
Martin Eimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4472813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 1996, 99, 225-234.	0.3	853
2	Event-related brain potentials distinguish processing stages involved in face perception and recognition. Clinical Neurophysiology, 2000, 111, 694-705.	1.5	566
3	An ERP study on the time course of emotional face processing. NeuroReport, 2002, 13, 427-431.	1.2	565
4	Event-related brain potential correlates of emotional face processing. Neuropsychologia, 2007, 45, 15-31.	1.6	552
5	On the relation between brain potentials and the awareness of voluntary movements. Experimental Brain Research, 1999, 126, 128-133.	1.5	529
6	The face-specific N170 component reflects late stages in the structural encoding of faces. NeuroReport, 2000, 11, 2319-2324.	1.2	502
7	Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Biological Psychology, 1993, 35, 123-138.	2.2	427
8	The processing of emotional facial expression is gated by spatial attention: evidence from event-related brain potentials. Cognitive Brain Research, 2003, 16, 174-184.	3.0	425
9	Effects of masked stimuli on motor activation: Behavioral and electrophysiological evidence Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 1737-1747.	0.9	412
10	The role of spatial attention in the processing of facial expression: An ERP study of rapid brain responses to six basic emotions. Cognitive, Affective and Behavioral Neuroscience, 2003, 3, 97-110.	2.0	390
11	Effects of face inversion on the structural encoding and recognition of faces. Cognitive Brain Research, 2000, 10, 145-158.	3.0	386
12	Involuntary Attentional Capture is Determined by Task Set: Evidence from Event-related Brain Potentials. Journal of Cognitive Neuroscience, 2008, 20, 1423-1433.	2.3	289
13	Response facilitation and inhibition in subliminal priming. Biological Psychology, 2003, 64, 7-26.	2.2	283
14	Cross-Modal Interactions between Audition, Touch, and Vision in Endogenous Spatial Attention: ERP Evidence on Preparatory States and Sensory Modulations. Journal of Cognitive Neuroscience, 2002, 14, 254-271.	2.3	263
15	The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 2008, 45, 240-249.	2.4	245
16	The lateralized readiness potential as an on-line measure of central response activation processes. Behavior Research Methods, 1998, 30, 146-156.	1.3	228
17	Reward Priority of Visual Target Singletons Modulates Event-Related Potential Signatures of Attentional Selection. Psychological Science, 2009, 20, 245-251.	3.3	217
18	Does the face-specific N170 component reflect the activity of a specialized eye processor?. NeuroReport, 1998, 9, 2945-2948.	1.2	211

#	Article	IF	CITATIONS
19	Tactile-Visual Links in Exogenous Spatial Attention under Different Postures: Convergent Evidence from Psychophysics and ERPs. Journal of Cognitive Neuroscience, 2001, 13, 462-478.	2.3	200
20	Links between conscious awareness and response inhibition: Evidence from masked priming. Psychonomic Bulletin and Review, 2002, 9, 514-520.	2.8	194
21	The neural basis of attentional control in visual search. Trends in Cognitive Sciences, 2014, 18, 526-535.	7.8	194
22	Stimulus-response compatibility and automatic response activation: Evidence from psychophysiological studies Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 837-854.	0.9	182
23	Facilitatory and inhibitory effects of masked prime stimuli on motor activation and behavioural performance. Acta Psychologica, 1999, 101, 293-313.	1.5	173
24	ERP effects of intermodal attention and cross-modal links in spatial attention. Psychophysiology, 1998, 35, 313-327.	2.4	169
25	S-R compatibility and response selection. Acta Psychologica, 1995, 90, 301-313.	1.5	167
26	Prosopagnosia and structural encoding of faces. NeuroReport, 1999, 10, 255-259.	1.2	160
27	An event-related brain potential study of cross-modal links in spatial attention between vision and touch. Psychophysiology, 2000, 37, 697-705.	2.4	156
28	Attentional capture by task-irrelevant fearful faces is revealed by the N2pc component. Biological Psychology, 2007, 74, 108-112.	2.2	155
29	Modulations of early somatosensory ERP components by transient and sustained spatial attention. Experimental Brain Research, 2003, 151, 24-31.	1.5	154
30	Crossmodal links in endogenous and exogenous spatial attention: evidence from event-related brain potential studies. Neuroscience and Biobehavioral Reviews, 2001, 25, 497-511.	6.1	151
