List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/447463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paperâ€Like Writable Nanoparticle Network Sheets for Maskâ€Less MOF Patterning. Advanced Functional Materials, 2022, 32, .	14.9	5
2	Kombination einer genetisch engineerten Oxidase mit wasserstoffbrückengebundenen organischen Gerüsten (HOFs) für hocheffiziente Biokomposite. Angewandte Chemie, 2022, 134, .	2.0	3
3	Combining a Genetically Engineered Oxidase with Hydrogenâ€Bonded Organic Frameworks (HOFs) for Highly Efficient Biocomposites. Angewandte Chemie - International Edition, 2022, 61, .	13.8	46
4	Selfâ€Assembly of Oriented Antibodyâ€Decorated Metal–Organic Framework Nanocrystals for Activeâ€Targeting Applications. Advanced Materials, 2022, 34, e2106607.	21.0	23
5	Enzyme-powered micromotors based on hierarchical porous MOFs. Chinese Journal of Catalysis, 2022, 43, 584-585.	14.0	0
6	Honeycomb-structured copper indium sulfide thin films obtained <i>via</i> a nanosphere colloidal lithography method. Materials Advances, 2022, 3, 2884-2895.	5.4	6
7	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34, .	21.0	82
8	Selfâ€Assembly of Oriented Antibodyâ€Decorated Metal–Organic Framework Nanocrystals for Activeâ€Targeting Applications (Adv. Mater. 21/2022). Advanced Materials, 2022, 34, .	21.0	0
9	Can 3D electron diffraction provide accurate atomic structures of metal–organic frameworks?. Faraday Discussions, 2021, 225, 118-132.	3.2	34
10	Towards applications of bioentities@MOFs in biomedicine. Coordination Chemistry Reviews, 2021, 429, 213651.	18.8	121
11	Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nature Materials, 2021, 20, 93-99.	27.5	112
12	Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews, 2021, 121, 1077-1129.	47.7	372
13	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 11391-11397.	13.8	29
14	Stabilization of supramolecular membrane protein–lipid bilayer assemblies through immobilization in a crystalline exoskeleton. Nature Communications, 2021, 12, 2202.	12.8	35
15	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie, 2021, 133, 11492-11498.	2.0	6
16	Influence of the Synthesis and Storage Conditions on the Activity of <i>Candida antarctica</i> Lipase B ZIF-8 Biocomposites. ACS Applied Materials & Interfaces, 2021, 13, 51867-51875.	8.0	28
17	MOFs and Biomacromolecules for Biomedical Applications. , 2021, , 379-432.		0
18	On the completeness of three-dimensional electron diffraction data for structural analysis of metal–organic frameworks. Faraday Discussions, 2021, 231, 66-80.	3.2	14

