenes with B ₂ pin ₂ . Chemical Communications, 2018, 54, 1770-1773.	4.1	41
212	Recent Advances in Silverâ€Catalyzed Transformations of Electronically Unbiased Alkenes and Alkynes. ChemCatChem, 2020, 12, 5034-5050.	3.7	41
213	Palladium-Catalyzed Carbonation–Diketonization of Terminal Aromatic Alkenes via Carbon–Nitrogen Bond Cleavage for the Synthesis of 1,2-Diketones. Journal of Organic Chemistry, 2011, 76, 6958-6961.	3.2	40
214	Efficient conversion of CO2 with olefins into cyclic carbonates via a synergistic action of I2 and base electrochemically generated in situ. Electrochemistry Communications, 2013, 34, 242-245.	4.7	40
215	Lewis acid–base bifunctional aluminum–salen catalysts: synthesis of cyclic carbonates from carbon dioxide and epoxides. RSC Advances, 2016, 6, 3243-3249.	3.6	40
216	Catalytic Conversion of N-Heteroaromatics to Functionalized Arylamines by Merging Hydrogen Transfer and Selective Coupling. ACS Catalysis, 2020, 10, 5243-5249.	11.2	40

#	Article	IF	Citations
217	PS–BQ: an efficient polymer-supported cocatalyst for the Wacker reaction in supercritical carbon dioxide. Green Chemistry, 2005, 7, 582.	9.0	39
218	First Synthesis of 1â€Chlorovinyl Allenes via Palladiumâ€Catalyzed Allenylation of Alkynoates with Propargyl Alcohols. Chemistry - A European Journal, 2008, 14, 11305-11309.	3.3	39
219	Fluorescence properties of halogenated mono-hydroxyl corroles: the heavy-atom effects. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1221-1226.	0.8	39
220	Palladiumâ€Catalyzed Direct Oxidative CH Crossâ€Coupling of Azoarenes with Alcohols. Advanced Synthesis and Catalysis, 2014, 356, 519-527.	4.3	39
221	Gold-catalyzed tandem Diels–Alder reactions of enynals/enynones with alkenes: generation and trapping of cyclic o-QDMs. Organic and Biomolecular Chemistry, 2014, 12, 4104-4111.	2.8	39
222	A facile approach to synthesize 3,5-disubstituted-1,2,4-oxadiazoles via copper-catalyzed-cascade annulation of amidines and methylarenes. Chemical Communications, 2015, 51, 8857-8860.	4.1	39
223	Practical access to spiroacetal enol ethers via nucleophilic dearomatization of 2-furylmethylenepalladium halides generated by Pd-catalyzed coupling of furfural tosylhydrazones with aryl halides. Chemical Communications, 2014, 50, 8113.	4.1	38
224	Dual Role of H ₂ O ₂ in Palladium-Catalyzed Dioxygenation of Terminal Alkenes. Organic Letters, 2017, 19, 3354-3357.	4.6	38
225	Rh(III)-Catalyzed Carboamination of Propargyl Cycloalkanols with Arylamines via Csp ² –H/Csp ³ 倓Csp ³ Activation. Organic Letters, 2017, 19, 3474-3477	, 4.6	38
226	Copper-Catalyzed Unstrained C–C Single Bond Cleavage of Acyclic Oxime Acetates Using Air: An Internal Oxidant-Triggered Strategy toward Nitriles and Ketones. Journal of Organic Chemistry, 2018, 83, 14713-14722.	3.2	38
227	Double allylic defluorinative alkylation of 1,1-bisnucleophiles with (trifluoromethyl)alkenes: construction of all-carbon quaternary centers. Organic Chemistry Frontiers, 2020, 7, 1260-1265.	4.5	38
228	Iridium-Catalyzed Three-component Coupling Reaction of Carbon Dioxide, Amines, and Sulfoxonium Ylides. Organic Letters, 2019, 21, 1125-1129.	4.6	38
229	Palladiumâ€Catalyzed Crossâ€Coupling Reactions of Electronâ€Deficient Alkenes with <i>N</i> â€Tosylhydrazones: Functionalâ€Groupâ€Controlled CC Bond Construction. Chemistry - A European Journal, 2012, 18, 11884-11888.	3.3	37
230	Palladium-catalyzed aerobic oxidative double allylic C–H oxygenation of alkenes: a novel and straightforward route to α,β-unsaturated esters. Chemical Communications, 2015, 51, 9575-9578.	4.1	37
231	Transition-Metal-Free Diastereoselective Epoxidation of Trifluoromethylketones with <i>N</i> -Tosylhydrazones: Access to Tetrasubstituted Trifluoromethylated Oxiranes. Organic Letters, 2016, 18, 4008-4011.	4.6	37
232	Metal-Free Catalyzed Regioselective Allylic Trifluoromethanesulfonylation of Aromatic Allylic Alcohols with Sodium Trifluoromethanesulfinate. Journal of Organic Chemistry, 2016, 81, 1304-1309.	3.2	37
233	nBu ₄ NI-catalyzed oxidative cross-coupling of carbon dioxide, amines, and aryl ketones: access to O-β-oxoalkyl carbamates. Chemical Communications, 2017, 53, 2665-2668.	4.1	37
234	Palladium-catalyzed cascade reaction of haloalkynes with unactivated alkenes for assembly of functionalized oxetanes. Organic Chemistry Frontiers, 2017, 4, 373-376.	4.5	37

#	Article	IF	CITATIONS
235	Rh(<scp>iii</scp>)-catalyzed regioselective intermolecular <i>i>N</i> methylene Csp ³ –H bond carbenoid insertion. Chemical Science, 2018, 9, 985-989.	7.4	37
236	Base-Promoted Formal $[4+3]$ Annulation between $2 < i > - < / i >$ Fluorophenylacetylenes and Ketones: A Route to Benzoxepines. Journal of Organic Chemistry, 2016, 81, 912-919.	3.2	36
237	Palladium-catalyzed regioselective C–H alkynylation of indoles with haloalkynes: access to functionalized 7-alkynylindoles. Chemical Communications, 2019, 55, 13769-13772.	4.1	36
238	Palladium-Catalyzed Highly Regioselective Hydrocarboxylation of Alkynes with Carbon Dioxide. ACS Catalysis, 2020, 10, 7968-7978.	11.2	36
239	Aerobic Oxidative Coupling between Carbon Nucleophiles and Allylic Alcohols: A Strategy to Construct βâ€(Hetero)Aryl Ketones and Aldehydes through Hydrogen Migration. Chemistry - A European Journal, 2013, 19, 15462-15466.	3.3	35
240	Facile synthesis of dibranched conjugated dienes via palladium-catalyzed oxidative coupling of N-tosylhydrazones. Chemical Communications, 2013, 49, 9218.	4.1	35
241	Rapid Access to 2â€Methylene Tetrahydrofurans and γâ€Lactones: A Tandem Fourâ€Step Process. Angewandte Chemie - International Edition, 2016, 55, 2587-2591.	13.8	35
242	Synthesis of 2â€Alkylaminoquinolines and 1,8â€Naphthyridines by Successive Rutheniumâ€Catalyzed Dehydrogenative Annulation and <i>N</i> â€Alkylation Processes. Advanced Synthesis and Catalysis, 2017, 359, 1202-1207.	4.3	35
243	Selective Construction of 2-Substituted Benzothiazoles from <i>>o</i> lodoaniline Derivatives S ₈ and <i>N</i> -Tosylhydrazones. Journal of Organic Chemistry, 2018, 83, 2460-2466.	3.2	35
244	Direct Access to Trifluoromethyl-Substituted Carbamates from Carbon Dioxide via Copper-Catalyzed Cascade Cyclization of Enynes. Organic Letters, 2019, 21, 7386-7389.	4.6	35
245	Visible-Light-Mediated Sulfonylimination of Tertiary Amines with Sulfonylazides Involving C _{sp³} Bond Cleavage. Organic Letters, 2019, 21, 2804-2807.	4.6	35
246	Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. Chinese Journal of Catalysis, 2022, 43, 1598-1617.	14.0	35
247	Baseâ€Promoted Coupling of Carbon Dioxide, Amines, and <i>N</i> \$â€Tosylhydrazones: A Novel and Versatile Approach to Carbamates. Angewandte Chemie, 2015, 127, 3127-3130.	2.0	34
248	Transition-metal-free synthesis of \hat{l}^2 -trifluoromethylated enamines with trifluoromethanesulfinate. Chemical Communications, 2017, 53, 7473-7476.	4.1	34
249	Copper-Catalyzed Cyanation of <i>N</i> -Tosylhydrazones with Thiocyanate Salt as the "CN―Source. Journal of Organic Chemistry, 2017, 82, 7621-7627.	3.2	34
250	Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 17148-17152.	13.8	34
251	Solventâ \in Switched Oxidation Selectivities with O ₂ : Controlled Synthesis of $\hat{l}\pm\hat{a}\in$ Difluoro(thio)methylated Alcohols and Ketones. Angewandte Chemie - International Edition, 2021, 60, 12038-12045.	13.8	34
252	Cul/SnCl ₂ Coâ€Catalyzed Fourâ€Component Reaction of Ketones, Amines, Alkynes, and Carbon Dioxide. European Journal of Organic Chemistry, 2012, 2012, 5665-5667.	2.4	33