31	Masked prime stimuli can bias "free―choices between response alternatives. Psychonomic Bulletin and Review, 2004, 11, 463-468.	2.8	148
32	Spatial cueing, sensory gating and selective response preparation: an ERP study on visuo-spatial orienting. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1993, 88, 408-420.	2.0	145
33	Motor activation with and without inhibition: Evidence for a threshold mechanism in motor control. Perception & Psychophysics, 2002, 64, 148-162.	2.3	143
34	ERPs reveal subliminal processing of fearful faces. Psychophysiology, 2008, 45, 318-326.	2.4	140
35	Attentional Capture by Salient Distractors during Visual Search Is Determined by Temporal Task Demands. Journal of Cognitive Neuroscience, 2012, 24, 749-759.	2.3	137
36	Attentional selection and identification of visual objects are reflected by distinct electrophysiological responses. Experimental Brain Research, 2007, 181, 531-536.	1.5	134

#	Article	IF	CITATIONS
37	"Sensory gating―as a mechanism for visuospatial orienting: Electrophysiological evidence from trial-by-trial cuing experiments. Perception & Psychophysics, 1994, 55, 667-675.	2.3	128
38	An event-related brain potential study of explicit face recognition. Neuropsychologia, 2011, 49, 2736-2745.	1.6	125
39	The N170 component and its links to configural face processing: A rapid neural adaptation study. Brain Research, 2011, 1376, 76-87.	2.2	121
40	Crossmodal links in spatial attention are mediated by supramodal control processes: Evidence from event-related potentials. Psychophysiology, 2002, 39, 437-449.	2.4	120
41	Amygdala damage affects eventâ€related potentials for fearful faces at specific time windows. Human Brain Mapping, 2010, 31, 1089-1105.	3.6	118
42	Early posterior ERP components do not reflect the control of attentional shifts toward expected peripheral events. Psychophysiology, 2003, 40, 827-831.	2.4	115
43	The role of spatial frequency information for ERP components sensitive to faces and emotional facial expression. Cognitive Brain Research, 2005, 25, 508-520.	3.0	113
44	Response Profile of the Face-Sensitive N170 Component: A Rapid Adaptation Study. Cerebral Cortex, 2010, 20, 2442-2452.	2.9	113
45	An ERP study on visual spatial priming with peripheral onsets. Psychophysiology, 1994, 31, 154-163.	2.4	112
46	ATTENTIONAL MODULATIONS OF EVENT-RELATED BRAIN POTENTIALS SENSITIVE TO FACES. Cognitive Neuropsychology, 2000, 17, 103-116.	1.1	112
47	Electrophysiological correlates of change detection. Psychophysiology, 2005, 42, 328-342.	2.4	112
48	Tactile enhancement of auditory detection and perceived loudness. Brain Research, 2007, 1160, 58-68.	2.2	111
49	Electrophysiological markers of visual dimension changes and response changes Journal of Experimental Psychology: Human Perception and Performance, 2008, 34, 531-542.	0.9	111
50	Spatial Attention Can Be Allocated Rapidly and in Parallel to New Visual Objects. Current Biology, 2014, 24, 193-198.	3.9	111
51	A central-peripheral asymmetry in masked priming. Perception & Psychophysics, 2000, 62, 1367-1382.	2.3	108
52	The roles of feature-specific task set and bottom-up salience in attentional capture: An ERP study Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1316-1328.	0.9	107
53	Crossmodal links in spatial attention between vision, audition, and touch: evidence from event-related brain potentials. Neuropsychologia, 2001, 39, 1292-1303.	1.6	103
54	Cross-modal links in endogenous spatial attention are mediated by common external locations: evidence from event-related brain potentials. Experimental Brain Research, 2001, 139, 398-411.	1.5	100

#	Article	IF	CITATIONS
55	Covert manual response preparation triggers attentional shifts: ERP evidence for the premotor theory of attention. Neuropsychologia, 2005, 43, 957-966.	1.6	100
56	Goal-driven attentional capture by invisible colors: Evidence from event-related potentials. Psychonomic Bulletin and Review, 2009, 16, 648-653.	2.8	97
57	Influence of attentional demands on the processing of emotional facial expressions in the amygdala. NeuroImage, 2007, 38, 357-366.	4.2	95
58	Rapid Detection of Emotion from Human Vocalizations. Journal of Cognitive Neuroscience, 2010, 22, 474-481.	2.3	93
59	Cortico-Cortical Interactions in Spatial Attention: A Combined ERP/TMS Study. Journal of Neurophysiology, 2006, 95, 3277-3280.	1.8	92
60	Explicit and implicit learning of event sequences: Evidence from event-related brain potentials Journal of Experimental Psychology: Learning Memory and Cognition, 1996, 22, 970-987.	0.9	91