#	Article	IF	CITATIONS
19	Semiâ€Automatic Deposition of Oriented Cu(OH) ₂ Nanobelts for the Heteroepitaxial Growth of Metal–Organic Framework Films. Advanced Materials Interfaces, 2021, 8, 2101039.	3.7	8
20	Crystallizing Sub 10 nm Covalent Organic Framework Thin Films via Interfacial–Residual Concomitance. Journal of the American Chemical Society, 2021, 143, 20916-20926.	13.7	38
21	Controlling the alignment of 1D nanochannel arrays in oriented metal–organic framework films for host–guest materials design. Chemical Science, 2020, 11, 8005-8012.	7.4	31
22	Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans. Chemical Science, 2020, 11, 10835-10843.	7.4	44
23	ZIF-C for targeted RNA interference and CRISPR/Cas9 based gene editing in prostate cancer. Chemical Communications, 2020, 56, 15406-15409.	4.1	37
24	Hierarchical Metalâ€Organic Framework Films with Controllable Meso/Macroporosity. Advanced Science, 2020, 7, 2002368.	11.2	32
25	Fatty acids as biomimetic replication agents for luminescent metal–organic framework patterns. Chemical Communications, 2020, 56, 12733-12736.	4.1	4
26	Engineered Porous Nanocomposites That Deliver Remarkably Low Carbon Capture Energy Costs. Cell Reports Physical Science, 2020, 1, 100070.	5.6	26
27	Continuousâ€Flow Synthesis of ZIFâ€8 Biocomposites with Tunable Particle Size. Angewandte Chemie, 2020, 132, 8200-8204.	2.0	21
28	Phase dependent encapsulation and release profile of ZIF-based biocomposites. Chemical Science, 2020, 11, 3397-3404.	7.4	70
29	Continuousâ€Flow Synthesis of ZIFâ€8 Biocomposites with Tunable Particle Size. Angewandte Chemie - International Edition, 2020, 59, 8123-8127.	13.8	55
30	Magnetically responsive horseradish peroxidase@ZIF-8 for biocatalysis. Chemical Communications, 2020, 56, 5775-5778.	4.1	41
31	Automatic Deposition of Oriented Copper Hydroxide Nanobelt Films for the Heteroepitaxial Growth of Metal-Organic Frameworks. ECS Meeting Abstracts, 2020, MA2020-02, 1999-1999.	0.0	0
32	Enzyme Encapsulation in a Porous Hydrogen-Bonded Organic Framework. Journal of the American Chemical Society, 2019, 141, 14298-14305.	13.7	210
33	MOF-based devices for detection and removal of environmental pollutants. , 2019, , 383-426.		7
34	Vapour-phase deposition of oriented copper dicarboxylate metal–organic framework thin films. Chemical Communications, 2019, 55, 10056-10059.	4.1	64
35	Encapsulation, Visualization and Expression of Genes with Biomimetically Mineralized Zeolitic Imidazolate Frameworkâ \in 8 (ZIFâ \in 8). Small, 2019, 15, e1902268.	10.0	95
36	Gene Therapy: Encapsulation, Visualization and Expression of Genes with Biomimetically Mineralized Zeolitic Imidazolate Frameworkâ€8 (ZIFâ€8) (Small 36/2019). Small, 2019, 15, 1970193.	10.0	4

PAOLO FALCARO

#	Article	IF	CITATIONS
37	Degradation of ZIF-8 in phosphate buffered saline media. CrystEngComm, 2019, 21, 4538-4544.	2.6	186
38	MOFBOTS: Metal–Organicâ€Frameworkâ€Based Biomedical Microrobots. Advanced Materials, 2019, 31, e1901592.	21.0	139
39	Innentitelbild: MOFâ€onâ€MOF: Oriented Growth of Multiple Layered Thin Films of Metal–Organic Frameworks (Angew. Chem. 21/2019). Angewandte Chemie, 2019, 131, 6856-6856.	2.0	1
40	MOFâ€onâ€MOF: Oriented Growth of Multiple Layered Thin Films of Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 6960-6964.	2.0	37
41	MOFâ€onâ€MOF: Oriented Growth of Multiple Layered Thin Films of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 6886-6890.	13.8	145
42	Carbohydrates@MOFs. Materials Horizons, 2019, 6, 969-977.	12.2	46
43	Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2348-2355.	13.7	351
44	Oriented Growth of Covalent Organic Framework (COF) Crystals on Metal-Hydroxides Thin Film. , 2019, , .		0
45	Influence of domestic and environmental weathering in the self-cleaning performance and durability of TiO2 photocatalytic coatings. Building and Environment, 2018, 132, 96-103.	6.9	14
46	Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8. Chemical Science, 2018, 9, 4217-4223.	7.4	131
47	Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today, 2018, 11, 13-21.	4.3	193
48	Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites. Chemistry of Materials, 2018, 30, 1069-1077.	6.7	146
49	Metal–Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano, 2018, 12, 13-23.	14.6	214
50	Below room temperature: How the photocatalytic activity of dense and mesoporous TiO2 coatings is affected. Applied Surface Science, 2018, 435, 769-775.	6.1	12
51	High-Throughput Screening of Metal–Organic Frameworks for Macroscale Heteroepitaxial Alignment. ACS Applied Materials & Interfaces, 2018, 10, 40938-40950.	8.0	18
52	A MOF-based carrier for <i>in situ</i> dopamine delivery. RSC Advances, 2018, 8, 25664-25672.	3.6	35
53	Conversion of Copper Carbonate into a Metal–Organic Framework. Chemistry of Materials, 2018, 30, 5630-5638.	6.7	30
54	(Invited) Device Fabrication – Positioning and Alignment of MOF Crystals. ECS Meeting Abstracts, 2018, , .	0.0	0

