Sook-Lei Liew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/447649/publications.pdf

Version: 2024-02-01

55	2,161 citations	19	42
papers		h-index	g-index
69	69	69	4270
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Testing a convolutional neural networkâ€based hippocampal segmentation method in a stroke population. Human Brain Mapping, 2022, 43, 234-243.	3.6	13
2	The <scp>ENIGMA</scp> Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Human Brain Mapping, 2022, 43, 129-148.	3.6	54
3	A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES) Tj ETQq1 1 0.78431	14 rgBT /C	Overlock 10 Tf
4	Corticospinal Tract Lesion Load Originating From Both Ventral Premotor and Primary Motor Cortices Are Associated With Post-stroke Motor Severity. Neurorehabilitation and Neural Repair, 2022, 36, 179-182.	2.9	10
5	Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis. Journal of the American Heart Association, 2022, 11, e025109.	3.7	8
6	Observational Study of Neuroimaging Biomarkers of Severe Upper Limb Impairment After Stroke. Neurology, 2022, 99, .	1.1	10
7	A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. Scientific Data, 2022, 9, .	5.3	33
8	Development of a Low-Cost, Modular Muscle–Computer Interface for At-Home Telerehabilitation for Chronic Stroke. Sensors, 2021, 21, 1806.	3.8	11
9	Brainhack: Developing a culture of open, inclusive, community-driven neuroscience. Neuron, 2021, 109, 1769-1775.	8.1	27
10	Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis. Neurolmage, 2021, 237, 118207.	4.2	22
11	Repetitive Peripheral Sensory Stimulation as an Add-On Intervention for Upper Limb Rehabilitation in Stroke: A Randomized Trial. Neurorehabilitation and Neural Repair, 2021, 35, 1059-1064.	2.9	2
12	Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide. Brain Communications, 2021, 3, fcab254.	3.3	7
13	Can we predict realâ€time <scp>fMRI</scp> neurofeedback learning success from pretraining brain activity?. Human Brain Mapping, 2020, 41, 3839-3854.	3.6	27
14	Automated hippocampal segmentation improved by convolutional neural network approach in participants with a history of cerebrovascular accident. Alzheimer's and Dementia, 2020, 16, e041634.	0.8	0
15	ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 2020, 10, 100.	4.8	365
16	A Virtual Reality Muscle–Computer Interface for Neurorehabilitation in Chronic Stroke: A Pilot Study. Sensors, 2020, 20, 3754.	3.8	23
17	Embodiment Is Related to Better Performance on a Brain–Computer Interface in Immersive Virtual Reality: A Pilot Study. Sensors, 2020, 20, 1204.	3.8	43
18	Transfer of motor skill between virtual reality viewed using a head-mounted display and conventional screen environments. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 48.	4.6	16

#	Article	IF	Citations
19	Applications of Head-Mounted Displays for Virtual Reality in Adult Physical Rehabilitation: A Scoping Review. American Journal of Occupational Therapy, 2020, 74, 7405205060p1-7405205060p15.	0.3	18
20	Electromyography as a Suitable Input for Virtual Reality-Based Biofeedback in Stroke Rehabilitation. Communications in Computer and Information Science, 2019, , 274-281.	0.5	5
21	Multimodal Head-Mounted Virtual-Reality Brain-Computer Interface for Stroke Rehabilitation. Lecture Notes in Computer Science, 2019, , 165-179.	1.3	3
22	A comparison of automated lesion segmentation approaches for chronic stroke T1â€weighted MRI data. Human Brain Mapping, 2019, 40, 4669-4685.	3.6	49
23	The LONI QC System: A Semi-Automated, Web-Based and Freely-Available Environment for the Comprehensive Quality Control of Neuroimaging Data. Frontiers in Neuroinformatics, 2019, 13, 60.	2.5	34
24	Stroke atlas of the brain: Voxel-wise density-based clustering of infarct lesions topographic distribution. NeuroImage: Clinical, 2019, 24, 101981.	2.7	16
25	Editorial: Collaborative Efforts for Understanding the Human Brain. Frontiers in Neuroinformatics, 2019, 13, 38.	2.5	1
26	Mindfulness Meditation Effects on Poststroke Spasticity: A Feasibility Study. Journal of Evidence-based Integrative Medicine, 2019, 24, 2515690X1985594.	2.6	10
27	Effects of a Brain-Computer Interface With Virtual Reality (VR) Neurofeedback: A Pilot Study in Chronic Stroke Patients. Frontiers in Human Neuroscience, 2019, 13, 210.	2.0	87
28	Differences in high-definition transcranial direct current stimulation over the motor hotspot versus the premotor cortex on motor network excitability. Scientific Reports, 2019, 9, 17605.	3.3	22
29	A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Scientific Data, 2018, 5, 180011.	5.3	170
30	Pipeline for Analyzing Lesions After Stroke (PALS). Frontiers in Neuroinformatics, 2018, 12, 63.	2.5	19
31	Variable Neural Contributions to Explicit and Implicit Learning During Visuomotor Adaptation. Frontiers in Neuroscience, 2018, 12, 610.	2.8	25
32	Distributed cortical structural properties contribute to motor cortical excitability and inhibition. Brain Structure and Function, 2018, 223, 3801-3812.	2.3	7
33	A Preliminary Comparison of Motor Learning Across Different Non-invasive Brain Stimulation Paradigms Shows No Consistent Modulations. Frontiers in Neuroscience, 2018, 12, 253.	2.8	27
34	Laterality of Poststroke Cortical Motor Activity during Action Observation Is Related to Hemispheric Dominance. Neural Plasticity, 2018, 2018, 1-14.	2.2	13
35	Plasticity of Sensorimotor Networks. Neuroscientist, 2017, 23, 185-196.	3.5	16
36	Promoting Translational Research Among Movement Science, Occupational Science, and Occupational Therapy. Journal of Motor Behavior, 2017, 49, 1-7.	0.9	10