#	Article	IF	Citations
253	An efficient route to highly strained cyclobutenes: indium-catalyzed reactions of enynals with alkynes. Chemical Communications, 2015, 51, 5530-5533.	4.1	33
254	Palladium-Catalyzed Desulfitative Oxidative Coupling between Arenesulfinic Acid Salts and Allylic Alcohols: A Strategy for the Selective Construction of \hat{l}^2 -Aryl Ketones and Aldehydes. Journal of Organic Chemistry, 2015, 80, 8903-8909.	3.2	33
255	Synthesis of Polysubstituted Pyrroles via Pd-Catalyzed Oxidative Alkene C–H Bond Arylation and Amination. Journal of Organic Chemistry, 2015, 80, 1235-1242.	3.2	33
256	A four-component coupling reaction of carbon dioxide, amines, cyclic ethers and 3-triflyloxybenzynes for the synthesis of functionalized carbamates. Chemical Communications, 2018, 54, 5835-5838.	4.1	33
257	A sustainable oxidative esterification of thiols with alcohols by a cobalt nanocatalyst supported on doped carbon. Green Chemistry, 2018, 20, 1992-1997.	9.0	33
258	Direct Assembly of 4-Substituted Quinolines with Vinyl Azides as a Dual Synthon via C╀ and C–N Bond Cleavage. Organic Letters, 2018, 20, 4434-4438.	4.6	33
259	Copper-Catalyzed Oxidative Multicomponent Annulation Reaction for Direct Synthesis of Quinazolinones via an Imine-Protection Strategy. Organic Letters, 2019, 21, 4725-4728.	4.6	33
260	Recent advances in the synthesis of bridgehead (or ring-junction) nitrogen heterocycles <i>via</i> transition metal-catalyzed C–H bond activation and functionalization. Organic Chemistry Frontiers, 2020, 7, 3067-3099.	4.5	33
261	Asymmetric Total Synthesis of Dankasteronesâ€A and B and Periconiastoneâ€A Through Radical Cyclization. Angewandte Chemie - International Edition, 2021, 60, 5512-5518.	13.8	33
262	Two C(sp ³)–F Bond Activation in a CF ₃ Group: <i>ipso</i> -Defluorinative Amination Triggered 1,3-Diamination of (Trifluoromethyl)alkenes with Indoles, Carbazoles, Pyrroles, and Sulfonamides. Organic Letters, 2021, 23, 66-70.	4.6	33
263	A cascade approach to fused indolizinones through Lewis acid–copper(i) relay catalysis. Chemical Communications, 2013, 49, 3351.	4.1	32
264	Regioselective and Stereoselective Pd-Catalyzed Intramolecular Arylation of Furans: Access to Spirooxindoles and $5 < i > H < i> Furo[2,3-< i> c< i>]quinolin-4-ones. Journal of Organic Chemistry, 2016, 81, 9695-9706.$	3.2	32
265	Copper-mediated C–H cyanation of (hetero)arenes with ethyl (ethoxymethylene)cyanoacetate as a cyanating agent. Chemical Communications, 2017, 53, 7994-7997.	4.1	32
266	A palladium-catalyzed three-component cascade S-transfer reaction in ionic liquids. Green Chemistry, 2019, 21, 4084-4089.	9.0	32
267	A Three-Phase Four-Component Coupling Reaction: Selective Synthesis of o-Chloro Benzoates by KCl, Arynes, CO2, and Chloroalkanes. Organic Letters, 2019, 21, 345-349.	4.6	32
268	Straightforward access to novel indolo[2,3- <i>b</i>) indoles <i>via</i>) aerobic copper-catalyzed [3+2] annulation of diarylamines and indoles. Chemical Communications, 2020, 56, 2807-2810.	4.1	32
269	<i>syn</i> -Selective Construction of Fused Heterocycles by Catalytic Reductive Tandem Functionalization of N-Heteroarenes. ACS Catalysis, 2021, 11, 9271-9278.	11.2	32
270	Palladium-catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups in scCO2. Tetrahedron, 2008, 64, 508-514.	1.9	31

#	Article	IF	CITATIONS
271	Synthesis of thioamides via one-pot A ³ -coupling of alkynyl bromides, amines, and sodium sulfide. Organic and Biomolecular Chemistry, 2014, 12, 700-707.	2.8	31
272	Amide Oxygen-Assisted Palladium-Catalyzed Hydration of Alkynes. Journal of Organic Chemistry, 2015, 80, 7594-7603.	3.2	31
273	Access to polysubstituted indoles or benzothiophenes via palladium-catalyzed cross-coupling of furfural tosylhydrazones with 2-iodoanilines or 2-iodothiophenols. Chemical Communications, 2015, 51, 6126-6129.	4.1	31
274	2,5-Oxyarylation of Furans: Synthesis of Spiroacetals via Palladium-Catalyzed Aerobic Oxidative Coupling of Boronic Acids with α-Hydroxyalkylfurans. Organic Letters, 2016, 18, 3226-3229.	4.6	31
275	Palladiumâ€Catalyzed Cascade Cyclization/Alkynylation and Alkenylation of Alkynone <i>O</i> â€Methyloximes with Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 2707-2719.	4.3	31
276	Efficient Synthesis of î³,î´â€Alkynylâ€î²â€amino Acid Derivatives by a New Copperâ€Catalyzed Amineâ€Alkyneâ€A Addition Reaction. Advanced Synthesis and Catalysis, 2008, 350, 2226-2230.	Alkyne 4.3	30
277	Electrosyntheses of <i>α </i> â€Hydroxycarboxylic Acids from Carbon Dioxide and Aromatic Ketones Using Nickel as the Cathode. Chinese Journal of Chemistry, 2009, 27, 1464-1470.	4.9	30
278	An aerobic $[2+2+2]$ Cyclization via Chloropalladation: From 1,6-Diynes and Acrylates to Substituted Aromatic Carbocycles. Journal of Organic Chemistry, 2011, 76, 4759-4763.	3.2	30
279	Highly regio- and stereoselective synthesis of 1,3-enynes from unactivated ethylenes via palladium-catalyzed cross-coupling. Tetrahedron Letters, 2011, 52, 5736-5739.	1.4	30
280	Cu(II)-Promoted Transformations of \hat{l}_{\pm} -Thienylcarbinols into Spirothienooxindoles: Regioselective Halogenation of Dienyl Sulfethers Containing Electron-Rich Aryl Rings. Journal of Organic Chemistry, 2012, 77, 6365-6370.	3.2	30
281	Pd(II)-Catalyzed Highly Regio- and Stereoselective Assembly of C–C Double Bonds: An Efficient Method for the Synthesis of 2,4-Dihalo-1,3,5-trienes from Alkynols. Organic Letters, 2013, 15, 238-241.	4.6	30
282	Metal-catalyzed formation of 1,3-cyclohexadienes: a catalyst-dependent reaction. Organic and Biomolecular Chemistry, 2015, 13, 1225-1233.	2.8	30
283	Palladium-Catalyzed Denitrogenative Synthesis of Aryl Ketones from Arylhydrazines and Nitriles Using O2 as Sole Oxidant. Journal of Organic Chemistry, 2017, 82, 2211-2218.	3.2	30
284	Gold-catalyzed ring-expansion through acyl migration to afford furan-fused polycyclic compounds. Chemical Communications, 2017, 53, 2677-2680.	4.1	30
285	Ruthenium-Catalyzed Direct Synthesis of Semisaturated Bicyclic Pyrimidines via Selective Transfer Hydrogenation. Organic Letters, 2017, 19, 2730-2733.	4.6	30
286	Carbonylation Access to Phthalimides Using Self-Sufficient Directing Group and Nucleophile. Journal of Organic Chemistry, 2018, 83, 104-112.	3.2	30
287	Transfer hydrogenative <i>para</i> -selective aminoalkylation of aniline derivatives with N-heteroarenes <i>via</i> ruthenium/acid dual catalysis. Chemical Communications, 2018, 54, 9087-9090.	4.1	30
288	Hydrogen transfer-mediated selective dual Câ€"H alkylations of 2-alkylquinolines by doped TiO2-supported nanocobalt oxides. Journal of Catalysis, 2019, 377, 449-454.	6.2	30