61	Attention modulates the processing of emotional expression triggered by foveal faces. Neuroscience Letters, 2006, 394, 48-52.	2.1	91
62	Attentional capture by visual singletons is mediated by topâ€down task set: New evidence from the N2pc component. Psychophysiology, 2008, 45, 1013-1024.	2.4	86
63	ERP modulations indicate the selective processing of visual stimuli as a result of transient and sustained spatial attention. Psychophysiology, 1996, 33, 13-21.	2.4	84
64	Multisensory Integration: How Visual Experience Shapes Spatial Perception. Current Biology, 2004, 14, R115-R117.	3.9	83
65	Functional Magnetic Resonance Imaging and Evoked Potential Correlates of Conscious and Unconscious Vision in Parietal Extinction Patients. NeuroImage, 2001, 14, S68-S75.	4.2	81
66	The Face-Sensitive N170 Component of the Event-Related Brain Potential. , 2011, , .		81
67	Active masks and active inhibition: A comment on Lleras and Enns (2004) and on Verleger, Jaśkowski, Aydemir, van der Lubbe, and Groen (2004) Journal of Experimental Psychology: General, 2006, 135, 484-494.	2.1	80
68	Mechanisms of Visuospatial Attention: Evidence from Event-related Brain Potentials. Visual Cognition, 1998, 5, 257-286.	1.6	79
69	The Face-Sensitivity of the N170 Component. Frontiers in Human Neuroscience, 2011, 5, 119.	2.0	78
70	Dissociating local and global levels of perceptuo-motor control in masked priming Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 618-632.	0.9	77
71	Rapid parallel attentional target selection in single-color and multiple-color visual search Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 86-101.	0.9	75
72	Electrophysiological markers of covert face recognition in developmental prosopagnosia. Brain, 2012, 135, 542-554.	7.6	72

#	Article	IF	CITATIONS
73	An electrophysiological measure of access to representations in visual working memory. Psychophysiology, 2010, 47, 197-200.	2.4	70
74	Searching for Something Familiar or Novel: Top–Down Attentional Selection of Specific Items or Object Categories. Journal of Cognitive Neuroscience, 2013, 25, 719-729.	2.3	70
75	On the difference between working memory and attentional set. Neuropsychologia, 2011, 49, 1553-1558.	1.6	69
76	Efficient Attentional Selection Predicts Distractor Devaluation: Event-related Potential Evidence for a Direct Link between Attention and Emotion. Journal of Cognitive Neuroscience, 2007, 19, 1316-1322.	2.3	68
77	Top-down search strategies determine attentional capture in visual search: Behavioral and electrophysiological evidence. Attention, Perception, and Psychophysics, 2010, 72, 951-962.	1.3	67
78	Anterior and posterior attentional control systems use different spatial reference frames: ERP evidence from covert tactile-spatial orienting. Psychophysiology, 2003, 40, 924-933.	2.4	66
79	Combining TMS and EEG to study cognitive function and cortico–cortico interactions. Behavioural Brain Research, 2008, 191, 141-147.	2.2	66
80	Visuotactile Learning and Body Representation: An ERP Study with Rubber Hands and Rubber Objects. Journal of Cognitive Neuroscience, 2008, 20, 312-323.	2.3	66
81	The neural signature of phosphene perception. Human Brain Mapping, 2010, 31, 1408-1417.	3.6	66
82	Multisensory enhancement of attentional capture in visual search. Psychonomic Bulletin and Review, 2011, 18, 904-909.	2.8	66
83	Manual response preparation and saccade programming are linked to attention shifts: ERP evidence for covert attentional orienting and spatially specific modulations of visual processing. Brain Research, 2006, 1105, 7-19.	2.2	65
84	Effects of hand posture on preparatory control processes and sensory modulations in tactile-spatial attention. Clinical Neurophysiology, 2004, 115, 596-608.	1.5	64
85	Item and category-based attentional control during search for real-world objects: Can you find the pants among the pans?. Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1283-1288.	0.9	64
86	A neural network model of inhibitory processes in subliminal priming. Visual Cognition, 2006, 13, 401-480.	1.6	63
87	Rapid guidance of visual search by object categories Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 50-60.	0.9	62
88	EPS Mid-Career Award 2014. Quarterly Journal of Experimental Psychology, 2015, 68, 2437-2463.	1.1	60
89	The attentional selection of spatial and non-spatial attributes in touch: ERP evidence for parallel and independent processes. Biological Psychology, 2004, 66, 1-20.	2.2	58