#	Article	IF	CITATIONS
37	Transfer of a skilled motor learning task between virtual and conventional environments., 2017,,.		11
38	REINVENT: A low-cost, virtual reality brain-computer interface for severe stroke upper limb motor recovery. , 2017, , .		24
39	The Effects of Sensory Manipulations on Motor Behavior: From Basic Science to Clinical Rehabilitation. Journal of Motor Behavior, 2017, 49, 67-77.	0.9	15
40	Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review. Frontiers in Neurology, 2017, 8, 29.	2.4	59
41	Calculating the Laterality Index Using FSL for Stroke Neuroimaging Data. GigaScience, 2016, 5, .	6.4	7
42	Brainhack: a collaborative workshop for the open neuroscience community. GigaScience, 2016, 5, 16.	6.4	34
43	Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback. Neurorehabilitation and Neural Repair, 2016, 30, 671-675.	2.9	89
44	Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Frontiers in Human Neuroscience, 2014, 8, 378.	2.0	162
45	Experience with an amputee modulates one's own sensorimotor response during action observation. Neurolmage, 2013, 69, 138-145.	4.2	14
46	Exploring the neural correlates of visual creativity. Social Cognitive and Affective Neuroscience, 2013, 8, 475-480.	3.0	139
47	Modulating the Motor System by Action Observation After Stroke. Stroke, 2013, 44, 2247-2253.	2.0	67
48	Both novelty and expertise increase action observation network activity. Frontiers in Human Neuroscience, 2013, 7, 541.	2.0	32
49	The Human Mirror Neuron System, Social Control, and Language. Handbooks of Sociology and Social Research, 2013, , 183-205.	0.1	4
50	Understanding Otherness: The Neural Bases of Action Comprehension and Pain Empathy in a Congenital Amputee. Cerebral Cortex, 2012, 22, 811-819.	2.9	54
51	The Mirror Neuron System: Innovations and Implications for Occupational Therapy. OTJR Occupation, Participation and Health, 2012, 32, 79-86.	0.8	9
52	The Neuroscience of Language and Action in Occupations: A Review of Findings from Brain and Behavioral Sciences. Journal of Occupational Science, 2011, 18, 97-114.	1.3	6
53	Who's Afraid of the Boss: Cultural Differences in Social Hierarchies Modulate Self-Face Recognition in Chinese and Americans. PLoS ONE, 2011, 6, e16901.	2.5	70
54	Familiarity modulates mirror neuron and mentalizing regions during intention understanding. Human Brain Mapping, 2011, 32, 1986-1997.	3.6	93

SOOK-LEI LIEW

#	Article	lF	CITATIONS
55	Semi-automated Robust Quantification of Lesions (SRQL) Toolbox. Research Ideas and Outcomes, 0, 3, e12259.	1.0	7