
Jo-Anne R Dillon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4479306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Medicine, 2017, 14, e1002344.	8.4	481
2	Gonorrhoea. Nature Reviews Disease Primers, 2019, 5, 79.	30.5	284
3	World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of new data and evidence to inform international collaborative actions and research efforts. Sexual Health, 2019, 16, 412.	0.9	177
4	Multidrug-resistant gonorrhea: A research and development roadmap to discover new medicines. PLoS Medicine, 2017, 14, e1002366.	8.4	129
5	Review and International Recommendation of Methods for Typing Neisseria gonorrhoeae Isolates and Their Implications for Improved Knowledge of Gonococcal Epidemiology, Treatment, and Biology. Clinical Microbiology Reviews, 2011, 24, 447-458.	13.6	127
6	WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017–18: a retrospective observational study. Lancet Microbe, The, 2021, 2, e627-e636.	7.3	112
7	The epidemiology of global antibiotic resistance among Neisseria gonorrhoeae and Haemophilus ducreyi. Lancet, The, 1998, 351, S8-S11.	13.7	99
8	Garlic natural health products exhibit variable constituent levels and antimicrobial activity againstNeisseria gonorrhoeae, Staphylococcus aureus andEnterococcus faecalis. Phytotherapy Research, 2005, 19, 327-334.	5.8	63
9	Sequence Analysis of the Family of Penicillinase-Producing Plasmids of Neisseria gonorrhoeae. Plasmid, 2000, 43, 24-34.	1.4	62
10	Enterococcus faecalis divIVA: an essential gene involved in cell division, cell growth and chromosome segregation. Microbiology (United Kingdom), 2005, 151, 1381-1393.	1.8	62
11	Analysis of mutations in multiple loci of Neisseria gonorrhoeae isolates reveals effects of PIB, PBP2 and MtrR on reduced susceptibility to ceftriaxone. Journal of Antimicrobial Chemotherapy, 2011, 66, 1016-1023.	3.0	61
12	Characterisation of bla TEM genes and types of β-lactamase plasmids in Neisseria gonorrhoeae – the prevalent and conserved bla TEM-135 has not recently evolved and existed in the Toronto plasmid from the origin. BMC Infectious Diseases, 2014, 14, 454.	2.9	57
13	Gonococcal MinD Affects Cell Division in Neisseria gonorrhoeae and Escherichia coli and Exhibits a Novel Self-Interaction. Journal of Bacteriology, 2001, 183, 6253-6264.	2.2	55
14	Reduced Susceptibility to Azithromycin and High Percentages of Penicillin and Tetracycline Resistance in Neisseria gonorrhoeae Isolates from Manaus, Brazil, 1998. Sexually Transmitted Diseases, 2001, 28, 521-526.	1.7	51
15	Conservation of dynamic localization among MinD and MinE orthologues: oscillation ofNeisseria gonorrhoeaeproteins inEscherichia coli. Molecular Microbiology, 2002, 46, 493-504.	2.5	46
16	Deletion of the cell-division inhibitor MinC results in lysis of Neisseria gonorrhoeae. Microbiology (United Kingdom), 2001, 147, 225-237.	1.8	46
17	Retrospective Analysis of Antimicrobial Susceptibility Trends (2000–2009) in Neisseria gonorrhoeae Isolates from Countries in Latin America and the Caribbean Shows Evolving Resistance to Ciprofloxacin, Azithromycin and Decreased Susceptibility to Ceftriaxone. Sexually Transmitted Diseases, 2012, 39, 813-821.	1.7	44
18	Antimicrobial susceptibility and molecular determinants of quinolone resistance in Neisseria gonorrhoeae isolates from Shanghai. Journal of Antimicrobial Chemotherapy, 2006, 58, 868-872.	3.0	43