90	Locus of Inhibition in the Masked Priming of Response Alternatives. Journal of Motor Behavior, 2002, 34, 3-10.	0.9	57

#	Article	IF	CITATIONS
91	Shifts of attention in light and in darkness: an ERP study of supramodal attentional control and crossmodal links in spatial attention. Cognitive Brain Research, 2003, 15, 308-323.	3.0	57
92	The face-sensitive N170 component in developmental prosopagnosia. Neuropsychologia, 2012, 50, 3588-3599.	1.6	57
93	Priming of pop-out modulates attentional target selection in visual search: Behavioural and electrophysiological evidence. Vision Research, 2010, 50, 1353-1361.	1.4	56
94	Can attention be directed to opposite locations in different modalities? An ERP study. Clinical Neurophysiology, 1999, 110, 1252-1259.	1.5	55
95	The spatial distribution of attentional selectivity in touch: evidence from somatosensory ERP components. Clinical Neurophysiology, 2003, 114, 1298-1306.	1.5	55
96	Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory. Cerebral Cortex, 2015, 25, 4697-4703.	2.9	52
97	Chunking processes in the learning of event sequences: Electrophysiological indicators. Memory and Cognition, 2000, 28, 821-831.	1.6	51
98	Covert attention in touch: Behavioral and ERP evidence for costs and benefits. Psychophysiology, 2005, 42, 171-179.	2.4	51
99	Temporal dynamics of lateralized ERP components elicited during endogenous attentional shifts to relevant tactile events. Psychophysiology, 2002, 39, 874-878.	2.4	50
100	The initial stage of visual selection is controlled by top-down task set: new ERP evidence. Attention, Perception, and Psychophysics, 2011, 73, 113-122.	1.3	49
101	Event-related potential correlates of transient attention shifts to color and location. Biological Psychology, 1995, 41, 167-182.	2.2	48
102	Response inhibition is linked to emotional devaluation: Behavioural and electrophysiological evidence. Frontiers in Human Neuroscience, 2008, 2, 13.	2.0	48
103	ERP correlates of shared control mechanisms involved in saccade preparation and in covert attention. Brain Research, 2007, 1135, 154-166.	2.2	47
104	Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection. Scientific Reports, 2017, 7, 1886.	3.3	47
105	All set, indeed! N2pc components reveal simultaneous attentional control settings for multiple target colors Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 1215-1230.	0.9	47
106	Response Facilitation and Inhibition in Manual, Vocal, and Oculomotor Performance: Evidence for a Modality-Unspecific Mechanism. Journal of Motor Behavior, 2001, 33, 16-26.	0.9	46
107	Top-down task sets for combined features: Behavioral and electrophysiological evidence for two stages in attentional object selection. Attention, Perception, and Psychophysics, 2013, 75, 216-228.	1.3	45
108	Cutaneous saltation within and across arms: A new measure of the saltation illusion in somatosensation. Perception & Psychophysics, 2005, 67, 458-468.	2.3	44

#	Article	IF	CITATIONS
109	Links between rapid ERP responses to fearful faces and conscious awareness. Journal of Neuropsychology, 2008, 2, 165-181.	1.4	44
110	Feature-based inhibition underlies the affective consequences of attention. Visual Cognition, 2009, 17, 500-530.	1.6	44
111	Face learning and the emergence of view-independent face recognition: An event-related brain potential study. Neuropsychologia, 2013, 51, 1320-1329.	1.6	44
112	Facial identity and facial expression are initially integrated at visual perceptual stages of face processing. Neuropsychologia, 2016, 80, 115-125.	1.6	44
113	Attending to quadrants and ring-shaped regions: ERP effects of visual attention in different spatial selection tasks. Psychophysiology, 1999, 36, 491-503.	2.4	43
114	TMS of the right angular gyrus modulates priming of pop-out in visual search: combined TMS-ERP evidence. Journal of Neurophysiology, 2011, 106, 3001-3009.	1.8	43
115	Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory?. Journal of Cognitive Neuroscience, 2016, 28, 2003-2020.	2.3	41
116	Vision and gaze direction modulate tactile processing in somatosensory cortex: evidence from event-related brain potentials. Experimental Brain Research, 2005, 165, 8-18.	1.5	40
117	Do ERP components triggered during attentional orienting represent supramodal attentional control?. Psychophysiology, 2007, 44, 987-990.	2.4	39
118	The Anterior N1 Component as an Index of Modality Shifting. Journal of Cognitive Neuroscience, 2009, 21, 1653-1669.	2.3	39
