Jose Fermin Lopez-Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4480434/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1999, 1, 57-61.	2.1	1,832
2	Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments - A synthesis of recent works. Fresenius' Journal of Analytical Chemistry, 2001, 370, 224-228.	1.5	405
3	A Review of the Different Methods Applied in Environmental Geochemistry For Single and Sequential Extraction of Trace Elements in Soils and Related Materials. Water, Air, and Soil Pollution, 2008, 189, 291-333.	1.1	403
4	Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 1999, 382, 317-327.	2.6	358
5	Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content.	2.1	356
6	Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Science of the Total Environment, 1997, 205, 223-234.	3.9	339
7	Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, 2008, 152, 330-341.	3.7	317
8	Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 2004, 504, 217-226.	2.6	316
9	Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring, 1999, 1, 51-56.	2.1	280
10	Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius' Journal of Analytical Chemistry, 1994, 349, 808-814.	1.5	242
11	Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. Journal of Environmental Monitoring, 2001, 3, 243-250.	2.1	209
12	Three-stage sequential extraction procedure for the determination of metals in river sediments. Analytica Chimica Acta, 1994, 286, 423-429.	2.6	146
13	Prediction of Trace Element Mobility in Contaminated Soils by Sequential Extraction. Journal of Environmental Quality, 2003, 32, 2054-2066.	1.0	143
14	Development of a harmonised phosphorus extraction procedure and certification of a sediment reference material. Journal of Environmental Monitoring, 2001, 3, 121-125.	2.1	128
15	Determination and speciation of copper and lead in sediments of a Mediterranean river (River Tenes,) Tj ETQq1 1	0.784314	rgBT /Overld
16	Relationships between phosphorus fractionation and major components in sediments using the SMT harmonised extraction procedure. Analytical and Bioanalytical Chemistry, 2003, 376, 248-254.	1.9	109
17	Certified reference materials for the quality control of EDTA- and acetic acid-extractable contents of trace elements in sewage sludge amended soils (CRMs 483 and 484). Fresenius' Journal of Analytical Chemistry, 1997, 357, 611-618.	1.5	101
18	Optimization of Tessier Procedure for Metal Solid Speciation in River Sediments. International Journal of Environmental Analytical Chemistry, 1989, 36, 69-83.	1.8	95

#	Article	IF	CITATIONS
19	Trace metal partitioning in marine sediments and sludges deposited off the coast of Barcelona (Spain). Water Research, 1996, 30, 153-159.	5.3	94
20	Comparison of Two Sequential Extraction Procedures for Trace Metal Partitioning in Sediments. International Journal of Environmental Analytical Chemistry, 1993, 51, 113-121.	1.8	76
21	Prediction of the impact of the Aznalcóllar toxic spill on the trace element contamination of agricultural soils. Science of the Total Environment, 1999, 242, 131-148.	3.9	74
22	CRM 601, A stable material for its extractable content of heavy metals. Analyst, The, 1998, 123, 1675-1677.	1.7	71
23	Shortened screening method for phosphorus fractionation in sediments. Analytica Chimica Acta, 2004, 508, 201-206.	2.6	70
24	Arsenic speciation in plants growing in arsenic-contaminated sites. Chemosphere, 2008, 71, 1522-1530.	4.2	70
25	Specific Procedure for Metal Solid Speciation in Heavily Polluted River Sediments. International Journal of Environmental Analytical Chemistry, 1989, 35, 89-100.	1.8	69
26	Study of the stability of extractable trace metal contents in a river sediment using sequential extraction. Analyst, The, 1994, 119, 1109-1114.	1.7	69
27	Migration of antimony from polyethylene terephthalate used in mineral water bottles. Food Chemistry, 2015, 166, 544-550.	4.2	67
28	Comparison of single and sequential extraction procedures for the study of rare earth elements remobilisation in different types of soils. Analytica Chimica Acta, 2010, 662, 128-136.	2.6	63
29	Establishment of a method for determination of arsenic species in seafood by LC-ICP-MS. Food Chemistry, 2015, 173, 1073-1082.	4.2	55
30	Assessment of arsenic bioaccessibility in raw and cooked edible mushrooms by a PBET method. Food Chemistry, 2016, 194, 849-856.	4.2	53
31	Measurement of arsenic compounds in littoral zone algae from the Western Mediterranean Sea. Occurrence of arsenobetaine. Chemosphere, 2010, 81, 867-875.	4.2	52
32	Sample pre-treatment and extraction methods that are crucial to arsenic speciation in algae and aquatic plants. TrAC - Trends in Analytical Chemistry, 2010, 29, 53-69.	5.8	52
33	Determination of Water-Soluble Arsenic Compounds in Commercial Edible Seaweed by LC-ICPMS. Journal of Agricultural and Food Chemistry, 2011, 59, 12963-12968.	2.4	50
34	Leachability and analytical speciation of antimony in coal fly ash. Analytica Chimica Acta, 2006, 576, 200-206.	2.6	45
35	A fully validated method for the determination of arsenic species in rice and infant cereal products. Pure and Applied Chemistry, 2012, 84, 225-238.	0.9	45
36	Capillary zone electrophoresis of humic acids. Journal of Chromatography A, 1994, 664, 301-305.	1.8	43

