
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4472784/publications.pdf Version: 2024-02-01

Υίται Οιάν

#	Article	IF	CITATIONS
1	Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency. Nano Research, 2022, 15, 230-237.	10.4	31
2	A Friendly Soluble Protic Additive Enabling High Discharge Capability and Stabilizing Li Metal Anodes in Li–O ₂ Batteries. Advanced Functional Materials, 2022, 32, 2106984.	14.9	13
3	Rational Design of Tungsten Selenide @ Nâ€Doped Carbon Nanotube for Highâ€&table Potassiumâ€lon Batteries. Small, 2022, 18, e2104363.	10.0	20
4	Single-atom catalyst cathodes for lithium–oxygen batteries: a review. Nano Futures, 2022, 6, 012002.	2.2	4
5	Zeroâ€Strain Structure for Efficient Potassium Storage: Nitrogenâ€Enriched Carbon Dualâ€Confinement CoP Composite. Advanced Energy Materials, 2022, 12, 2103341.	19.5	26
6	Understanding electrolyte salt chemistry for advanced potassium storage performances of transitionâ€metal sulfides. , 2022, 4, 332-345.		10
7	Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium—sulfur batteries. Nano Research, 2022, 15, 4058-4067.	10.4	10
8	Unravelling binder chemistry in sodium/potassium ion batteries for superior electrochemical performances. Journal of Materials Chemistry A, 2022, 10, 4060-4067.	10.3	25
9	Cationâ€Dependent Hydrogel Templateâ€Activation Strategy: Constructing 3D Anode and High Specific Surface Cathode for Dualâ€Carbon Potassiumâ€Ion Hybrid Capacitor. Small, 2022, 18, e2106712.	10.0	7
10	One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries. ACS Nano, 2022, 16, 4560-4577.	14.6	75
11	Hierarchical Ion/Electron Networks Enable Efficient Red Phosphorus Anode with High Mass Loading for Sodium Ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	21
12	Space-confined growth of Bi2Se3 nanosheets encapsulated in N-doped carbon shell lollipop-like composite for full/half potassium-ion and lithium-ion batteries. Nano Today, 2022, 43, 101408.	11.9	30
13	Site-Selective Adsorption on ZnF ₂ /Ag Coated Zn for Advanced Aqueous Zinc–Metal Batteries at Low Temperature. Nano Letters, 2022, 22, 1750-1758.	9.1	95
14	MXenes and their derivatives for advanced aqueous rechargeable batteries. Materials Today, 2022, 52, 225-249.	14.2	39
15	Bimetallic Bi–Sn microspheres as high initial coulombic efficiency and long lifespan anodes for sodium-ion batteries. Chemical Communications, 2022, 58, 5140-5143.	4.1	15
16	Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes. Energy and Environmental Science, 2022, 15, 1682-1693.	30.8	105
17	Iron Selenideâ€Based Heterojunction Construction and Defect Engineering for Fast Potassium/Sodiumâ€lon Storage. Small, 2022, 18, e2107252.	10.0	46
18	Controlled Tin Oxide Nanoparticles Encapsulated in N-Doped Carbon Nanofibers for Superior Lithium-Ion Storage. ACS Applied Energy Materials, 2022, 5, 1840-1848.	5.1	4

#	Article	IF	CITATIONS
19	Manipulating Electrocatalytic Polysulfide Redox Kinetics by 1D Core–Shell Like Composite for Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	19.5	47
20	Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. Nano Research, 2022, 15, 5072-5080.	10.4	7
21	Niobium Diboride Nanoparticles Accelerating Polysulfide Conversion and Directing Li ₂ S Nucleation Enabled High Areal Capacity Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 4947-4960.	14.6	88
22	Highly Reversible Zn Metal Anodes Enabled by Freestanding, Lightweight, and Zincophilic MXene/Nanoporous Oxide Heterostructure Engineered Separator for Flexible Zn-MnO ₂ Batteries. ACS Nano, 2022, 16, 6755-6770.	14.6	103
23	Towards Highâ€Performance Aqueous Sodium Ion Batteries: Constructing Hollow NaTi ₂ (PO ₄) ₃ @C Nanocube Anode with Zn Metalâ€Induced Preâ€Sodiation and Deep Eutectic Electrolyte. Advanced Energy Materials, 2022, 12, .	19.5	30
24	Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. Energy Storage Materials, 2022, 48, 447-457.	18.0	46
25	Highly reversible and safe lithium metal batteries enabled by Non-flammable All-fluorinated carbonate electrolyte conjugated with 3D flexible MXene-based lithium anode. Chemical Engineering Journal, 2022, 440, 135818.	12.7	23
26	Chemical Buffer Layer Enabled Highly Reversible Zn Anode for Deeply Discharging and Long‣ife Zn–Air Battery. Small, 2022, 18, e2106604.	10.0	16
27	Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes. Nano Research, 2022, 15, 6184-6191.	10.4	22
28	Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Materials, 2022, 50, 473-494.	18.0	35
29	Constructing Reactive Microâ€Environment in Basal Plane of MoS ₂ for pHâ€Universal Hydrogen Evolution Catalysis. Small, 2022, 18, .	10.0	21
30	Electron-redistributed Ni–Co oxide nanoarrays as an ORR/OER bifunctional catalyst for low overpotential and long lifespan Li–O ₂ batteries. Journal of Materials Chemistry A, 2022, 10, 14613-14621.	10.3	12
31	MXenes for advanced separator in rechargeable batteries. Materials Today, 2022, 57, 146-179.	14.2	38
32	One-pot synthesis of uniform MoSe2 nanoparticles as high performance anode materials for lithium/sodium ion batteries. Journal of Alloys and Compounds, 2022, 922, 166306.	5.5	15
33	Stable and dendrite-free lithium metal anodes enabled by carbon paper incorporated with ultrafine lithiophilic TiO2 derived from MXene and carbon dioxide. Chemical Engineering Journal, 2021, 406, 126836.	12.7	45
34	Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries. Nano Research, 2021, 14, 139-147.	10.4	18
35	Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Storage Materials, 2021, 34, 12-21.	18.0	85
36	2D interspace confined growth of ultrathin MoS2-intercalated graphite hetero-layers for high-rate Li/K storage_Nano Research_2021_14_1061-1068	10.4	19