PAOLO FALCARO

#	Article	IF	CITATIONS
55	Sol–Gel Processing of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 2626-2645.	6.7	116
56	Metal–Organic Frameworks at the Biointerface: Synthetic Strategies and Applications. Accounts of Chemical Research, 2017, 50, 1423-1432.	15.6	464
57	Electrochemical sensing and catalysis using Cu ₃ (BTC) ₂ coating electrodes from Cu(OH) ₂ films. CrystEngComm, 2017, 19, 4194-4200.	2.6	25
58	An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 2017, 46, 3185-3241.	38.1	987
59	Centimetre-scale micropore alignment in oriented polycrystalline metal–organic framework films via heteroepitaxial growth. Nature Materials, 2017, 16, 342-348.	27.5	298
60	An Enzymeâ€Coated Metal–Organic Framework Shell for Synthetically Adaptive Cell Survival. Angewandte Chemie, 2017, 129, 8630-8635.	2.0	37
61	Correction: An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 2017, 46, 3853-3853.	38.1	30
62	Fe ₃ O ₄ @HKUST-1 and Pd/Fe ₃ O ₄ @HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic. CrystEngComm, 2017, 19, 4201-4210.	2.6	28
63	Magnetic Induction Framework Synthesis: A General Route to the Controlled Growth of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 6186-6190.	6.7	34
64	An Enzyme oated Metal–Organic Framework Shell for Synthetically Adaptive Cell Survival. Angewandte Chemie - International Edition, 2017, 56, 8510-8515.	13.8	152
65	MOF bio-composites for biocatalysis. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1030-C1030.	0.1	1
66	A Robust Metal–Organic Framework for Dynamic Lightâ€Induced Swing Adsorption of Carbon Dioxide. Chemistry - A European Journal, 2016, 22, 11176-11179.	3.3	55
67	Magnetic Metal–Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release. Advanced Materials, 2016, 28, 1839-1844.	21.0	107
68	Facile stabilization of cyclodextrin metal–organic frameworks under aqueous conditions via the incorporation of C ₆₀ in their matrices. Chemical Communications, 2016, 52, 5973-5976.	4.1	81
69	Transparent, Highly Insulating Polyethyl- and Polyvinylsilsesquioxane Aerogels: Mechanical Improvements by Vulcanization for Ambient Pressure Drying. Chemistry of Materials, 2016, 28, 6860-6868.	6.7	96
70	Magnetic Induction Swing Adsorption: An Energy Efficient Route to Porous Adsorbent Regeneration. Chemistry of Materials, 2016, 28, 6219-6226.	6.7	59
71	Biomimetics: Metal-Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells (Adv.) Tj ETQq	1 1 0,7843 21.0	14 ₃ rgBT /Ove
79	Controlling the Growth of Metal-Organic Frameworks Using Different Gravitational Forces.	2.0	19

Controlling the Growth of Metal-Organic Frameworks Using Differe European Journal of Inorganic Chemistry, 2016, 2016, 4499-4504. 72