#	Article	IF	Citations
289	Protonolysis of the carbon–palladium bond in palladium(II)-catalyzed enyne cyclization in imidazolium-type ionic liquids. Tetrahedron, 2008, 64, 2930-2937.	1.9	29
290	Palladiumâ€Catalyzed Intramolecular Sulfonamidation/Oxidation of Imines: Access to Multifunctional Benzimidazoles. Advanced Synthesis and Catalysis, 2011, 353, 2795-2804.	4.3	29
291	Copper (I) catalyzed synthesis of 1,3-oxazolidin-2-ones from alkynes, amines, and carbon dioxide under solvent-free conditions. Tetrahedron Letters, 2012, 53, 6999-7002.	1.4	29
292	Palladium-Catalyzed Synthesis of $1 < i > H < / i > - Indenes and Phthalimides via Isocyanide Insertion. Organic Letters, 2017, 19, 5818-5821.$	4.6	29
293	TBAI or Klâ€Promoted Oxidative Coupling of Enamines and <i>N</i> â€Tosylhydrazine: An Unconventional Method toward 1,5â€and 1,4,5â€Substituted 1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2018, 360, 3117-3123.	4.3	29
294	Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angewandte Chemie - International Edition, 2020, 59, 4670-4677.	13.8	29
295	Palladium(II)â€Catalyzed Highly Regio†and Stereoselective Synthesis of 2â€Chloroâ€1,3â€diene Derivatives from Alkynols and Alkenes. Chemistry - A European Journal, 2010, 16, 10968-10970.	n 3.3	28
296	Synthesis of 6-aminophenanthridines via palladium-catalyzed insertion of isocyanides into N-sulfonyl-2-aminobiaryls. RSC Advances, 2014, 4, 17222-17225.	3.6	28
297	Zincâ€Catalyzed Tandem Diels–Alder Reactions of Enynals with Alkenes: Generation and Trapping of Cyclic <i>>o</i> àâ€Quinodimethanes (<i>o</i> àâ€QDMs). Advanced Synthesis and Catalysis, 2016, 358, 2684-2691.	4.3	28
298	An Ir(<scp>iii</scp>)-catalyzed aryl C–H bond carbenoid functionalization cascade: access to 1,3-dihydroindol-2-ones. Organic and Biomolecular Chemistry, 2017, 15, 3638-3647.	2.8	28
299	Direct α-C–H amination using various amino agents by selective oxidative copper catalysis: a divergent access to functional quinolines. Chemical Communications, 2018, 54, 10096-10099.	4.1	28
300	Direct access to bis-S-heterocycles <i>via</i> copper-catalyzed three component tandem cyclization using S ₈ as a sulfur source. Organic and Biomolecular Chemistry, 2019, 17, 3424-3432.	2.8	28
301	Palladium-catalyzed ionic liquid-accelerated oxidative annulation of acetylenic oximes with unactivated long-chain enols. Green Chemistry, 2020, 22, 5584-5588.	9.0	28
302	Electrocarboxylation of Carbon Dioxide with Polycyclic Aromatic Hydrocarbons Using Ni as the Cathode. Chinese Journal of Chemistry, 2010, 28, 1983-1988.	4.9	27
303	A Ni(salen)â€Based Metal–Organic Framework: Synthesis, Structure, and Catalytic Performance for CO ₂ Cycloaddition with Epoxides. European Journal of Inorganic Chemistry, 2017, 2017, 4982-4989.	2.0	27
304	CuCl/Et ₃ N-Catalyzed Synthesis of Indanone-Fused 2-Methylene Pyrrolidines from Enynals and Propargylamines. Organic Letters, 2017, 19, 4540-4543.	4.6	27
305	Palladiumâ€Catalyzed Regioselective Threeâ€Component Cascade Bisthiolation of Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 1138-1150.	4.3	27
306	Palladiumâ€Catalyzed Intermolecular Oxidative Coupling Reactions of (<i>Z</i>)â€Enamines with Isocyanides through Selective βâ€C(sp ²)â€H and/or C=C Bond Cleavage. Chinese Journal of Chemistry, 2018, 36, 712-715.	4.9	27

#	Article	IF	Citations
307	Access to Polycyclic Sulfonyl Indolines via Fe(II)-Catalyzed or UV-Driven Formal $[2+2+1]$ Cyclization Reactions of N-((1H-indol-3-yl)methyl)propiolamides with NaHSO ₃ . Organic Letters, 2019, 21, 2602-2605.	4.6	27
308	Regioselective Synthesis of 5-Trifluoromethylpyrazoles by [3 + 2] Cycloaddition of Nitrile Imines and 2-Bromo-3,3,3-trifluoropropene. Journal of Organic Chemistry, 2021, 86, 2810-2819.	3.2	27
309	Photocatalyzed cycloaromatization of vinylsilanes with arylsulfonylazides. Nature Communications, 2021, 12, 3304.	12.8	27
310	Access to C(sp ³)â€"C(sp ²) and C(sp ²)â€"C(sp ²) Bond Formation via Sequential Intermolecular Carbopalladation of Multiple Carbonâ€"Carbon Bonds. Journal of Organic Chemistry, 2012, 77, 5418-5422.	3.2	26
311	Highly efficient and practical synthesis of functionalized 1,5-dienes via Pd(ii)-catalyzed halohomoallylation of alkynes. RSC Advances, 2013, 3, 11529.	3.6	26
312	An efficient synthesis of 2,5-diimino-furans via Pd-catalyzed cyclization of bromoacrylamides and isocyanides. Chemical Communications, 2014, 50, 2037.	4.1	26
313	Palladium-Catalyzed Oxidative C–N Bond Coupling Involving a Solvent-Controlled Regioselective Bromination Process. Journal of Organic Chemistry, 2014, 79, 7005-7011.	3.2	26
314	Nucleopalladation-Initiated Oxyalkenylation of Alkenes: A Strategy To Construct Functionalized Oxygenated Heterocycles. Journal of Organic Chemistry, 2014, 79, 7734-7739.	3.2	26
315	Copper Chlorideâ€Catalyzed Aerobic Oxidative Annulation of <i>N</i> Polysubstituted Pyrroles and Indoles. Advanced Synthesis and Catalysis, 2015, 357, 727-731.	4.3	26
316	Synthesis of 3-bromosubstituted pyrroles via palladium-catalyzed intermolecular oxidative cyclization of bromoalkynes with N-allylamines. Chemical Communications, 2015, 51, 5894-5897.	4.1	26
317	Direct Access to Nitrogen Bi-heteroarenes via Iridium-Catalyzed Hydrogen-Evolution Cross-Coupling Reaction. Organic Letters, 2017, 19, 3390-3393.	4.6	26
318	Aerobic oxidative α-arylation of furans with boronic acids via Pd(<scp>ii</scp>)-catalyzed C–C bond cleavage of primary furfuryl alcohols: sustainable access to arylfurans. Chemical Communications, 2017, 53, 12217-12220.	4.1	26
319	Cascade Oneâ€Pot Synthesis of Indanoneâ€Fused Cyclopentanes from the Reaction of Donorâ€Acceptor Cyclopropanes and Enynals <i>via</i> a Sequential Hydrolysis/Knoevenagel Condensation/[3+2] Cycloaddition. Advanced Synthesis and Catalysis, 2017, 359, 2924-2930.	4.3	26
320	A regio- and diastereoselective palladium-catalyzed cyclopropanation of norbornene derivatives with molecular oxygen as the sole oxidant. Chemical Communications, 2012, 48, 10340.	4.1	25
321	Base-Mediated Decomposition of Amide-Substituted Furfuryl Tosylhydrazones: Synthesis and Cytotoxic Activities of Enynyl-Ketoamides. Journal of Organic Chemistry, 2015, 80, 2092-2102.	3.2	25
322	Assembly of Polysubstituted Maleimides via Palladium-Catalyzed Cyclization Reaction of Alkynes with Isocyanides. Journal of Organic Chemistry, 2016, 81, 12451-12458.	3.2	25
323	Cu-Catalyzed intermolecular [3 + 3] annulation involving oxidative activation of an unreactive C(sp ³)â€"H bond: access to pyrimidine derivatives from amidines and ketones. Organic Chemistry Frontiers, 2017, 4, 1107-1111.	4.5	25
324	Base-Mediated Three-Component Tandem Reactions for the Synthesis of Multisubstituted Pyrimidines. Journal of Organic Chemistry, 2017, 82, 13609-13616.	3.2	25