#	Article	IF	CITATIONS
37	Revealing the Doubleâ€Edged Behaviors of Heteroatom Sulfur in Carbonaceous Materials for Balancing Kâ€Storage Capacity and Stability. Advanced Functional Materials, 2021, 31, 2006875.	14.9	42
38	Recent Advances and Perspectives of Znâ€Metal Free "Rockingâ€Chairâ€â€Type Znâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2002529.	19.5	111
39	Quantumâ€Matter Bi/TiO ₂ Heterostructure Embedded in Nâ€Doped Porous Carbon Nanosheets for Enhanced Sodium Storage. Small Structures, 2021, 2, 2000085.	12.0	77
40	Hierarchical interlayer-expanded MoSe ₂ /N–C nanorods for high-rate and long-life sodium and potassium-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 1271-1278.	6.0	22
41	Carbon coated SiO nanoparticles embedded in hierarchical porous N-doped carbon nanosheets for enhanced lithium storage. Inorganic Chemistry Frontiers, 2021, 8, 4282-4290.	6.0	18
42	Yolk–shell structured CoSe ₂ /C nanospheres as multifunctional anode materials for both full/half sodium-ion and full/half potassium-ion batteries. Nanoscale, 2021, 13, 10385-10392.	5.6	36
43	A porous polycrystalline NiCo ₂ P _{<i>x</i>} as a highly efficient host for sulfur cathodes in Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 23149-23156.	10.3	19
44	An aqueous rechargeable lithium ion battery with long cycle life and overcharge self-protection. Materials Chemistry Frontiers, 2021, 5, 2749-2757.	5.9	9
45	Rocking Chair Batteries: Recent Advances and Perspectives of Znâ€Metal Free "Rockingâ€Chairâ€â€Type Znâ€ Batteries (Adv. Energy Mater. 5/2021). Advanced Energy Materials, 2021, 11, 2170023.	lon 19.5	3
46	Applications of MoS ₂ in Li–O ₂ Batteries: Development and Challenges. Energy & Fuels, 2021, 35, 5613-5626.	5.1	20
47	Dandelion-Like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium-ion and half/full sodium-ion batteries. Nano Research, 2021, 14, 4696-4703.	10.4	39
48	Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. Nano Today, 2021, 37, 101094.	11.9	93
49	Molten Salt Derived <scp>Grapheneâ€Like</scp> Carbon Nanosheets Wrapped <scp>SiO_{<i>x</i>}</scp> /Carbon Submicrospheres with Enhanced Lithium Storage ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1233-1239.	4.9	9
50	Hydrothermal "Disproportionation―of Biomass into Oriented Carbon Microsphere Anode and 3D Porous Carbon Cathode for Potassium Ion Hybrid Capacitor. Advanced Functional Materials, 2021, 31, 2103115.	14.9	49
51	Revealing Quasi-1D Volume Expansion in Na-/K-Ion Battery Anodes: A Case Study of Sb ₂ O ₃ Microbelts. CCS Chemistry, 2021, 3, 1306-1315.	7.8	17
52	Stable Aqueous Anodeâ€Free Zinc Batteries Enabled by Interfacial Engineering. Advanced Functional Materials, 2021, 31, 2101886.	14.9	162
53	Highâ€Voltage and Superâ€Stable Aqueous Sodium–Zinc Hybrid Ion Batteries Enabled by Double Solvation Structures in Concentrated Electrolyte. Small Methods, 2021, 5, e2100418.	8.6	22
54	Coordinatively and Spatially Coconfining High-Loading Atomic Sb in Sulfur-Rich 2D Carbon Matrix for		10

Fast K⁺ Diffusion and Storage., 2021, 3, 790-798.