2.0 12

PAOLO FALCARO

#	Article	IF	CITATIONS
73	Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Advanced Materials, 2016, 28, 7910-7914.	21.0	254
74	MaLISA – a cooperative method to release adsorbed gases from metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 18757-18762.	10.3	46
75	Visible Light Triggered CO ₂ Liberation from Silver Nanocrystals Incorporated Metal–Organic Frameworks. Advanced Functional Materials, 2016, 26, 4815-4821.	14.9	53
76	Emerging applications of metal–organic frameworks. CrystEngComm, 2016, 18, 6532-6542.	2.6	125
77	Chemical vapour deposition of zeolitic imidazolate framework thinÂfilms. Nature Materials, 2016, 15, 304-310.	27.5	528
78	Amino acids as biomimetic crystallization agents for the synthesis of ZIF-8 particles. CrystEngComm, 2016, 18, 4264-4267.	2.6	51
79	Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation. Chemical Communications, 2016, 52, 473-476.	4.1	230
80	Application of metal and metal oxide nanoparticles@MOFs. Coordination Chemistry Reviews, 2016, 307, 237-254.	18.8	479
81	Metal–Organic Frameworks: Biomimetic Replication of Microscopic Metal–Organic Framework Patterns Using Printed Protein Patterns (Adv. Mater. 45/2015). Advanced Materials, 2015, 27, 7483-7483.	21.0	1
82	Biomimetic Replication of Microscopic Metal–Organic Framework Patterns Using Printed Protein Patterns. Advanced Materials, 2015, 27, 7293-7298.	21.0	97
83	Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015, 6, 7240.	12.8	1,077
84	Electrochemical Film Deposition of the Zirconium Metal–Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap. Chemistry of Materials, 2015, 27, 1801-1807.	6.7	159
85	Tuning the phase transition of ZnO thin films through lithography: an integrated bottom-up andÂtop-down processing. Journal of Synchrotron Radiation, 2015, 22, 165-171.	2.4	11
86	Positioning of the HKUST-1 metal–organic framework (Cu ₃ (BTC) ₂) through conversion from insoluble Cu-based precursors. Inorganic Chemistry Frontiers, 2015, 2, 434-441.	6.0	54
87	Lead(<scp>ii</scp>) uptake by aluminium based magnetic framework composites (MFCs) in water. Journal of Materials Chemistry A, 2015, 3, 19822-19831.	10.3	141
88	Bioactive MIL-88A Framework Hollow Spheres via Interfacial Reaction In-Droplet Microfluidics for Enzyme and Nanoparticle Encapsulation. Chemistry of Materials, 2015, 27, 7903-7909.	6.7	121
89	ZnO as an Efficient Nucleating Agent for Rapid, Room Temperature Synthesis and Patterning of Zn-Based Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 690-699.	6.7	60
90	Hard X-rays and soft-matter: processing of sol–gel films from a top down route. Journal of Sol-Gel Science and Technology, 2014, 70, 236-244.	2.4	11