119	What top-down task sets do for us: An ERP study on the benefits of advance preparation in visual search Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1758-1766.	0.9	39
120	Qualitative differences in the guidance of attention during single-color and multiple-color visual search: Behavioral and electrophysiological evidence Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 1433-1442.	0.9	39
121	An ERP study of sustained spatial attention to stimulus eccentricity. Biological Psychology, 2000, 52, 205-220.	2.2	38
122	The Cognitive and Neural Basis of Developmental Prosopagnosia. Quarterly Journal of Experimental Psychology, 2017, 70, 316-344.	1.1	38
123	Active Listening Impairs Visual Perception and Selectivity: An ERP Study of Auditory Dual-task Costs on Visual Attention. Journal of Cognitive Neuroscience, 2011, 23, 832-844.	2.3	37
124	Activation of New Attentional Templates for Real-world Objects in Visual Search. Journal of Cognitive Neuroscience, 2015, 27, 902-912.	2.3	37
125	Effects of transient spatial attention on auditory event-related potentials. NeuroReport, 1993, 4, 588-590.	1.2	36
126	Response inhibition results in the emotional devaluation of faces: neural correlates as revealed by fMRI. Social Cognitive and Affective Neuroscience, 2012, 7, 649-659.	3.0	36

#	Article	IF	CITATIONS
127	The time course of spatial orienting elicited by central and peripheral cues: evidence from event-related brain potentials. Biological Psychology, 2000, 53, 253-258.	2.2	35
128	The electrophysiology of tactile extinction: ERP correlates of unconscious somatosensory processing. Neuropsychologia, 2002, 40, 2438-2447.	1.6	35
129	Altered tactile spatial attention in the early blind. Brain Research, 2007, 1131, 149-154.	2.2	35
130	Attentional capture by size singletons is determined by topâ€down search goals. Psychophysiology, 2011, 48, 784-787.	2.4	35
131	The top-down control of visual selection and how it is linked to the N2pc component. Acta Psychologica, 2010, 135, 100-102.	1.5	34
132	Attentional selection and attentional gradients: An alternative method for studying transient visual-spatial attention. Psychophysiology, 1997, 34, 365-376.	2.4	33
133	Brain electrical correlates of dimensional weighting: An ERP study. Psychophysiology, 2007, 44, 277-292.	2.4	33
134	Effects of attentional filtering demands on preparatory ERPs elicited in a spatial cueing task. Clinical Neurophysiology, 2009, 120, 1087-1095.	1.5	33
135	Manual response preparation disrupts spatial attention: An electrophysiological investigation of links between action and attention. Neuropsychologia, 2010, 48, 961-969.	1.6	33
136	Electrophysiological studies of face processing in developmental prosopagnosia: Neuropsychological and neurodevelopmental perspectives. Cognitive Neuropsychology, 2012, 29, 503-529.	1.1	32
137	Shifts of attention in the early blind: An ERP study of attentional control processes in the absence of visual spatial information. Neuropsychologia, 2006, 44, 2533-2546.	1.6	30
138	Does focused endogenous attention prevent attentional capture in popâ€out visual search?. Psychophysiology, 2009, 46, 703-717.	2.4	30
139	ERP Evidence for Cross-Modal Audiovisual Effects of Endogenous Spatial Attention within Hemifields. Journal of Cognitive Neuroscience, 2004, 16, 272-288.	2.3	29
140	The activation of visual face memory and explicit face recognition are delayed in developmental prosopagnosia. Neuropsychologia, 2015, 75, 538-547.	1.6	29
141	Object-based target templates guide attention during visual search Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 1368-1382.	0.9	29
142	Crossmodal links in spatial attention are mediated by supramodal control processes: evidence from event-related potentials. Psychophysiology, 2002, 39, 437-49.	2.4	29
143	The Lateralized Readiness Potential. , 2003, , 229-248.		28
144	Partial Response Activation to Masked Primes is Not Dependent on Response Readiness. Perceptual and Motor Skills, 2001, 92, 208-222.	1.3	27

#	Article	IF	CITATIONS
145	The Time Course of Target Template Activation Processes during Preparation for Visual Search. Journal of Neuroscience, 2018, 38, 9527-9538.	3.6	27
146	Endogenous Covert Spatial Orienting in Audition Cost-Benefit Analyses of Reaction Times and Event related Potentials. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1997, 50, 457-474.	2.3	26
147	Links between eye movement preparation and the attentional processing of tactile events: An event-related brain potential study. Clinical Neurophysiology, 2008, 119, 2587-2597.	1.5	26