#	Article	IF	CITATIONS
19	Organization and transcription of the division cell wall (dcw) cluster in Neisseria gonorrhoeae. Gene, 2000, 251, 141-151.	2.2	40
20	Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18416-18421.	7.1	40
21	Antimicrobial Activity of Flavonoids From Piper lanceaefolium and Other Colombian Medicinal Plants Against Antibiotic Susceptible and Resistant Strains of Neisseria gonorrhoeae. Sexually Transmitted Diseases, 2011, 38, 82-88.	1.7	39
22	Two decades of the gonococcal antimicrobial surveillance program in South America and the Caribbean: challenges and opportunities. Sexually Transmitted Infections, 2013, 89, iv36-iv41.	1.9	36
23	Antimicrobial Susceptibility of Neisseria gonorrhoeae Isolates From Three Caribbean Countries: Trinidad, Guyana, and St. Vincent. Sexually Transmitted Diseases, 2001, 28, 508-514.	1.7	32
24	Challenges in the Control of Gonorrhea in South America and the Caribbean: Monitoring the Development of Resistance to Antibiotics. Sexually Transmitted Diseases, 2006, 33, 87-95.	1.7	30
25	Extracts of Canadian First Nations Medicinal Plants, Used as Natural Products, Inhibit Neisseria gonorrhoeae Isolates With Different Antibiotic Resistance Profiles. Sexually Transmitted Diseases, 2011, 38, 667-671.	1.7	30
26	Epidemic Methicillin-Susceptible Staphylococcus aureus Lineages Are the Main Cause of Infections at an Iranian University Hospital. Journal of Clinical Microbiology, 2011, 49, 3990-3993.	3.9	30
27	Multiple Origins and Replication Proteins Influence Biological Properties of β-Lactamase-Producing Plasmids from Neisseria gonorrhoeae. Journal of Bacteriology, 2001, 183, 5472-5481.	2.2	26
28	High Percentages of Resistance to Tetracycline and Penicillin and Reduced Susceptibility to Azithromycin Characterize the Majority of Strain Types of Neisseria gonorrhoeae Isolates in Cuba, 1995???1998. Sexually Transmitted Diseases, 2003, 30, 443-448.	1.7	24
29	Behavioral and Socioeconomic Risk Factors Associated with Probable Resistance to Ceftriaxone and Resistance to Penicillin and Tetracycline in Neisseria gonorrhoeae in Shanghai. PLoS ONE, 2014, 9, e89458.	2.5	22
30	Contribution of the swine model in the study of human sexually transmitted infections. Infection, Genetics and Evolution, 2018, 66, 346-360.	2.3	22
31	Antimicrobial resistance genetic factor identification from whole-genome sequence data using deep feature selection. BMC Bioinformatics, 2019, 20, 535.	2.6	22
32	Clusters of circulating Neisseria gonorrhoeae strains and association with antimicrobial resistance in Shanghai. Journal of Antimicrobial Chemotherapy, 2008, 61, 478-487.	3.0	20
33	Molecular epidemiology and novel combinations of auxotype, serovar, and plasmid content in tetracycline-resistant <i>Neisseria gonorrhoeae</i> isolated in Canada. Canadian Journal of Microbiology, 1990, 36, 64-67.	1.7	19
34	Identification of the Coiled-coil Domains of Enterococcus faecalis DivIVA that Mediate Oligomerization and their Importance for Biological Function. Journal of Biochemistry, 2008, 144, 63-76.	1.7	19
35	Molecular epidemiology ofNeisseria gonorrhoeaeisolates from Saskatchewan, Canada: utility of NG-MAST in predicting antimicrobial susceptibility regionally. Sexually Transmitted Infections, 2014, 90, 297-302.	1.9	19