#	Article	IF	CITATIONS
91	Micropattern Formation by Molecular Migration via UVâ€induced Dehydration of Block Copolymers. Advanced Functional Materials, 2014, 24, 2801-2809.	14.9	5
92	Using Functional Nano- and Microparticles for the Preparation of Metal–Organic Framework Composites with Novel Properties. Accounts of Chemical Research, 2014, 47, 396-405.	15.6	264
93	Exfoliated Graphene into Highly Ordered Mesoporous Titania Films: Highly Performing Nanocomposites from Integrated Processing. ACS Applied Materials & Interfaces, 2014, 6, 795-802.	8.0	27
94	Self-cleaning glass prepared from a commercial TiO2 nano-dispersion and its photocatalytic performance under common anthropogenic and atmospheric factors. Building and Environment, 2014, 71, 7-14.	6.9	62
95	Copper Conversion into Cu(OH) ₂ Nanotubes for Positioning Cu ₃ (BTC) ₂ MOF Crystals: Controlling the Growth on Flat Plates, 3D Architectures, and as Patterns. Advanced Functional Materials, 2014, 24, 1969-1977.	14.9	150
96	MOF positioning technology and device fabrication. Chemical Society Reviews, 2014, 43, 5513-5560.	38.1	600
97	Enhanced Photocatalytic Activity in Low-Temperature Processed Titania Mesoporous Films. Journal of Physical Chemistry C, 2014, 118, 12000-12009.	3.1	22
98	Evaluation of Coupling Protocols to Bind Beta-Glucosidase on Magnetic Nanoparticles. Journal of Nanoscience and Nanotechnology, 2014, 14, 6565-6573.	0.9	6
99	Temperature Matters: An Infrared Spectroscopic Investigation on the Photocatalytic Efficiency of Titania Coatings. Science of Advanced Materials, 2014, 6, 1330-1337.	0.7	8
100	3D Spatially Controlled Chemical Functionalization on Alumina Membranes. Science of Advanced Materials, 2014, 6, 1520-1524.	0.7	0
101	Combining UV Lithography and an Imprinting Technique for Patterning Metalâ€Organic Frameworks. Advanced Materials, 2013, 25, 4701-4705.	21.0	98
102	Architecturing Nanospace via Thermal Rearrangement for Highly Efficient Gas Separations. Journal of Physical Chemistry C, 2013, 117, 24654-24661.	3.1	14
103	Applications of magnetic metal–organic framework composites. Journal of Materials Chemistry A, 2013, 1, 13033.	10.3	275
104	Positioning an individual metal–organic framework particle using a magnetic field. Journal of Materials Chemistry C, 2013, 1, 42-45.	5.5	51
105	Combining Top-Down and Bottom-Up Routes for Fabrication of Mesoporous Titania Films Containing Ceria Nanoparticles for Free Radical Scavenging. ACS Applied Materials & Interfaces, 2013, 5, 3168-3175.	8.0	22
106	A high volume and low damage route to hydroxyl functionalization of carbon nanotubes using hard X-ray lithography. Carbon, 2013, 51, 430-434.	10.3	15
107	Simultaneous Microfabrication and Tuning of the Permselective Properties in Microporous Polymers Using Xâ€ray Lithography. Small, 2013, 9, 2277-2282.	10.0	12
108	Host–Guest Metal–Organic Frameworks for Photonics. Structure and Bonding, 2013, , 167-186.	1.0	6

#	Article	IF	CITATIONS
109	Study of 3D composition in a nanoscale sample using data-constrained modelling and multi-energy x-ray CT. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 015013.	2.0	19
110	Microfabrication of mesoporous silica encapsulated enzymes using deep X-ray lithography. Journal of Materials Chemistry, 2012, 22, 16191.	6.7	13
111	Hard X-rays meet soft matter: when bottom-up and top-down get along well. Soft Matter, 2012, 8, 3722.	2.7	33
112	Magnetic framework composites for polycyclic aromatic hydrocarbon sequestration. Journal of Materials Chemistry, 2012, 22, 11470.	6.7	62
113	Titanate nanofunnel brushes: toward functional interfacial applications. Chemical Communications, 2012, 48, 6130.	4.1	20
114	Top-down patterning of Zeolitic Imidazolate Framework composite thin films by deep X-ray lithography. Chemical Communications, 2012, 48, 7483.	4.1	51
115	Highly Luminescent Metal–Organic Frameworks Through Quantum Dot Doping. Small, 2012, 8, 80-88.	10.0	132
116	Rapid Detection of Hendra Virus Using Magnetic Particles and Quantum Dots. Advanced Healthcare Materials, 2012, 1, 631-634.	7.6	18
117	Patterning Techniques for Metal Organic Frameworks. Advanced Materials, 2012, 24, 3153-3168.	21.0	111
118	Doping Light Emitters into Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2012, 51, 8431-8433.	13.8	137
119	Hybrid materials with an increased resistance to hard X-rays using fullerenes as radical sponges. Journal of Synchrotron Radiation, 2012, 19, 586-590.	2.4	11
120	Functional three-dimensional nonlinear nanostructures in a gold ion nanocomposite. , 2011, , .		0
121	Direct nano-in-micropatterning of TiO2 thin layers and TiO2/Pt nanoelectrode arrays by deep X-ray lithography. Journal of Materials Chemistry, 2011, 21, 3597.	6.7	36
122	Chemical Tailoring of Hybrid Solâ^'Gel Thick Coatings As Hosting Matrix for Functional Patterned Microstructures. ACS Applied Materials & Interfaces, 2011, 3, 245-251.	8.0	22
123	Complete Characterization of α-Hopeite Microparticles: An Ideal Nucleation Seed for Metal Organic Frameworks. Crystal Growth and Design, 2011, 11, 5268-5274.	3.0	19
124	Shaping Mesoporous Films Using Dewetting on X-ray Pre-patterned Hydrophilic/Hydrophobic Layers and Pinning Effects at the Pattern Edge. Langmuir, 2011, 27, 3898-3905.	3.5	23
125	Method for Optimizing Coating Properties Based on an Evolutionary Algorithm Approach. Analytical Chemistry, 2011, 83, 6373-6380.	6.5	9
126	Fast Synthesis of MOF-5 Microcrystals Using Solâ^'Gel SiO ₂ Nanoparticles. Chemistry of Materials, 2011, 23, 929-934.	6.7	106