148	Memory-driven attentional capture is modulated by temporal task demands. Visual Cognition, 2011, 19, 145-153.	1.6	26
149	The gradual emergence of spatially selective target processing in visual search: From feature-specific to object-based attentional control Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1819-1831.	0.9	26
150	Dissociating effector and movement direction selection during the preparation of manual reaching movements: Evidence from lateralized ERP components. Clinical Neurophysiology, 2007, 118, 2031-2049.	1.5	24
151	An event-related brain potential study of cross-modal links in spatial attention between vision and touch. Psychophysiology, 2000, 37, 697-705.	2.4	23
152	Covert unimanual response preparation triggers attention shifts to effectors rather than goal locations. Neuroscience Letters, 2007, 419, 142-146.	2.1	22
153	Objectâ€substitution masking modulates spatial attention deployment and the encoding of information in visual shortâ€term memory: Insights from occipitoâ€parietal ERP components. Psychophysiology, 2011, 48, 687-696.	2.4	22
154	Humans can efficiently look for but not select multiple visual objects. ELife, 2019, 8, .	6.0	22
155	Spatial tuning of tactile attention modulates visual processing within hemifields: an ERP investigation of crossmodal attention. Experimental Brain Research, 2005, 166, 402-410.	1.5	21
156	The Control of Single-color and Multiple-color Visual Search by Attentional Templates in Working Memory and in Long-term Memory. Journal of Cognitive Neuroscience, 2016, 28, 1947-1963.	2.3	21
157	In the eye of the beholder: Individual differences in reward-drive modulate early frontocentral ERPs to angry faces. Neuropsychologia, 2009, 47, 825-834.	1.6	20
158	Action Preparation Helps and Hinders Perception of Action. Journal of Cognitive Neuroscience, 2010, 22, 2198-2211.	2.3	20
159	Topâ€down control of audiovisual search by bimodal search templates. Psychophysiology, 2013, 50, 996-1009.	2.4	20
160	Early stages of perceptual face processing are confined to the contralateral hemisphere: Evidence from the N170 component. Cortex, 2015, 64, 89-101.	2.4	20
161	Reduced sensitivity to contrast signals from the eye region in developmental prosopagnosia. Cortex, 2016, 81, 64-78.	2.4	20
162	Rapid top-down control over template-guided attention shifts to multiple objects. NeuroImage, 2017, 146, 843-858.	4.2	20

#	Article	IF	CITATIONS
163	Sustained Maintenance of Somatotopic Information in Brain Regions Recruited by Tactile Working Memory. Journal of Neuroscience, 2015, 35, 1390-1395.	3.6	19
164	Lateralized Delay Period Activity Marks the Focus of Spatial Attention in Working Memory: Evidence from Somatosensory Event-Related Brain Potentials. Journal of Neuroscience, 2015, 35, 6689-6695.	3.6	19
165	Multisensory integration: how visual experience shapes spatial perception. Current Biology, 2004, 14, R115-7.	3.9	19
166	The instructed context of a motor task modulates covert response preparation and shifts of spatial attention. Psychophysiology, 2009, 46, 655-667.	2.4	18
167	Perceptual face processing in developmental prosopagnosia is not sensitive to the canonical location of face parts. Cortex, 2016, 74, 53-66.	2.4	18
168	Holistic face perception is impaired in developmental prosopagnosia. Cortex, 2018, 108, 112-126.	2.4	18
169	Crossmodal links in spatial attention are mediated by supramodal control processes: Evidence from event-related potentials. Psychophysiology, 2002, 39, 437-449.	2.4	18
170	Covert manual response preparation triggers attentional modulations of visual but not auditory processing. Clinical Neurophysiology, 2006, 117, 1063-1074.	1.5	17
171	The Speed of Serial Attention Shifts in Visual Search: Evidence from the N2pc Component. Journal of Cognitive Neuroscience, 2016, 28, 319-332.	2.3	17
172	Disentangling gaze shifts from preparatory ERP effects during spatial attention. Psychophysiology, 2007, 44, 69-78.	2.4	16
173	Modelling distractor devaluation (DD) and its neurophysiological correlates. Neuropsychologia, 2009, 47, 2354-2366.	1.6	16
174	Independent Attention Mechanisms Control the Activation of Tactile and Visual Working Memory Representations. Journal of Cognitive Neuroscience, 2018, 30, 644-655.	2.3	16
175	Face identity matching is selectively impaired in developmental prosopagnosia. Cortex, 2017, 89, 11-27.	2.4	15
176	Effects of lateralized cues on the processing of lateralized auditory stimuli. Biological Psychology, 1996, 43, 203-226.	2.2	13