#	Article	IF	Citations
325	Iridium-Catalyzed Dehydrogenative α-Functionalization of (Hetero)aryl-Fused Cyclic Secondary Amines with Indoles. Organic Letters, 2018, 20, 1171-1174.	4.6	25
326	Direct Carbon–Carbon σ Bond Amination of Unstrained Arylalkylketones. ACS Catalysis, 2020, 10, 8402-8408.	11.2	25
327	Reductive electrophilic C–H alkylation of quinolines by a reusable iridium nanocatalyst. Chemical Science, 2021, 12, 13802-13808.	7.4	25
328	Recent advances for the synthesis of chiral sulfones with the sulfone moiety directly connected to the chiral center. Organic Chemistry Frontiers, 2021, 8, 5574-5589.	4.5	25
329	CuO/CNTs-catalyzed heterogeneous process: a convenient strategy to prepare furan derivatives from electron-deficient alkynes and α-hydroxy ketones. Green Chemistry, 2012, 14, 2710.	9.0	24
330	Intermolecular Asymmetric Carboesterification of Alkenes by Using Chiral Amine Auxiliaries under O ₂ : Synthesis of Enantioenriched αâ€Methyleneâ€Î³â€Lactones through Chloropalladation of Alkynes. Chemistry - A European Journal, 2015, 21, 6708-6712.	3.3	24
331	Copper-Catalyzed [4 + 1] Annulation between α-Hydroxy Ketones and Nitriles: An Approach to Highly Substituted 3(2H)-Furanones. Journal of Organic Chemistry, 2015, 80, 4957-4965.	3.2	24
332	Palladium-Catalyzed Oxidative Oâ€"H/Nâ€"H Carbonylation of Hydrazides: Access to Substituted 1,3,4-Oxadiazole-2(3 <i>H</i>)-ones. Journal of Organic Chemistry, 2015, 80, 5713-5718.	3.2	24
333	Oxypalladation Initiating the OxidÂative Heck Reaction with Alkenyl ÂAlcohols: Synthesis of Isocoumarin–Alkanones. European Journal of Organic Chemistry, 2016, 2016, 663-667.	2.4	24
334	Carbonyl Ylides Derived from Palladium Carbenes: The Impressive Fluorine Effect. Advanced Synthesis and Catalysis, 2017, 359, 3154-3159.	4.3	24
335	Palladium-catalyzed primary amine-directed regioselective mono- and di-alkynylation of biaryl-2-amines. Chemical Communications, 2018, 54, 1746-1749.	4.1	24
336	Tandem cyclization of <i>o</i> -alkynylanilines with isocyanides triggered by intramolecular nucleopalladation: access to heterocyclic fused 2-aminoquinolines. Chemical Communications, 2018, 54, 6855-6858.	4.1	24
337	A palladium-catalyzed oxidative aminocarbonylation reaction of alkynone <i>O</i> -methyloximes with amines and CO in PEG-400. Green Chemistry, 2020, 22, 465-470.	9.0	24
338	Ruthenium(II)â€Catalyzed Regioselective Synthesis of Allyl Ketones from Alkynes and their Silver(I)â€Catalyzed Hydroarylation into γâ€Functionalized Ketones. Advanced Synthesis and Catalysis, 2009, 351, 1488-1494.	4.3	23
339	Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide. Science China Chemistry, 2010, 53, 1566-1570.	8.2	23
340	Facile synthesis of cyanofurans via Michael-addition/cyclization of ene–yne–ketones with trimethylsilyl cyanide. Chemical Communications, 2017, 53, 640-643.	4.1	23
341	MnO ₂ â€Promoted Oxidative Radical Sulfonylation of Haloalkynes with Sulfonyl Hydrazides: C(sp)–S Bond Formation towards Alkynyl Sulfones. Chemistry - an Asian Journal, 2017, 12, 1875-1878.	3.3	23
342	Palladium atalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes. Chemistry - A European Journal, 2017, 23, 793-797.	3.3	23

#	Article	IF	CITATIONS
343	Assembly of 1 <i>H</i> i>isoindole derivatives by selective carbon–nitrogen triple bond activation: access to aggregation-induced emission fluorophores for lipid droplet imaging. Chemical Science, 2019, 10, 7076-7081.	7.4	23
344	Direct Access to \hat{I} ±-Oxoketene Aminals via Copper-Catalyzed Formal Oxyaminalization of Alkenes under Mild Conditions. Organic Letters, 2019, 21, 2223-2226.	4.6	23
345	Visible light-driven efficient palladium catalyst turnover in oxidative transformations within confined frameworks. Nature Communications, 2022, 13, 928.	12.8	23
346	Palladiumâ€Catalyzed C–N Bond Activation: The Synthesis of βâ€Amino Acid Derivatives from Triethylamine and Acrylates. European Journal of Organic Chemistry, 2007, 2007, 4600-4604.	2.4	22
347	Mg(OH)Cl/Kl as a Highly Active Heterogeneous Catalyst for the Synthesis of Cyclic Carbonates from CO ₂ and Epoxides under Solventâ€Free Conditions. Chinese Journal of Chemistry, 2008, 26, 947-951.	4.9	22
348	Electrochemically promoted synthesis of polysubstituted oxazoles from \hat{l}^2 -diketone derivatives and benzylamines under mild conditions. RSC Advances, 2014, 4, 24300-24303.	3.6	22
349	Palladiumâ€Catalyzed Regioselective Aerobic Allylic Câ^'H Oxygenation: Direct Synthesis of <i>α,β</i> â€Unsaturated Aldehydes and Allylic Alcohols. Advanced Synthesis and Catalysis, 2018, 360, 1600-1604.	4.3	22
350	Palladium-catalyzed oxidative allylation of bis [(pinacolato)boryl]methane: synthesis of homoallylic boronic esters. Chemical Communications, 2018, 54, 66-69.	4.1	22
351	Site-Specific Oxidative C–H Chalcogenation of (Hetero)Aryl-Fused Cyclic Amines Enabled by Nanocobalt Oxides. Organic Letters, 2018, 20, 6554-6558.	4.6	22
352	Direct bromocarboxylation of arynes using allyl bromides and carbon dioxide. Chemical Communications, 2019, 55, 12304-12307.	4.1	22
353	Direct Alkoxycarbonylation of Heteroarenes via Cu-Mediated Trichloromethylation and In Situ Alcoholysis. Organic Letters, 2020, 22, 2093-2098.	4.6	22
354	Synthesis of 3-azabicyclo[3.1.0]hexane derivatives via palladium-catalyzed cyclopropanation of maleimides with N-tosylhydrazones: practical and facile access to CP-866,087. Organic and Biomolecular Chemistry, 2017, 15, 1228-1235.	2.8	21
355	Catalytic [1,3]â€Oâ€to Rearrangement: Rapid Access to Bridged Bicyclic Systems. Chemistry - A European Journal, 2018, 24, 6927-6931.	3.3	21
356	Intermolecular C(sp ³)â^'H Amination Promoted by Internal Oxidants: Synthesis of Trifluoroacetylated Hydrazones. Angewandte Chemie - International Edition, 2018, 57, 17215-17219.	13.8	21
357	Palladium-Catalyzed Cyclization of <i>N</i> -Acyl- <i>o</i> -alkynylanilines with Isocyanides Involving a 1,3-Acyl Migration: Rapid Access to Functionalized 2-Aminoquinolines. Organic Letters, 2018, 20, 7245-7248.	4.6	21
358	Co(II)-Catalyzed Regioselective Pyridine C–H Coupling with Diazoacetates. Organic Letters, 2019, 21, 3427-3430.	4.6	21
359	Three component hydroxyletherification and hydroxylazidation of (trifluoromethyl)alkenes: access to α-trifluoromethyl β-heteroatom substituted tertiary alcohols. Chemical Communications, 2020, 56, 6241-6244.	4.1	21
360	Metal-bipyridine/phenanthroline-functionalized porous crystalline materials: Synthesis and catalysis. Coordination Chemistry Reviews, 2021, 438, 213907.	18.8	21

#	Article	IF	Citations
361	Steric-switched defluorofunctionalization selectivity: controlled synthesis of monofluoroalkene-masked medium-sized heterocyclic lactams and lactones. Science China Chemistry, 2022, 65, 554-562.	8.2	21
362	Palladium-assisted multicomponent cyclization of aromatic aldehydes, arylamines and terminal olefins under molecular oxygen: an assembly of $1,4$ -dihydropyridines. Organic and Biomolecular Chemistry, $2011, 9, 5358$.	2.8	20
363	Synthesis of 4H-cyclopenta[c]furans via cooperative PdCl2â€"FeCl2 catalyzed cascade cyclization reaction involving a novel acyl rearrangement process. Chemical Communications, 2012, 48, 4698.	4.1	20
364	Synthesis of 1,4-dienes by $Pd(II)$ -catalyzed haloallylation of alkynes with allylic alcohols in ionic liquids. Tetrahedron, 2014, 70, 1516-1523.	1.9	20
365	Controllable <i>O</i> -Nucleometalation Cyclization Strategy: Access to Divergent Ring-Functionalized Molecules. Organic Letters, 2016, 18, 6232-6235.	4.6	20
366	Gold-Catalyzed Ring Expansion of Enyne-Lactone: Generation and Transformation of 2-Oxoninonium. Organic Letters, 2017, 19, 5856-5859.	4.6	20
367	N-Heterocyclic carbene palladium-catalyzed cascade annulation/alkynylation of 2-alkynylanilines with terminal alkynes. Organic and Biomolecular Chemistry, 2017, 15, 7898-7908.	2.8	20
368	DDQ-mediated regioselective C–S bond formation: efficient access to allylic sulfides. Organic Chemistry Frontiers, 2018, 5, 3158-3162.	4.5	20
369	Copper-Catalyzed $[2 + 3]$ Cyclization of \hat{l} ±-Hydroxyl Ketones and Arylacetonitriles: Access to Multisubstituted Butenolides and Oxazoles. Journal of Organic Chemistry, 2018, 83, 11926-11935.	3.2	20
370	Palladium-catalyzed regioselective C–H alkynylation of indoles with bromoalkynes in water. Organic Chemistry Frontiers, 2019, 6, 2200-2204.	4.5	20
371	Switchable Reactivity between Vinyl Azides and Terminal Alkyne by Nano Copper Catalysis. Organic Letters, 2019, 21, 2090-2094.	4.6	20
372	Fluorohalogenation of gem â€Difluoroalkenes: Synthesis and Applications of αâ€∓rifluoromethyl Halides. Chemistry - A European Journal, 2020, 26, 1953-1957.	3.3	20
373	Practical iridium-catalyzed direct \hat{l} ±-arylation of N-heteroarenes with (hetero)arylboronic acids by H2O-mediated H2 evolution. Nature Communications, 2021, 12, 4206.	12.8	20
374	Palladium-Catalyzed Aerobic Oxygenation of Allylarenes. Journal of Organic Chemistry, 2017, 82, 10912-10919.	3.2	19
375	Two C–O Bond Formations on a Carbenic Carbon: Palladium-Catalyzed Coupling of N-Tosylhydrazones and Benzo-1,2-quinones To Construct Benzodioxoles. Organic Letters, 2018, 20, 3166-3169.	4.6	19
376	Direct Access to Functionalized Indoles via Single Electron Oxidation Induced Coupling of Diarylamines with 1,3-Dicarbonyl Compounds. Organic Letters, 2019, 21, 6736-6740.	4.6	19
377	Restriction of Conformation Transformation in Excited State: An Aggregation-Induced Emission Building Block Based on Stable Exocyclic C=N Group. IScience, 2020, 23, 101587.	4.1	19
378	Ruthenium-Catalyzed Hydrogen Evolution <i>>o</i> -Aminoalkylation of Phenols with Cyclic Amines. Organic Letters, 2020, 22, 4781-4785.	4.6	19