#	Article	IF	CITATIONS
127	Amino Functionalized SiO2nanoparticles for seeding MOF-5. IOP Conference Series: Materials Science and Engineering, 2011, 18, 052006.	0.6	1
128	A new method to position and functionalize metal-organic framework crystals. Nature Communications, 2011, 2, 237.	12.8	225
129	Nanocomposite mesoporous ordered films for lab-on-chip intrinsic surface enhanced Raman scattering detection. Nanoscale, 2011, 3, 3760.	5.6	45
130	X-rays to study, induce, and pattern structures in sol–gel materials. Journal of Sol-Gel Science and Technology, 2011, 57, 236-244.	2.4	15
131	Influence of the relative humidity on aminosilane molecular grafting properties. Journal of Sol-Gel Science and Technology, 2011, 60, 246-253.	2.4	3
132	Fabrication of functional nanostructured coatings by a combined sol–gel and plasma-enhanced chemical vapour deposition method. Journal of Sol-Gel Science and Technology, 2011, 60, 340-346.	2.4	5
133	Densification of sol–gel silica thin films induced by hard X-rays generated by synchrotron radiation. Journal of Synchrotron Radiation, 2011, 18, 280-286.	2.4	26
134	Dynamic Control of MOFâ€5 Crystal Positioning Using a Magnetic Field. Advanced Materials, 2011, 23, 3901-3906.	21.0	64
135	Lithography of porous materials for device fabrication. , 2011, , .		0
136	Deep Xâ€ray Lithography for Direct Patterning of PECVD Films. Plasma Processes and Polymers, 2010, 7, 459-465.	3.0	19
137	Functionalization of microarray devices: Process optimization using a multiobjective PSO and multiresponse MARS modeling. , 2010, , .		3
138	Writing Self-Assembled Mesostructured Films with In situ Formation of Gold Nanoparticles. Chemistry of Materials, 2010, 22, 2132-2137.	6.7	34
139	Influence of Temperature on the Photocatalytic Activity of Solâ~'Gel TiO2 Films. ACS Applied Materials & Interfaces, 2010, 2, 1294-1298.	8.0	26
140	Patterning block copolymer thin films by deep X-ray lithography. Soft Matter, 2010, 6, 3172.	2.7	12
141	Fabrication of Advanced Functional Devices Combining Soft Chemistry with Xâ€ray Lithography in One Step. Advanced Materials, 2009, 21, 4932-4936.	21.0	63
142	Multifunctional Integrated Platforms: Fabrication of Advanced Functional Devices Combining Soft Chemistry with Xâ€ray Lithography in One Step (Adv. Mater. 48/2009). Advanced Materials, 2009, 21, .	21.0	0
143	Self-Assembly of Shape Controlled Hierarchical Porous Thin Films: Mesopores and Nanoboxes. Chemistry of Materials, 2009, 21, 4846-4850.	6.7	21
144	Hierarchical Porous Silica Films with Ultralow Refractive Index. Chemistry of Materials, 2009, 21, 2055-2061.	6.7	57