#	Article	IF	CITATIONS
37	Antimony speciation in terrestrial plants. Comparative studies on extraction methods. Journal of Environmental Monitoring, 2005, 7, 1207.	2.1	43
38	Speciation of antimony in environmental matrices by coupled techniques. TrAC - Trends in Analytical Chemistry, 2010, 29, 28-39.	5.8	43
39	A need for determination of arsenic species at low levels in cereal-based food and infant cereals. Validation of a method by IC–ICPMS. Food Chemistry, 2014, 147, 377-385.	4.2	43
40	Occurrence of arsenic species in algae and freshwater plants of an extreme arid region in northern Chile, the Loa River Basin. Chemosphere, 2013, 90, 556-564.	4.2	41
41	Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products. Food Chemistry, 2014, 158, 207-215.	4.2	41
42	Separation of bromide, bromate, iodide, iodate, nitrite, nitrate and selenite anions by capillary zone electrophoresis. Fresenius' Journal of Analytical Chemistry, 1993, 345, 420-423.	1.5	40
43	New Approaches to the Extraction of Arsenic Species from Soils. Mikrochimica Acta, 2005, 151, 241-248.	2.5	40
44	New considerations about the separation and quantification of antimony species by ion chromatography–hydride generation atomic fluorescence spectrometry. Journal of Chromatography A, 2004, 1052, 121-129.	1.8	39
45	Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining. Analytical and Bioanalytical Chemistry, 2007, 387, 627-635.	1.9	38
46	LC–ICP–MS analysis of arsenic compounds in dominant seaweeds from the Thermaikos Gulf (Northern) Tj E	ГQq000	rgBT/Overlocl
47	Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC–ICP-MS. Analytical and Bioanalytical Chemistry, 2007, 387, 1949-1954.	1.9	37
48	Method development for the simultaneous determination of methylmercury and inorganic mercury in seafood. Food Control, 2014, 46, 351-359.	2.8	37
49	Quantitative aspects of the separation of arsenical species by free solution capillary electrophoresis. Fresenius' Journal of Analytical Chemistry, 1994, 348, 810-814.	1.5	35
50	Certified reference materials for analytical mercury speciation in biological and environmental matrices: Do they meet user needs?; a review. Analytica Chimica Acta, 2012, 720, 9-15.	2.6	30
51	Characterisation, validation and comparison of three methods for the extraction of phosphate from sediments. Analytica Chimica Acta, 1998, 376, 183-195.	2.6	28
52	Inorganic Arsenic Determination in Food: A Review of Analytical Proposals and Quality Assessment Over the Last Six Years. Applied Spectroscopy, 2017, 71, 25-69.	1.2	28
53	Arsenic speciation in soils and Erica andevalensis Cabezudo & Rivera and Erica australis L. from SĂ£o Domingos Mine area, Portugal. Journal of Geochemical Exploration, 2012, 119-120, 51-59.	1.5	27
54	Direct solid sample analysis with graphite furnace atomic absorption spectrometry—A fast and reliable screening procedure for the determination of inorganic arsenic in fish and seafood. Talanta, 2015, 134, 224-231.	2.9	26