36	A conserved polar region in the cell division site determinant MinD is required for responding to MinE-induced oscillation but not for localization within coiled arrays. Research in Microbiology, 2005, 156, 17-29.	2.1	18

#	Article	IF	CITATIONS
37	Using Crude Whole-Genome Assemblies of Neisseria gonorrhoeae as a Platform for Strain Analysis: Clonal Spread of Gonorrhea Infection in Saskatchewan, Canada. Journal of Clinical Microbiology, 2014, 52, 3772-3776.	3.9	18
38	Resistance to Ceftriaxone and Azithromycin in Neisseria gonorrhoeae Isolates From 7 Countries of South America and the Caribbean: 2010–2011. Sexually Transmitted Diseases, 2017, 44, 157-160.	1.7	18
39	A MinD mutant of enterohemorrhagic E.Âcoli O157:H7 has reduced adherence to human epithelial cells. Microbial Pathogenesis, 2011, 51, 378-383.	2.9	16
40	The distinctive cell division interactome of Neisseria gonorrhoeae. BMC Microbiology, 2017, 17, 232.	3.3	16
41	High levels of susceptibility to new and older antibiotics in Neisseria gonorrhoeae isolates from Saskatchewan (2003–15): time to consider point-of-care or molecular testing for precision treatment?. Journal of Antimicrobial Chemotherapy, 2018, 73, 118-125.	3.0	16
42	Quality Assurance for Antimicrobial Susceptibility Testing of Neisseria gonorrhoeae in Canada, 2003 to 2012. Journal of Clinical Microbiology, 2015, 53, 3646-3649.	3.9	15
43	Multiplex Real-Time PCR Assay for Simultaneous Identification of Neisseria gonorrhoeae and Its Ciprofloxacin Susceptibility Status. Journal of Clinical Microbiology, 2017, 55, 3201-3209.	3.9	15
44	Comparison of <i>Neisseria gonorrhoeae</i> Multiantigen Sequence Typing and <i>porB</i> Sequence Analysis for Identification of Clusters of <i>N. gonorrhoeae</i> Isolates. Journal of Clinical Microbiology, 2009, 47, 489-491.	3.9	14
45	Sustainable Antimicrobial Surveillance Programs Essential for Controlling Neisseria gonorrhoeae Superbug. Sexually Transmitted Diseases, 2011, 38, 899-901.	1.7	14
46	Attenuated virulence of min operon mutants of Neisseria gonorrhoeae and their interactions with human urethral epithelial cells. Microbes and Infection, 2011, 13, 545-554.	1.9	14
47	Importance of drug resistance in gonococci: from mechanisms to monitoring. Current Opinion in Infectious Diseases, 1999, 12, 35-40.	3.1	14
48	A β-lactamase-producing plasmid from Neisseria gonorrhoeae carrying a unique 6 bp deletion in blaTEM-1 encoding a truncated 24 kDa TEM-1 penicillinase that hydrolyses ampicillin slowly. Journal of Antimicrobial Chemotherapy, 2019, 74, 2904-2912.	3.0	12
49	Expression of Neisseria gonorrhoeae cell division genes ftsZ, ftsE and minD isÂinfluenced by environmental conditions. Research in Microbiology, 2001, 152, 781-791.	2.1	11
50	Detection of a Novel Tet M Determinant in Tetracycline-Resistant Neisseria gonorrhoeae from Uruguay, 1996–1999. Sexually Transmitted Diseases, 2002, 29, 792-797.	1.7	11
51	Influence of Conserved and Hypervariable Genetic Markers on Genotyping Circulating Strains of Neisseria gonorrhoeae. PLoS ONE, 2011, 6, e28259.	2.5	11
52	Longitudinal Analysis of the Evolution and Dissemination of Neisseria gonorrhoeae Strains (Saskatchewan, Canada, 2005 to 2008) Reveals Three Major Circulating Strains and Convergent Evolution of Ciprofloxacin and Azithromycin Resistance. Journal of Clinical Microbiology, 2012, 50, 3823-3830.	3.9	11
53	Regulation of minD by oxyR in Neisseria gonorrhoeae. Research in Microbiology, 2013, 164, 406-415.	2.1	11