#	Article	IF	CITATIONS
379	Iridium/Acid Cocatalyzed Direct Access to Fused Indoles via Transfer Hydrogenative Annulation of Quinolines and 1,2-Diketones. Organic Letters, 2020, 22, 2308-2312.	4.6	19
380	Recent advances in NHC–palladium catalysis for alkyne chemistry: versatile synthesis and applications. Organic Chemistry Frontiers, 2021, 8, 3502-3524.	4.5	19
381	A New Multicomponent Reaction Catalyzed by a Lewis Acid Catalyst: Convenient Synthesis of Polyfunctional TetrahydropyrÂimidines. European Journal of Organic Chemistry, 2008, 2008, 3519-3523.	2.4	18
382	Copper(II)â€Mediated Homocoupling of Thioamides for the Synthesis of 1,2,4â€Thiadiazoles. European Journal of Organic Chemistry, 2014, 2014, 4239-4243.	2.4	18
383	Palladium-catalyzed C–S bond activation and functionalization of 3-sulfenylindoles and related electron-rich heteroarenes. Organic Chemistry Frontiers, 2017, 4, 1590-1594.	4.5	18
384	Synthesis of Multisubstituted Benzimidazolones via Copper-Catalyzed Oxidative Tandem C–H Aminations and Alkyl Deconstructive Carbofunctionalization. IScience, 2019, 15, 127-135.	4.1	18
385	Access to 2-Aroylthienothiazoles via C–H/N–O Bond Functionalization of Oximes. Organic Letters, 2019, 21, 9976-9980.	4.6	18
386	Access to Phenothiazine Derivatives via Iodide-Mediated Oxidative Three-Component Annulation Reaction. Journal of Organic Chemistry, 2020, 85, 5629-5637.	3.2	18
387	Selective reductive annulation reaction for direct synthesis of functionalized quinolines by a cobalt nanocatalyst. Journal of Catalysis, 2020, 383, 239-243.	6.2	18
388	Palladium-catalyzed regioselective cascade reaction of carbon dioxide, amines and allenes for the synthesis of functionalized carbamates. Science China Chemistry, 2020, 63, 331-335.	8.2	18
389	Rutheniumâ€Catalyzed Nâ€Alkylation for the Synthesis of 2â€ <i>N</i> àê€Pyridylmethyl Benzonitriles and an Exploration of Its Synthetic Utility. ChemCatChem, 2014, 6, 2993-2997.	3.7	17
390	Iridium(III) atalyzed Regioselective Intermolecular Unactivated Secondary Csp ³ â^'H Bond Amidation. Angewandte Chemie, 2016, 128, 12076-12080.	2.0	17
391	A novel electrochemical conversion of CO 2 with aryl hydrazines and paraformaldehyde into 1,3,4-oxadiazol-2(3 H)-one derivatives in one step. Electrochemistry Communications, 2016, 72, 109-112.	4.7	17
392	Haloalkyne Chemistry. Springer Briefs in Molecular Science, 2016, , .	0.1	17
393	Nucleo-Palladation-Triggering Alkene Functionalization: A Route to Î ³ -Lactones. Organic Letters, 2017, 19, 5756-5759.	4.6	17
394	Selectivity-switchable construction of benzo-fused polycyclic compounds through a gold-catalyzed reaction of enyne-lactone. Chemical Communications, 2018, 54, 1893-1896.	4.1	17
395	Cobalt-Catalyzed Selective Functionalization of Aniline Derivatives with Hexafluoroisopropanol. Organic Letters, 2019, 21, 218-222.	4.6	17
396	Hydrogen Transfer-Mediated Multicomponent Reaction for Direct Synthesis of Quinazolines by a Naphthyridine-Based Iridium Catalyst. IScience, 2020, 23, 101003.	4.1	17

#	Article	IF	Citations
397	<scp>Palladiumâ€Catalyzed</scp> Sequential Cyclization/Functionalization of Oxime Ethers with Unactivated Vinyl Ethers for Tunable Assembly of Structurally Diverse Isoxazoles. Chinese Journal of Chemistry, 2021, 39, 3285-3291.	4.9	17
398	Intermolecular diastereoselective annulation of azaarenes into fused N-heterocycles by Ru(II) reductive catalysis. Nature Communications, 2022, 13, 2393.	12.8	17
399	Chlorine-free copper-catalyzed oxidative synthesis of 1,3,4-oxadiazoles with molecular oxygen as the sole oxidant. Pure and Applied Chemistry, 2011, 84, 553-559.	1.9	16
400	MnO $<$ sub $>2<$ /sub $>$ -promoted carboesterification of alkenes with anhydrides: a facile approach to \hat{I}^3 -lactones. Chemical Communications, 2016, 52, 2628-2631.	4.1	16
401	Palladium-Catalyzed Four-Component Cascade Reaction for the Synthesis of Highly Functionalized Acyclic <i>O</i> , <i>O</i> -Acetals. Organic Letters, 2018, 20, 672-675.	4.6	16
402	Iron/zinc-catalyzed benzannulation reactions of 2-(2-oxo-alkyl)benzketones leading to naphthalene and isoquinoline derivatives. Organic Chemistry Frontiers, 2018, 5, 1028-1033.	4.5	16
403	Zn(OAc)2-Catalyzed C3-Carbonylacetylation of Indoles with \hat{l} ±-Diazoketones Involving Wolff Rearrangement. Organic Letters, 2018, 20, 6140-6143.	4.6	16
404	Direct Assembly of Polysubstituted Propiolamidinates via Palladium-Catalyzed Multicomponent Reaction of Isocyanides. Organic Letters, 2019, 21, 8439-8443.	4.6	16
405	Stereodivergent synthesis of \hat{l}^2 -iodoenol carbamates with CO ₂ <i>via</i> photocatalysis. Chemical Science, 2021, 12, 11821-11830.	7.4	16
406	Synthesis of 2-isoxazolyl-2,3-dihydrobenzofurans <i>via</i> palladium-catalyzed cascade cyclization of alkenyl ethers. Chemical Communications, 2021, 57, 4799-4802.	4.1	16
407	Alkynyl corroles: synthesis by Sonogashira coupling reaction and the physicochemical properties. Journal of Porphyrins and Phthalocyanines, 2010, 14, 150-157.	0.8	15
408	Metalâ€Free Rearrangement of Spirofurooxindoles into Spiropentenoneoxindoles and Indoles: Implications for the Mechanism and Stereochemistry of the Piancatelli Rearrangement. Advanced Synthesis and Catalysis, 2013, 355, 370-376.	4.3	15
409	Palladium-Catalyzed Bond Reorganization of 1,3-Diynes: An Entry to Diverse Functionalized 1,5-Dien-3-ynes. Journal of Organic Chemistry, 2013, 78, 4580-4586.	3.2	15
410	Palladium/Copper Bimetallic Systemâ€Mediated Cross oupling of Alkynes and Alkenes: Two Strategies to Suppress βâ€H Elimination on Alkylâ€Palladium Center. Advanced Synthesis and Catalysis, 2014, 356, 1949-1954.	4.3	15
411	A silver-catalyzed three-component reaction <i>via</i> stabilized cation: synthesis of polysubstituted tetrahydronaphthols and tetrahydronaphthylamines. Organic Chemistry Frontiers, 2018, 5, 1160-1164.	4.5	15
412	Copper-Catalyzed Aerobic Oxidative [3+2] Annulation for the Synthesis of 5-Amino/Imino-Substituted 1,2,4-Thiadiazoles through C–N/N–S Bond Formation. Journal of Organic Chemistry, 2018, 83, 9334-9343.	3.2	15
413	Synthesis of ⟨i⟩β⟨ i⟩â€Isoxazole Carbonyl Derivatives and their Analogues ⟨i⟩via⟨ i⟩ Palladiumâ€Catalyzed Sequential C(⟨i⟩sp⟨ i⟩⟨sup⟩2⟨ sup⟩)â°'O C(⟨i⟩sp⟨ i⟩⟨sup⟩2⟨ sup⟩3°'C(⟨i⟩sp⟨ i⟩⟨sup⟩3⟨ sup⟩) Bond Formations. Advanced Synthesis and Catalysis, 2019, 361, 3813-3823.	4.3	15
414	Assembly of Functionalized 4â€Alkynylisoxazoles by Palladiumâ€Catalyzed Threeâ€Component Cascade Cyclization/Alkynylation. Chemistry - an Asian Journal, 2019, 14, 2309-2315.	3.3	15