#	Article	IF	CITATIONS
145	Orderâ^'Disorder in Self-Assembled Mesostructured Silica Films: A Concepts Review. Chemistry of Materials, 2009, 21, 2555-2564.	6.7	113
146	Fabrication of Mesoporous Functionalized Arrays by Integrating Deep Xâ€Ray Lithography with Dipâ€Pen Writing. Advanced Materials, 2008, 20, 1864-1869.	21.0	45
147	Formation of Monoclinic Hafnium Titanate Thin Films Via the Sol–Gel Method. Journal of the American Ceramic Society, 2008, 91, 2112-2116.	3.8	13
148	Mesoporous Thin Films: Properties and Applications. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 105-123.	0.2	3
149	Patterning Techniques for Mesostructured Films. Chemistry of Materials, 2008, 20, 607-614.	6.7	87
150	Time-Resolved Simultaneous Detection of Structural and Chemical Changes during Self-Assembly of Mesostructured Films. Journal of Physical Chemistry C, 2007, 111, 5345-5350.	3.1	54
151	Highly ordered self-assembled mesostructured membranes: Porous structure and pore surface coverage. Microporous and Mesoporous Materials, 2007, 103, 113-122.	4.4	30
152	Hafnia sol-gel films synthesized from HfCl4: Changes of structure and properties with the firing temperature. Journal of Sol-Gel Science and Technology, 2007, 42, 89-93.	2.4	30
153	Photocurable silica hybrid organic–inorganic films for photonic applications. Journal of Sol-Gel Science and Technology, 2007, 44, 59-64.	2.4	12
154	Highly Ordered Self-Assembled Mesostructured Hafnia Thin Films:Â An Example of Rewritable Mesostructure. Chemistry of Materials, 2006, 18, 4553-4560.	6.7	25
155	Mesostructured self-assembled titania films for photovoltaic applications. Microporous and Mesoporous Materials, 2006, 88, 304-311.	4.4	48
156	Thermal-induced phase transitions in self-assembled mesostructured films studied by small-angle X-ray scattering. Journal of Synchrotron Radiation, 2005, 12, 734-738.	2.4	35
157	Kinetics of polycondensation reactions during self-assembly of mesostructured films studied by in situ infrared spectroscopy. Chemical Communications, 2005, , 2384.	4.1	26
158	Highly Ordered "Defect-Free―Self-Assembled Hybrid Films with a Tetragonal Mesostructure. Journal of the American Chemical Society, 2005, 127, 3838-3846.	13.7	69
159	PbS-Doped Mesostructured Silica Films with High Optical Nonlinearity. Chemistry of Materials, 2005, 17, 4965-4970.	6.7	52
160	Electrical responses of silica mesostructured films to changes in environmental humidity and processing conditions. Journal of Non-Crystalline Solids, 2005, 351, 1980-1986.	3.1	24
161	Ordered Mesostructured Silica Films: Effect of Pore Surface on its Sensing Properties. Journal of Sol-Gel Science and Technology, 2004, 32, 107-110.	2.4	23
162	Humidity sensors based on mesoporous silica thin films synthesised by block copolymers. Journal of the European Ceramic Society, 2004, 24, 1969-1972.	5.7	80

#	Article	IF	CITATIONS
163	One-pot self-assembly of mesostructured silica films and membranes functionalised with fullerene derivativesElectronic supplementary information (ESI) available: selected analytical data of 2 and 3. See http://www.rsc.org/suppdata/jm/b4/b401916d/. Journal of Materials Chemistry, 2004, 14, 1838.	6.7	24
164	Silica Orthorhombic Mesostructured Films with Low Refractive Index and High Thermal Stability. Journal of Physical Chemistry B, 2004, 108, 10942-10948.	2.6	114
165	Relative humidity and alcohol sensors based on mesoporous silica thin films synthesised from block copolymers. Sensors and Actuators B: Chemical, 2003, 95, 107-110.	7.8	43
166	Orderâ^'Disorder Transitions and Evolution of Silica Structure in Self-Assembled Mesostructured Silica Films Studied through FTIR Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 4711-4717.	2.6	196
167	Sensoristic Applications of Self-assembled Mesostructured Silica Films. Sensor Letters, 2003, 1, 64-70.	0.4	25
168	Microstructural Evolution and Order-Disorder Transitions in Mesoporous Silica Films Studied by FTIR Spectroscopy. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	3