Organization of carbamoyl-phosphate synthase genes in Neisseria gonorrhoeae includes a large, variable intergenic sequence which is also present in other Neisseria species. Microbiology (United) Tj ETQq0 0 0 rgBs /Overlaak 10 Tf 50 54

#	Article	IF	CITATIONS
55	Genomic, Transcriptional and Phenotypic Analysis of ftsE and ftsX of Neisseria gonorrhoeae. DNA Research, 2000, 7, 75-81.	3.4	10
56	The C-terminus of MinE from Neisseria gonorrhoeae acts as a topological specificity factor by modulating MinD activity in bacterial cell division. Research in Microbiology, 2006, 157, 333-344.	2.1	10
57	Construction of miniplasmids from the 7.2-kb and 5.1-kb penicillinase-producing plasmids of Neisseria gonorrhoeae reveals two replication regions. Plasmid, 1988, 20, 232-240.	1.4	9
58	Molecular Epidemiology ofNeisseria gonorrheaelsolates with Plasmid-Mediated Tetracycline Resistance in Canada: Temporal and Geographical Trends (1986-1997). Microbial Drug Resistance, 2003, 9, 353-360.	2.0	9
59	From zero to zero in 100 years: gonococcal antimicrobial resistance. Microbiology Australia, 2016, 37, 173.	0.4	9
60	Fluoroquinolone Resistance in Neisseria gonorrhoeae: Fitness Cost or Benefit?. Journal of Infectious Diseases, 2012, 205, 1775-1777.	4.0	8
61	Mitigating the Emergence and Spread of Multidrug- and Extensively Drug-Resistant Gonorrhea. Sexually Transmitted Diseases, 2014, 41, 238-239.	1.7	8
62	Quality assurance for antimicrobial susceptibility testing of <i>Neisseria gonorrhoeae</i> in Latin American and Caribbean countries, 2013–2015. Sexually Transmitted Infections, 2018, 94, 479-482.	1.9	8
63	Cen2Epi: an automated whole-genome sequencing pipeline for linking full genomes to antimicrobial susceptibility and molecular epidemiological data in Neisseria gonorrhoeae. BMC Genomics, 2019, 20, 165.	2.8	8
64	Revised simulation model does not predict rebound in gonorrhoea prevalence where core groups are treated in the presence of antimicrobial resistance. Sexually Transmitted Infections, 2015, 91, 300-302.	1.9	7
65	Genomic Analysis Reveals Antibiotic-Susceptible Clones and Emerging Resistance in Neisseria gonorrhoeae in Saskatchewan, Canada. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	7
66	The N Terminus of MinD Contains Determinants Which Affect Its Dynamic Localization and Enzymatic Activity. Journal of Bacteriology, 2004, 186, 7175-7185.	2.2	6
67	Evaluation of a Hydrogel-Based Diagnostic Approach for the Point-of-Care Based Detection of Neisseria gonorrhoeae. Antibiotics, 2018, 7, 70.	3.7	6
68	A novel insertion sequence in the cryptic plasmid of Neisseria gonorrhoeae may alter the B protein at the translational level. Plasmid, 1988, 19, 39-45.	1.4	5
69	Time to Develop Standardized Molecular Diagnostics for the Simultaneous Detection of Neisseria gonorrhoeae and Its Antimicrobial Resistance. Sexually Transmitted Diseases, 2018, 45, 316-318.	1.7	5
70	Development of flow cytometry based adherence assay for Neisseria gonorrhoeae using 5′-carboxyfluorosceinsuccidyl ester. BMC Microbiology, 2019, 19, 67.	3.3	5
71	Suppression of ERK activation in urethral epithelial cells infected with Neisseria gonorrhoeae and its isogenic minD mutant contributes to anti-apoptosis. Microbes and Infection, 2015, 17, 317-322.	1.9	4
72	Can Social Network Analysis Help Address the High Rates of Bacterial Sexually Transmitted Infections in Saskatchewan?. Sexually Transmitted Diseases, 2017, 44, 338-343.	1.7	4