#	Article	IF	CITATIONS
415	Transition-metal free selective C(α)–C(β) bond cleavage of trifluoromethyl ketones with amidines under air: facile access to 5-trifluoromethylated Imidazol-4-ones. Organic Chemistry Frontiers, 2019, 6, 858-862.	4.5	15
416	Access to Cycloalkeno[⟨i⟩c⟨/i⟩]-Fused Pyridines via Pd-Catalyzed C(sp⟨sup⟩2⟨/sup⟩)–H Activation and Cyclization of ⟨i⟩N⟨/i⟩-Acetyl Hydrazones of Acylcycloalkenes with Vinyl Azides. Organic Letters, 2020, 22, 7786-7790.	4.6	15
417	Copper-catalysed dehydrogenative α-C(sp ³)â€"H amination of tetrahydroquinolines with <i>O</i> -benzoyl hydroxylamines. Organic Chemistry Frontiers, 2018, 5, 539-543.	4.5	14
418	Ir-Catalyzed reactions in natural product synthesis. Organic Chemistry Frontiers, 2018, 5, 132-150.	4.5	14
419	B ₂ pin ₂ -Mediated Palladium-Catalyzed Diacetoxylation of Aryl Alkenes with O ₂ as Oxygen Source and Sole Oxidant. Organic Letters, 2018, 20, 5090-5093.	4.6	14
420	Palladium-Catalyzed Nitrile-Assisted C(sp ³)–Cl Bond Formation for Synthesis of Dichlorides. Organic Letters, 2019, 21, 8308-8311.	4.6	14
421	Synthesis of Isoquinoline Derivatives via Palladiumâ€Catalyzed Câ^'H/Câ^'N Bond Activation of N â€Acyl Hydrazones with α â€Substituted Vinyl Azides. Advanced Synthesis and Catalysis, 2020, 362, 1362-1369.	4.3	14
422	Recent Advances in Chemical Modifications of Nitriles. European Journal of Organic Chemistry, 2021, 2021, 6658-6669.	2.4	14
423	Base-promoted annulation of \hat{l} ±-hydroxy ketones and dimethyl but-2-ynedioate: straightforward access to pyrano [4,3-a]quinolizine-1,4,6(2H)-triones and 2H-pyran-2,5(6H)-diones. Organic and Biomolecular Chemistry, 2014, 12, 8128-8131.	2.8	13
424	Selectivity-switchable oxidation of tetraarylethylenes to fused polycyclic compounds. Chemical Communications, 2016, 52, 13345-13348.	4.1	13
425	Cî€N bond formation via palladium-catalyzed carbene insertion into Nî€N bonds: inhibiting the general 1,2-migration process of ylide intermediates. Chemical Communications, 2017, 53, 2697-2700.	4.1	13
426	Synthesis of 1,4-enyne-3-ones via palladium-catalyzed sequential decarboxylation and carbonylation of allyl alkynoates. Organic Chemistry Frontiers, 2017, 4, 1363-1366.	4.5	13
427	Palladiumâ€Catalyzed Crossâ€Coupling of Alkynyl Carboxylic Acids with Isocyanides: Solventâ€Controlled Selective Synthesis of 5â€Iminofuranones and 5â€Iminopyrrolones. Advanced Synthesis and Catalysis, 2017, 359, 3509-3514.	4.3	13
428	Silver-catalyzed regioselective coupling of carbon dioxide, amines and aryloxyallenes leading to O-allyl carbamates. Journal of CO2 Utilization, 2018, 24, 120-127.	6.8	13
429	Palladiumâ€Catalyzed Sequential C(<i>sp</i> ²)â€H Alkynylation/Annulation of 2â€Phenylphenols with Haloalkynes Using Phenolic Hydroxyl as the Traceless Directing Group. Advanced Synthesis and Catalysis, 2018, 360, 2297-2302.	4.3	13
430	Three-Component Ring-Opening Reactions of Cyclic Ethers, α-Diazo Esters, and Weak Nucleophiles under Metal-Free Conditions. Journal of Organic Chemistry, 2018, 83, 14385-14395.	3.2	13
431	Efficient assembly of ynones <i>via</i> palladium-catalyzed sequential carbonylation/alkynylation. Organic and Biomolecular Chemistry, 2018, 16, 7383-7392.	2.8	13
432	Base-Promoted Three-Component Cascade Reaction of \hat{l}_{\pm} -Hydroxy Ketones, Malonodinitrile, and Alcohols: Direct Access to Tetrasubstituted N <i>H</i> Pyrroles. Journal of Organic Chemistry, 2021, 86, 9610-9620.	3.2	13

#	Article	IF	CITATIONS
433	Bond energy enabled amine distinguishing strategy: chemo-, regioselective 1,3-diamination of (trifluoromethyl)alkenes with different amines by two C(sp ³)–F bond cleavages. Organic Chemistry Frontiers, 2022, 9, 1383-1388.	4.5	13
434	A mixed-valence lanthanide metal–organic framework, templated by 2,2′-bipyridine formed in situ reaction: synthesis, structure, and luminescent properties. CrystEngComm, 2012, 14, 5285.	2.6	12
435	Baseâ€Promoted Addition of Arylacetonitriles to Terminal Alkynes: Regio―and Stereoselective Access to Disubstituted Acrylonitriles. Advanced Synthesis and Catalysis, 2017, 359, 1339-1350.	4.3	12
436	Silver-Promoted Coupling of Carbon Dioxide, <i>>o</i> -Alkynylanilines and Diaryliodonium Salts: Straightforward Access to 4-Aryloxy-2-quinolinones. ChemistrySelect, 2017, 2, 4691-4695.	1.5	12
437	Palladium-catalyzed oxidative amination of homoallylic alcohols: sequentially installing carbonyl and amino groups along an alkyl chain. Chemical Communications, 2017, 53, 10422-10425.	4.1	12
438	Transition-Metal-Free [3+2] Cycloaddition of Dehydroaminophosphonates and <i>N</i> -Tosylhydrazones: Access to Aminocyclopropanephosphonates with Adjacent Quaternary-Tetrasubstituted Carbon Centers. Journal of Organic Chemistry, 2017, 82, 12746-12756.	3.2	12
439	Synthesis of (<i>E</i>)â€2â€Alkenylazaarenes via Dehydrogenative Coupling of (Hetero)arylâ€fused 2â€Alkylcyclic Amines and Aldehydes with a Cobalt Nanocatalyst. ChemCatChem, 2018, 10, 2887-2892.	3.7	12
440	Access to Amidines and Arylbenzimidazoles: Zincâ€Promoted Rearrangement of Oxime Acetates. Advanced Synthesis and Catalysis, 2018, 360, 2020-2031.	4.3	12
441	Copperâ€Catalyzed Cyclization of Aryl Amines and Aryldiazonium Salts under Air: Access to <i>N</i> àâ€2â€Arylâ€Naphthotriazoles. Advanced Synthesis and Catalysis, 2019, 361, 5149-5159.	4.3	12
442	Copperâ€Catalyzed Benzylic Câ€"H Functionalization, Oxidation and Cyclization of Methylarenes: Direct Access to 2â€Arylbenzothiazoles. Chinese Journal of Chemistry, 2019, 37, 1158-1166.	4.9	12
443	Copper-Catalyzed Intermolecular [4 + 2] Annulation Enabled by Internal Oxidant-Promoted C(sp3)–H Functionalization: Access to 3-Trifluoromethylated 3-Hydroxy-cyclohexan-1-ones. Organic Letters, 2019, 21, 4900-4904.	4.6	12
444	Selective reductive cross-coupling of N-heteroarenes by an unsymmetrical PNP-ligated manganese catalyst. Journal of Catalysis, 2020, 392, 135-140.	6.2	12
445	Hydroxyl Groupâ€Assisted Palladiumâ€Catalyzed Lactonization of Homoallylic Alcohols. ChemCatChem, 2014, 6, 561-566.	3.7	11
446	A Fourâ€Component Reaction Strategy for Pyrimidine Carboxamide Synthesis. Angewandte Chemie, 2017, 129, 1309-1313.	2.0	11
447	Access to αâ€Amino Acid Esters through Palladiumâ€Catalyzed Oxidative Amination of Vinyl Ethers with Hydrogen Peroxide as the Oxidant and Oxygen Source. Angewandte Chemie, 2017, 129, 16142-16146.	2.0	11
448	Palladium-catalyzed three-component cascade arylthiolation with aryldiazonium salts as <i>S</i> -arylation sources. Organic and Biomolecular Chemistry, 2020, 18, 4071-4078.	2.8	11
449	Recent Advances in Transformations Involving Electronâ€Rich Alkenes: Functionalization, Cyclization, and Crossâ€Metathesis Reactions. Advanced Synthesis and Catalysis, 2021, 363, 4841-4855.	4.3	11
450	Metal–Organic Framework Surface Functionalization Enhancing the Activity and Stability of Palladium Nanoparticles for Carbon–Halogen Bond Activation. Inorganic Chemistry, 2022, 61, 6995-7004.	4.0	11