#	Article	IF	CITATIONS
55	Sequential extraction of trace metals from sediments. Fresenius' Journal of Analytical Chemistry, 1995, 351, 197-203.	1.5	24
56	Study of selenocompounds from selenium-enriched culture of edible sprouts. Food Chemistry, 2013, 141, 3738-3743.	4.2	24
57	A new organic-rich soil reference material certified for its EDTA- and acetic acid- extractable contents of Cd, Cr, Cu, Ni, Pb and Zn, following collaboratively tested and harmonised procedures. Journal of Environmental Monitoring, 2001, 3, 238-242.	2.1	23
58	Does boiling affect the bioaccessibility of selenium from cabbage?. Food Chemistry, 2015, 181, 304-309.	4.2	23
59	Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41. Food Chemistry, 2016, 213, 169-179.	4.2	22
60	Selenium speciation by capillary electrophoresis. TrAC - Trends in Analytical Chemistry, 2008, 27, 183-189.	5.8	20
61	Extractable chromium determination in soils by AAS. Mikrochimica Acta, 1995, 119, 251-258.	2.5	19
62	Analytical approaches to the determination of phosphorus partitioning patterns in sediments. Journal of Environmental Monitoring, 2003, 5, 312-318.	2.1	19
63	Selenium uptake by edible plants from enriched peat. Scientia Horticulturae, 2013, 164, 428-433.	1.7	19
64	Mercury(<scp>ii</scp>) and methylmercury determination in water by liquid chromatography hyphenated to cold vapour atomic fluorescence spectrometry after online short-column preconcentration. Analytical Methods, 2015, 7, 2699-2706.	1.3	19
65	New Sediment and Soil CRMs for Extractable Trace Metal Content. International Journal of Environmental Analytical Chemistry, 2001, 79, 81-95.	1.8	18
66	On-line photodecomposition for the determination of antimony species. Applied Organometallic Chemistry, 2006, 20, 12-19.	1.7	18
67	Inorganic mercury and methylmercury determination in polluted waters by HPLC coupled to cold vapour atomic fluorescence spectroscopy. International Journal of Environmental Analytical Chemistry, 2012, 92, 909-921.	1.8	17
68	Comparison of three strategies to evaluate uncertainty from in-house validation data. A case study: mercury determination in sediments. Analytical and Bioanalytical Chemistry, 2006, 385, 1298-1303.	1.9	15
69	Effects of sample processing on arsenic speciation in marine macroalgae. Analytical Methods, 2013, 5, 2543.	1.3	15
70	Determination of total cadmium, lead, arsenic, mercury and inorganic arsenic in mushrooms: outcome of IMEP-116 and IMEP-39. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 54-67.	1.1	15
71	Comparison of chemical modifiers for selenium determination in soil aqua regia extracts by ZETAAS. Talanta, 2006, 69, 1118-1122.	2.9	14
72	A new quality control soil material for monitoring trace metals in accidentally polluted areas. Analytica Chimica Acta, 2005, 533, 41-49.	2.6	12

#	Article	IF	CITATIONS
73	Different strategies to assess Cu and Pb mobilization in polluted river sediments. Fresenius' Journal of Analytical Chemistry, 1991, 341, 631-635.	1.5	11
74	Solid-phase extraction (SPE) assays to ascertain the mechanisms of retention of antimony species in several stationary phases. Microchemical Journal, 2011, 97, 74-77.	2.3	11
75	Assessment of Extractants for the Determination of Thallium in an Accidentally Polluted Soil. Bulletin of Environmental Contamination and Toxicology, 2008, 81, 334-338.	1.3	9
76	Occurrence of methylated arsenic species in parts of plants growing in polluted soils. International Journal of Environmental Analytical Chemistry, 2011, 91, 844-855.	1.8	8
77	Antimony speciation in spirits stored in PET bottles: identification of a novel antimony complex. Journal of Analytical Atomic Spectrometry, 2017, 32, 1109-1118.	1.6	7
78	Assessment and validation of ICP-MS and IC-ICP-MS methods for the determination of total, extracted and speciated arsenic. Application to samples from a soil-rice system at varying the irrigation method. Journal of Environmental Management, 2022, 302, 114105.	3.8	7
79	12. Arsenic speciation in environmental matrices. Techniques and Instrumentation in Analytical Chemistry, 1995, 17, 285-304.	0.0	6
80	Comparison of In Vitro PBET and Phosphoric Acid Extraction as an Approach to Estimate Selenite and Selenate Bioaccessibility from Soil. Water, Air, and Soil Pollution, 2011, 222, 315-324.	1.1	6
81	Arsenosugar standards extracted from algae: Isolation, characterization and use for identification and quantification purposes. Journal of Chromatography A, 2020, 1609, 460459.	1.8	6
82	Heavy metal partitioning in sediments of a highly polluted Mediterranean river (Besos, Barcelona, NE) Tj ETQq0 0 International Association of Theoretical and Applied Limnology, 1994, 25, 2047-2050.	0 rgBT /Ov 0.1	verlock 10 Tf 1
83	Trace metal partitioning in sediments: A common sequential extraction procedure. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1993, 25, 1147-1149.	0.1	0
84	Sampling and sample processing: Fit-for-purpose techniques. Comprehensive Analytical Chemistry, 2019, 85, 53-88.	0.7	0
	Assessment of Inorganic Priority Pollutants in Contaminated Soils: Harmonization of Analytical		

Assessment of Inorganic Priority Pollutants in Contaminated Soils: Harmonization of Analytical Protocols For Heavy Metal Extraction: Analytical Speciation. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 95-116.	0.1	0
---	-----	---