#	Article	IF	CITATIONS
73	Plasmid analysis and antimicrobial susceptibilities ofPeptostreptococcusspecies. FEMS Microbiology Letters, 1989, 61, 47-52.	1.8	3
74	Demographic and behavioural characteristics predict bacterial STI reinfection and coinfection among a cross-sectional sample of laboratory-confirmed gonorrhea cases in a local health region from Saskatchewan, Canada. Canadian Journal of Public Health, 2015, 106, e17-21.	2.3	3
75	An Escherichia coli expression model reveals the species-specific function of FtsA from Neisseria gonorrhoeae in cell division. FEMS Microbiology Letters, 2017, 364, .	1.8	3
76	Association of Neisseria gonorrhoeae genogroups and specific PBP2/MtrR/PorB mutation patterns with susceptibility to penicillin in a susceptible gonococcal population. Journal of Antimicrobial Chemotherapy, 2018, 73, 2682-2686.	3.0	3
77	EF1025, a Hypothetical Protein From Enterococcus faecalis, Interacts With DivIVA and Affects Cell Length and Cell Shape. Frontiers in Microbiology, 2020, 11, 83.	3.5	3
78	Bioinformatics tools used for whole-genome sequencing analysis of <i>Neisseria gonorrhoeae</i> : a literature review. Briefings in Functional Genomics, 2022, 21, 78-89.	2.7	3
79	Suitability of a chocolate agar-based medium for the transportation and long term storage of Neisseria gonorrhoeae isolates at room temperature. Journal of Microbiological Methods, 2018, 144, 86-87.	1.6	2
80	High Prevalence of Macrolide and Fluoroquinolone Resistance–Mediating Mutations in Mycoplasma genitalium–Positive Urine Specimens From Saskatchewan. Sexually Transmitted Diseases, 2021, 48, 680-684.	1.7	2
81	Problems and promises for out-of-lab tests for the detection of sexually transmitted diseases. Clinical Biochemistry, 1993, 26, 25-27.	1.9	1
82	High levels of susceptibility to new and older antibiotics in Neisseria gonorrhoeae isolates from Saskatchewan (2003–15): time to consider point-of-care or molecular testing for precision treatment?—authors' response. Journal of Antimicrobial Chemotherapy, 2018, 73, 829-830.	3.0	1
83	Characterization of antimicrobial resistance genes from Neisseria gonorrhoeae positive remnant Aptima urine specimens. Future Microbiology, 2019, 14, 1559-1571.	2.0	1
84	Gen2EpiGUI: User-Friendly Pipeline for Analyzing Whole-Genome Sequencing Data for Epidemiological Studies of Neisseria gonorrhoeae. Sexually Transmitted Diseases, 2020, 47, e42-e44.	1.7	1
85	β-Lactamase-producing Neisseria meningitidis. Clinical Microbiology Newsletter, 1984, 6, 165-166.	0.7	0
86	Female Partner Notification Is a Promising Prevention Strategy for Controlling Sexually Transmitted Infections in Shanghai. Sexually Transmitted Diseases, 2014, 41, 702-705.	1.7	0
87	Identification of Demographic and Behavioral Risk Factors for Antibiotic Resistant Gonorrhea Infections to Combat the Emergence of Potentially Untreatable Infections. Sexually Transmitted Diseases, 2014, 41, 730-731.	1.7	0
88	CcpN: a moonlighting protein regulating catabolite repression of gluconeogenic genes in <i>Bacillus subtilis</i> also affects cell length and interacts with DivIVA. Canadian Journal of Microbiology, 2020, 66, 723-732.	1.7	0
89	Phylogenomic analysis of Neisseria gonorrhoeae: a promising tool for tracking putative gonococcal sexual networks. Lancet Infectious Diseases, The, 2020, 20, 391-392.	9.1	0