#	Article	IF	CITATIONS
451	Palladiumâ€Catalyzed Enyne Cyclization of 2â€2â€Alkenyl 2â€Alkynoates in Imidazoliumâ€Type Ionic Liquids. Synthetic Communications, 2007, 37, 2121-2129.	2.1	10
452	Selective Pd-catalyzed α- and β-arylations of the furan rings of (ortho-bromophenyl)furan-2-yl-methanones: C(CO)–C bond cleavage with a furan ring as a leaving group and synthesis of furan-derived fluorenones. Organic Chemistry Frontiers, 2016, 3, 1105-1110.	4.5	10
453	Fullymeta-Substituted 4,4′-Biphenyldicarboxylate-Based Metal-Organic Frameworks: Synthesis, Structures, and Catalytic Activities. European Journal of Inorganic Chemistry, 2017, 2017, 1478-1487.	2.0	10
454	Palladium-Catalyzed Intermolecular Oxidative Cyclization of Allyltosylamides with AcOH: Assembly of 3-Pyrrolin-2-ones. Journal of Organic Chemistry, 2017, 82, 8191-8198.	3.2	10
455	Facile Synthesis of π-Conjugated Quinazoline-Substituted Ethenes from 2-Ethynylanilines and Benzonitriles under Transition-Metal-Free Conditions. Journal of Organic Chemistry, 2018, 83, 10453-10464.	3.2	10
456	Construction of polycyclic bridged indene derivatives by a tandem 1,3-rearrangement/intramolecular Friedel–Crafts cyclization of propargyl acetates. Chemical Communications, 2019, 55, 7382-7385.	4.1	10
457	Palladiumâ€Catalyzed Threeâ€Component Coupling Reaction of Allyl Carboxylates, Norbornenes and Diboronates Involving Sequential Olefins Insertion and Borylation Reaction. Chinese Journal of Chemistry, 2019, 37, 140-147.	4.9	10
458	Rapid Access to Oxabicyclo[2.2.2]octane Skeleton through Cu(I)â€Catalyzed Generation and Trapping of Vinyl―o â€quinodimethanes (Vinyl―o â€QDMs) â€. Chinese Journal of Chemistry, 2020, 38, 1052-1056.	4.9	10
459	Selective construction of fused heterocycles by an iridium-catalyzed reductive three-component annulation reaction. Chemical Communications, 2021, 57, 8292-8295.	4.1	10
460	B(C ₆ F ₅) ₃ â€Catalyzed Hydroarylation of Terminal Alkynes with Phenols. Advanced Synthesis and Catalysis, 2021, 363, 3962-3967.	4.3	10
461	Direct C(sp ³)â€"H Sulfonylation of Xanthene Derivatives with Sodium Sulfinates by Oxidative Copper Catalysis. Chinese Journal of Chemistry, 2022, 40, 371-377.	4.9	10
462	Polysubstituted Indole Synthesis via Palladium/Norbornene Cooperative Catalysis of Oxime Esters. Organic Letters, 2022, 24, 484-489.	4.6	10
463	Facile Synthesis of Trisubstituted Allenynes by Phosphaneâ€Mediated Deoxygenation of 2,4â€Pentadiynâ€1â€ol. European Journal of Organic Chemistry, 2010, 2010, 4450-4453.	2.4	9
464	Silverâ€Catalyzed Threeâ€Component Coupling of Carbon Dioxide, Amines and <i>α</i>à€Diazoesters . Chinese Journal of Chemistry, 2018, 36, 399-405.	4.9	9
465	Nucleophilic trifluoromethylthiolation of bromoalkynones with AgSCF ₃ : C(sp)–SCF ₃ bond formation towards ynonyl trifluoromethyl sulfides. Organic and Biomolecular Chemistry, 2018, 16, 1646-1650.	2.8	9
466	Copper-catalysed oxidative α-C(sp3)–H nitroalkylation of (hetero)arene-fused cyclic amines. Organic Chemistry Frontiers, 2020, 7, 425-429.	4.5	9
467	Visible-Light-Catalyzed in Situ Denitrogenative Sulfonylation of Sulfonylhydrazones. Organic Letters, 2021, 23, 6784-6788.	4.6	9
468	NHC–palladium-catalyzed ionic liquid-accelerated regioselective oxyarylation of alkynes with diaryl ethers. Green Chemistry, 2022, 24, 1983-1988.	9.0	9

#	Article	IF	CITATIONS
469	Thioamide synthesis <i>via</i> copper-catalyzed C–H activation of 1,2,3-thiadiazoles enabled by slow release and capture of thioketenes. Organic Chemistry Frontiers, 2022, 9, 2382-2389.	4.5	9
470	Carbon nanotubes-supported palladium nanoparticles for the Suzuki reaction in supercritical carbon dioxide: A facile method for the synthesis of tetrasubstituted olefins. Science in China Series B: Chemistry, 2008, 51, 241-247.	0.8	8
471	Sodium Borohydrideâ€Nickel Chlorideâ€Methanol Catalytic System for Regioselective Reduction of Electronâ€Rich Conjugated Dienes and Reductive Cleavage of Allyl Esters Involving Ï€â€Allylnickel Intermediates. Advanced Synthesis and Catalysis, 2011, 353, 3319-3324.	4.3	8
472	Hydrogenâ€Transferâ€Mediated αâ€Functionalization of 1,8â€Naphthyridines by a Strategy Overcoming the Overâ€Hydrogenation Barrier. Angewandte Chemie, 2017, 129, 14420-14424.	2.0	8
473	Selective synthesis of nitrogen bi-heteroarenes by a hydrogen transfer-mediated direct \hat{l}_{\pm} , \hat{l}_{\pm} -coupling reaction. Organic and Biomolecular Chemistry, 2017, 15, 6093-6097.	2.8	8
474	Pd-Catalyzed Three-Component Reaction of Anilines, Ethyl Vinyl Ether, and Nitro-Paraffin: Assembly of \hat{l}^2 -Nitroamines. Organic Letters, 2018, 20, 550-553.	4.6	8
475	Cu(<scp>i</scp>)-Catalyzed stereoselective synthesis of trisubstituted <i>Z</i> enol esters <i>via</i> interrupting the 1,3- <i>O</i> -transposition reaction. Organic Chemistry Frontiers, 2018, 5, 2510-2514.	4.5	8
476	Transition-metal-free $\langle i \rangle N \langle i \rangle$ -difluoromethylation of hydrazones with TMSCF $\langle sub \rangle 2 \langle sub \rangle Br$ as the difluoromethylation reagent. Organic Chemistry Frontiers, 2019, 6, 2462-2466.	4.5	8
477	Photocatalyzed formal carbooxygenation of terminal alkynes. Organic Chemistry Frontiers, 2020, 7, 1600-1605.	4.5	8
478	Rh(<scp>iii</scp>)-Catalyzed Csp ² –Csp ³ bond alkoxylation of α-indolyl alcohols <i>via</i> C–C σ bond cleavage. Organic Chemistry Frontiers, 2021, 8, 2949-2954.	4.5	8
479	Selective construction of fused heterocycles by mild oxidative C-H functionalization using non-metallic catalysis. Cell Reports Physical Science, 2021, 2, 100383.	5.6	8
480	[3+1+1] Annulation Reaction of Benzoâ€1,2â€Quinones, Aldehydes and Hydroxylamine Hydrochloride: Access to Benzoxazoles with Inorganic Nitrogen Source. Advanced Synthesis and Catalysis, 2021, 363, 2124-2132.	4.3	8
481	Solventâ€Switched Oxidation Selectivities with O 2 : Controlled Synthesis of αâ€Difluoro(thio)methylated Alcohols and Ketones. Angewandte Chemie, 2021, 133, 12145-12152.	2.0	8
482	Oneâ€Pot Palladiumâ€Catalyzed Carbonylative Sonogashira Coupling using Carbon Dioxide as Carbonyl Source. ChemCatChem, 2021, 13, 2843-2851.	3.7	8
483	Divergent Synthesis of Skeletally Distinct Arboridinine and Arborisidine. Angewandte Chemie - International Edition, 2021, 60, 26978-26985.	13.8	8
484	Selective Synthesis of Nonâ€Aromatic Fiveâ€Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/ N â€Chlorophthalimide System. Angewandte Chemie - International Edition, 2021, 60, 1313-1322.	13.8	7
485	Bimetal Cooperatively Catalyzed Arylalkynylation of Alkynylsilanes. Organic Letters, 2021, 23, 6724-6728.	4.6	7
486	Synthesis of Densely Substituted Pyridine Derivatives from 1-Methyl-1,3-(ar)enynes and Nitriles by a Formal [4+2] Cycloaddition Reaction. Organic Letters, 2022, 24, 1292-1297.	4.6	7