177	Eye movement preparation causes spatially-specific modulation of auditory processing: New evidence from event-related brain potentials. Brain Research, 2008, 1224, 88-101.	2.2	13
178	The activation of visual memory for facial identity is task-dependent: Evidence from human electrophysiology. Cortex, 2014, 54, 124-134.	2.4	13
179	Multiple foci of spatial attention in multimodal working memory. NeuroImage, 2016, 142, 583-589.	4.2	12
180	Electrophysiological evidence for parts and wholes in visual face memory. Cortex, 2016, 83, 246-258.	2.4	12

#	Article	IF	CITATIONS
181	The guidance of attention by templates for rejection during visual search. Attention, Perception, and Psychophysics, 2021, 83, 38-57.	1.3	12
182	PARTIAL RESPONSE ACTIVATION TO MASKED PRIMES IS NOT DEPENDENT ON RESPONSE READINESS. Perceptual and Motor Skills, 2001, 92, 208.	1.3	12
183	A dissociation between selective attention and conscious awareness in the representation of temporal order information. Consciousness and Cognition, 2015, 35, 274-281.	1.5	11
184	The Focus of Spatial Attention Determines the Number and Precision of Face Representations in Working Memory. Cerebral Cortex, 2016, 26, 2530-2540.	2.9	11
185	Target objects defined by a conjunction of colour and shape can be selected independently and in parallel. Attention, Perception, and Psychophysics, 2017, 79, 2310-2326.	1.3	11
186	Visual Working Memory Load Disrupts Template-guided Attentional Selection during Visual Search. Journal of Cognitive Neuroscience, 2018, 30, 1902-1915.	2.3	11
187	The role of trait anxiety in attention and memoryâ€related biases to threat: An eventâ€related potential study. Psychophysiology, 2021, 58, e13742.	2.4	11
188	Category-based guidance of spatial attention during visual search for feature conjunctions Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 1571-1586.	0.9	11
189	Redundancy gains in pop-out visual search are determined by top-down task set: Behavioral and electrophysiological evidence. Journal of Vision, 2011, 11, 10-10.	0.3	10
190	Normal perception of Mooney faces in developmental prosopagnosia: Evidence from the N170 component and rapid neural adaptation. Journal of Neuropsychology, 2016, 10, 15-32.	1.4	10
191	Intermodal Attention Shifts in Multimodal Working Memory. Journal of Cognitive Neuroscience, 2017, 29, 628-636.	2.3	10
192	Category-based attentional guidance can operate in parallel for multiple target objects. Biological Psychology, 2018, 135, 211-219.	2.2	10
193	The absence of a visual stimulus can trigger taskâ€setâ€independent attentional capture. Psychophysiology, 2011, 48, 1426-1433.	2.4	9
194	Mechanisms of percept–percept and image–percept integration in vision: Behavioral and electrophysiological evidence Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1-11.	0.9	9
195	Visual search is postponed during the period of the AB: An eventâ€related potential study. Psychophysiology, 2015, 52, 1031-1038.	2.4	9
196	Facial misidentifications arise from the erroneous activation of visual face memory. Neuropsychologia, 2015, 77, 387-399.	1.6	9
197	Effects of contrast inversion on face perception depend on gaze location: Evidence from the N170 component. Cognitive Neuroscience, 2016, 7, 128-137.	1.4	9
198	Preparatory Template Activation during Search for Alternating Targets. Journal of Cognitive Neuroscience, 2020, 32, 1525-1535.	2.3	9

#	Article	IF	CITATIONS
199	The lateralized readiness potential as an on-line measure of automatic response activation in S-R compatibility situations. Advances in Psychology, 1997, , 51-73.	0.1	8
200	What do associations and dissociations between face and object recognition abilities tell us about the domain-generality of face processing?. Cognitive Neuropsychology, 2018, 35, 80-82.	1.1	8
201	The Sources of Dual-task Costs in Multisensory Working Memory Tasks. Journal of Cognitive Neuroscience, 2019, 31, 175-185.	2.3	8
202	Neural responses in a fast periodic visual stimulation paradigm reveal domain-general visual discrimination deficits in developmental prosopagnosia. Cortex, 2020, 133, 76-102.	2.4	8
203	The guidance of spatial attention during visual search for color combinations and color configurations Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 1282-1296.	0.9	8
204	The diachronic account of attentional selectivity. Psychonomic Bulletin and Review, 2022, 29, 1118-1142.	2.8	8