#	Article	IF	Citations
487	Palladiumâ€Catalyzed Regio―and Stereoselective Sulfonylation of Aryl Propiolates with Sulfonyl Hydrazides: Access to (<i>E</i>)â€ <i>β</i> â€Aryl Sulfonyl Acrylates. Advanced Synthesis and Catalysis, 2019, 361, 4575-4580.	4.3	6
488	Macrocyclization of 3-triflyloxybenzynes with tetrahydrofuran via an anionic thia-Fries rearrangement. Chemical Communications, 2020, 56, 6495-6498.	4.1	6
489	Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angewandte Chemie, 2020, 132, 4700-4707.	2.0	6
490	Photocatalyzed Coupling–Cyclization of <i>ortho</i> -Alkynylaryl Vinylethers with Arylsulfonyl Azides. Journal of Organic Chemistry, 2021, 86, 14572-14585.	3.2	6
491	Construction of Fluorinated Amino Acid Derivatives via Cobalt-Catalyzed Oxidative Difunctionalization of Cyclic Ethers. Organic Letters, 2022, 24, 608-612.	4.6	6
492	Pd-Catalyzed Heterocycle Synthesis in Ionic Liquids. Catalytic Science Series, 2016, , 351-368.	0.0	5
493	Transition-metal-catalyst-free synthesis of anthranilic acid derivatives by transfer hydrogenative coupling of 2-nitroaryl methanols with alcohols/amines. Organic and Biomolecular Chemistry, 2018, 16, 531-535.	2.8	5
494	Tandem Achmatowicz Rearrangement and Acetalization of 1-[5-(Hydroxyalkyl)-furan-2-yl]-cyclobutanols Leading to Dispiroacetals and Subsequent Ring-Expansion to Form 6,7-Dihydrobenzofuran-4(5 <i>H</i>)-ones. Journal of Organic Chemistry, 2018, 83, 12869-12879.	3.2	5
495	Palladium-catalyzed cascade carboesterification of norbornene with alkynes. Organic and Biomolecular Chemistry, 2018, 16, 8495-8504.	2.8	5
496	Ruthenium/acid co-catalyzed reductive $\langle i \rangle \hat{l} \pm \langle i \rangle$ -phosphinoylation of 1,8-naphthyridines with diarylphosphine oxides. Organic Chemistry Frontiers, 2021, 8, 106-111.	4.5	5
497	Copper-catalyzed four-component reaction of alkenes, Togni's reagent, amines and CO ₂ : stereoselective synthesis of (<i>Z</i>)-enol carbamates. Organic Chemistry Frontiers, 2021, 8, 1851-1857.	4.5	5
498	Rh(III)â€Catalyzed C <i>sp</i> ² â^'C <i>sp</i> ³ Bond Cleavage/Carbonylethylation of αâ€Indolyl Alcohols. Advanced Synthesis and Catalysis, 2021, 363, 1672-1684.	4.3	5
499	Synthesis of 2,5-disubstituted selenophenes <i>via</i> a copper-catalyzed regioselective [2+2+1] cyclization of terminal alkynes and selenium. Chemical Communications, 2022, 58, 6522-6525.	4.1	5
500	Palladiumâ€catalyzed oxidation of dihydromyrcene to citronellal in supercritical carbon dioxide. Chinese Journal of Chemistry, 2004, 22, 1384-1386.	4.9	4
501	Conversion of Triple Bonds into Single Bonds in a Domino Carbopalladation with Norbornene. Chemistry - an Asian Journal, 2017, 12, 2991-2995.	3.3	4
502	Intermolecular C(sp 3)â^H Amination Promoted by Internal Oxidants: Synthesis of Trifluoroacetylated Hydrazones. Angewandte Chemie, 2018, 130, 17461-17465.	2.0	4
503	Palladium-catalyzed aerobic oxyarylthiolation of alkynone O-methyloximes with arylhydrazines and elemental sulfur. Organic and Biomolecular Chemistry, 2021, 19, 3396-3403.	2.8	4
504	Rh(<scp>iii</scp>)-Catalyzed sulfonylamination of α-indolyl alcohols <i>via</i> Csp ² –Csp ³ bond cleavage. Organic Chemistry Frontiers, 2021, 8, 983-987.	4.5	4

#	Article	IF	Citations
505	Concise Synthesis of (±)â€Myrioneurinol Enabled by Sequential [2+2] Cycloaddition/Retroâ€Mannich Fragmentation/Mannich Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
506	Palladium-Catalyzed Cross Haloalkynylation of Haloalkynes. Organic Letters, 2022, 24, 3384-3388.	4.6	4
507	Formal total synthesis of dankasterone B. Organic Chemistry Frontiers, 2022, 9, 3961-3965.	4.5	4
508	Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal–Organic Framework. Angewandte Chemie, 2019, 131, 17308-17312.	2.0	3
509	Synthesis of Diverse Functionalized Quinoxalines by Oxidative Tandem Dual Câ^'H Amination of Tetrahydroquinoxalines with Amines. Chemistry - A European Journal, 2019, 25, 15858-15862.	3.3	3
510	Synthesis of medicinally relevant oxalylamines via copper/Lewis acid synergistic catalysis. Science Advances, 2021, 7, .	10.3	3
511	Pd-Catalyzed Sequential Formation of C–C Bonds: A New Strategy for the Synthesis of (E)-α,β-Unsaturated Carbonyl Compounds from Sulfoxonium Ylides and 1-lodo-2-((2-methylallyl)oxy)benzene Compounds. Journal of Organic Chemistry, 2021, 86, 11545-11556.	3.2	3
512	Synthesis of functionalized benzimidazoles <i>via</i> oxidative tandem quartic C–H aminations and cleavage of C–N and C–C bonds. Chemical Communications, 2021, 57, 12976-12979.	4.1	3
513	Access to $\hat{l}\pm,\hat{l}\pm$ -difluoro(arylthio)methyl oxetanes from $\hat{l}\pm,\hat{l}\pm$ -difluoro(arylthio)methyl ketones and trimethylsulfoxonium halides: scope, mechanism and applications. Organic and Biomolecular Chemistry, 2022, , .	2.8	3
514	Pd(II)-Catalyzed Synthesis of Alicyclic[<i>b</i>]-Fused Pyridines via C(sp ²)â€"H Activation of <i>α,β</i> -Unsaturated <i>N</i> -Acetyl Hydrazones with Vinyl Azides. Journal of Organic Chemistry, 2022, 87, 159-171.	3.2	3
515	Selective Synthesis of Nonâ€Aromatic Fiveâ€Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/ N â€Chlorophthalimide System. Angewandte Chemie, 2021, 133, 1333-1342.	2.0	2
516	Rh(III)-Catalyzed Csp ² –Csp ³ ïf-Bond Enolation of α-Indolyl Alcohols. Organic Letters, 2021, 23, 3965-3969.	4.6	2
517	C–H Amination Enabled [2+1+1+1] Annulation Reaction in Water: Access to Benzoxazoles. European Journal of Organic Chemistry, 2021, 2021, 5998-6001.	2.4	2
518	\hat{l}_{\pm} -Trifluoromethyl Carbanion-catalyzed Intermolecular Stetter Reaction of Aromatic Aldehydes with 2-Bromo-3,3,3-trifluoropropene: Synthesis of \hat{l}^2 -Alkoxyl- \hat{l}^2 -trifluoromethylated Ketones. Organic Letters, 2022, 24, 33-37.	4.6	2
519	CO ₂ Chemistry in SCUT Group: New Methods for Conversion of Carbon Dioxide into Organic Compounds. ACS Symposium Series, 2015, , 71-108.	0.5	1
520	Frontispiece: Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angewandte Chemie - International Edition, 2020, 59, .	13.8	1
521	Transition Metal-Catalyzed Coupling Reaction in Ionic Liquids. , 2019, , 1-9.		1
522	Synthesis of acridinones via palladium-catalyzed reductive annulation of 2-nitrobenzal dehydes and resorcinols. Organic Chemistry Frontiers, 0 , , .	4.5	1

#	Article	IF	CITATIONS
523	Formal Synthesis of Arboridinine Enabled by a Double-Mannich Reaction. Journal of Organic Chemistry, 2022, 87, 8223-8228.	3.2	1
524	A stereo-controlled route to conjugated E-enediynes. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2007, 2, 283-286.	0.4	0
525	PdCl2-catalyzed heterocyclotrimerization in MeOH/scCO2: A versatile approach to dimethyl pyridine-3,5-dicarboxylate from methyl acrylate and urea. Science in China Series B: Chemistry, 2008, 51, 447-451.	0.8	0
526	Frontispiz: Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal–Organic Framework. Angewandte Chemie, 2019, 131, .	2.0	0
527	Frontispiece: Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
528	Frontispiz: Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angewandte Chemie, 2020, 132, .	2.0	0