205	Faster target selection in preview visual search depends on luminance onsets: behavioral and electrophysiological evidence. Attention, Perception, and Psychophysics, 2011, 73, 1637-1642.	1.3	7
206	Attentional Access to Multiple Target Objects in Visual Search. Journal of Cognitive Neuroscience, 2020, 32, 283-300.	2.3	7
207	Task goals modulate the activation of part-based versus object-based representations in visual working memory. Cognitive Neuroscience, 2020, 11, 92-100.	1.4	7
208	Nasotemporal ERP differences: evidence for increased inhibition of temporal distractors. Journal of Neurophysiology, 2015, 113, 2210-2219.	1.8	6
209	Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study. Brain Research, 2015, 1626, 258-266.	2.2	6
210	Rapid attentional selection processes operate independently and in parallel for multiple targets. Biological Psychology, 2016, 121, 99-108.	2.2	6
211	Rapid Parallel Attentional Selection Can Be Controlled by Shape and Alphanumerical Category. Journal of Cognitive Neuroscience, 2016, 28, 1672-1687.	2.3	6
212	Feature-guided attentional capture cannot be prevented by spatial filtering. Biological Psychology, 2018, 134, 1-8.	2.2	6
213	Electrophysiological correlates of active suppression and attentional selection in preview visual search. Neuropsychologia, 2018, 120, 75-85.	1.6	6
214	Visual working memory load disrupts the spaceâ€based attentional guidance of target selection. British Journal of Psychology, 2019, 110, 357-371.	2.3	6
215	A bilateral N2pc (N2pcb) component is elicited by search targets displayed on the vertical midline. Psychophysiology, 2020, 57, e13512.	2.4	6
216	Methodological issues in event-related brain potential research. Behavior Research Methods, 1998, 30, 3-7.	1.3	5

#	Article	IF	CITATIONS
217	The control of attentional target selection in a colour/colour conjunction task. Attention, Perception, and Psychophysics, 2016, 78, 2383-2396.	1.3	5
218	The spatially global control of attentional target selection in visual search. Visual Cognition, 2017, 25, 196-214.	1.6	5
219	The capacity and resolution of spatial working memory and its role in the storage of non-spatial features. Biological Psychology, 2019, 140, 108-118.	2.2	5
220	Retrospective Selection in Visual and Tactile Working Memory Is Mediated by Shared Control Mechanisms. Journal of Cognitive Neuroscience, 2020, 32, 546-557.	2.3	5
221	Attentional repulsion effects produced by feature-guided shifts of attention. Journal of Vision, 2020, 20, 10.	0.3	5
222	A unitary focus of spatial attention during attentional capture: Evidence from event-related brain potentials. Journal of Vision, 2013, 13, 9-9.	0.3	4
223	The N2cc component as an electrophysiological marker of spaceâ€based and featureâ€based attentional target selection processes in touch. Psychophysiology, 2019, 56, e13391.	2.4	4
224	The guidance of visual search by shape features and shape configurations Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 1072-1085.	0.9	4
225	Spatial filtering restricts the attentional window during both singleton and feature-based visual search. Attention, Perception, and Psychophysics, 2020, 82, 2360-2378.	1.3	4
226	The Role of Color in Search Templates for Real-world Target Objects. Journal of Cognitive Neuroscience, 2016, 28, 1714-1727.	2.3	3
227	Shifts of Spatial Attention in Visual and Tactile Working Memory are Controlled by Independent Modality-Specific Mechanisms. Cerebral Cortex, 2020, 30, 296-310.	2.9	3
228	Electrophysiolgy of Human Crossmodal Spatial Attention. , 2004, , 221-245.		3
229	Expectation-based blindness: Predictions about object categories gate awareness of focally attended objects. Psychonomic Bulletin and Review, 2022, 29, 1879-1889.	2.8	3
230	ERP effects of movement preparation on visual processing: attention shifts to the hand, not the goal. Cognitive Processing, 2006, 7, 100-101.	1.4	2
231	Visual Working Memory and Attentional Object Selection. , 2015, , 89-104.		2
232	Cross-Modal Consequences of Human Spatial Attention. , 2005, , 187-196.		2
233	Why signal suppression cannot resolve the attentional capture debate. Visual Cognition, 2021, 29, 541-543.	1.6	1
234	NEURAL NETWORK MODELLING OF INHIBITION IN VISUO-MOTOR CONTROL. , 2002, , .		1

#	ARTICLE	IF	CITATIONS
235	Why the item will remain the unit of attentional selection in visual search. Behavioral and Brain Sciences, 2017, 40, e137.	0.7	ο
236	Independent mechanisms of spatial attention in visual and tactile working memory. Journal of Vision, 2017, 17, 679.	0.3	0