#	Article	IF	CITATIONS
55	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Materials, 2021, 38, 157-189.	18.0	52
56	Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries. ACS Nano, 2021, 15, 11828-11842.	14.6	140
57	Construction and electrochemical mechanism investigation of hierarchical core—shell like composite as high performance anode for potassium ion batteries. Nano Research, 2021, 14, 3552-3561.	10.4	21
58	Rational Design of Sulfur-Doped Three-Dimensional Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. ACS Nano, 2021, 15, 15259-15273.	14.6	167
59	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano, 2021, 15, 12741-12767.	14.6	71
60	Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Materials, 2021, 41, 343-353.	18.0	145
61	Regulating polysulfide intermediates by ultrathin Co-Bi nanosheet electrocatalyst in lithiumâ^'sulfur batteries. Nano Today, 2021, 40, 101246.	11.9	34
62	Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy and Environmental Science, 2021, 14, 3120-3129.	30.8	250
63	A large format aqueous rechargeable LiMn2O4/Zn battery with high energy density and long cycle life. Science China Materials, 2021, 64, 783-788.	6.3	12
64	Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Materials, 2020, 25, 679-686.	18.0	111
65	Self-wrinkled graphene as a mechanical buffer: A rational design to boost the K-ion storage performance of Sb2Se3 nanoparticles. Chemical Engineering Journal, 2020, 379, 122352.	12.7	49
66	Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Materials, 2020, 26, 223-233.	18.0	100
67	Rational design of polar/nonpolar mediators toward efficient sulfur fixation and enhanced conductivity. Journal of Materials Chemistry A, 2020, 8, 1010-1051.	10.3	32
68	Porosity―and Graphitization ontrolled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1908721.	14.9	159
69	High-Spin Sulfur-Mediated Phosphorous Activation Enables Safe and Fast Phosphorus Anodes for Sodium-Ion Batteries. CheM, 2020, 6, 221-233.	11.7	43
70	N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Science Advances, 2020, 6, eaaw8113.	10.3	211
71	Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. Science China Chemistry, 2020, 63, 1563-1569.	8.2	22
72	Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020, 78, 105344.	16.0	108

#	Article	IF	CITATIONS
73	Two-Dimensional Silicon/Carbon from Commercial Alloy and CO ₂ for Lithium Storage and Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Lithium–Metal Batteries. ACS Nano, 2020, 14, 17574-17588.	14.6	108
74	Guiding Smooth Li Plating and Stripping by a Spherical Island Model for Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 38098-38105.	8.0	17
75	Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion. Energy Storage Materials, 2020, 32, 115-150.	18.0	74
76	Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture. ACS Applied Materials & Interfaces, 2020, 12, 49607-49616.	8.0	24
77	Nanoribbon Superstructures of Graphene Nanocages for Efficient Electrocatalytic Hydrogen Evolution. Nano Letters, 2020, 20, 7342-7349.	9.1	30
78	Defect engineering on carbon black for accelerated Li-S chemistry. Nano Research, 2020, 13, 3315-3320.	10.4	52
79	Aqueous Rechargeable Li ⁺ /Na ⁺ Hybrid Ion Battery with High Energy Density and Long Cycle Life. Small, 2020, 16, e2003585.	10.0	16
80	Porous lithium cobalt oxide fabricated from metal–organic frameworks as a high-rate cathode for lithium-ion batteries. RSC Advances, 2020, 10, 31889-31893.	3.6	4
81	NaTi ₂ (PO ₄) ₃ Solidâ€State Electrolyte Protection Layer on Zn Metal Anode for Superior Longâ€Life Aqueous Zincâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2004885.	14.9	115
82	Recent Advances of Emerging 2D MXene for Stable and Dendriteâ€Free Metal Anodes. Advanced Functional Materials, 2020, 30, 2004613.	14.9	140
83	Phosphorus-doped hard carbon with controlled active groups and microstructure for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 20486-20492.	10.3	33
84	Kirkendall effect modulated hollow red phosphorus nanospheres for high performance sodium-ion battery anodes. Chemical Communications, 2020, 56, 11795-11798.	4.1	17
85	Chemical fixation of CO2 on activated Si: Producing graphitic carbon-stabilized Si particles for Li-storage. Energy Storage Materials, 2020, 31, 36-43.	18.0	11
86	N-Doped carbon nanotubes decorated with Fe/Ni sites to stabilize lithium metal anodes. Inorganic Chemistry Frontiers, 2020, 7, 2747-2752.	6.0	12
87	A Highâ€Energy and Longâ€Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn ²⁺ Coinsertion. Small, 2020, 16, e2001228.	10.0	75
88	Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chemical Engineering Journal, 2020, 400, 125843.	12.7	115
89	Boosting Zinc-Ion Storage Capability by Effectively Suppressing Vanadium Dissolution Based on Robust Layered Barium Vanadate. Nano Letters, 2020, 20, 2899-2906.	9.1	208
90	Hierarchical Fusiform Microrods Constructed by Parallelly Arranged Nanoplatelets of LiCoO ₂ Material with Ultrahigh Rate Performance. ACS Applied Materials & Interfaces, 2020, 12, 17376-17384.	8.0	9

#	Article	IF	CITATIONS
91	Promoting spherical epitaxial deposition of solid sulfides for high-capacity Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 7100-7108.	10.3	10
92	Conductive cobalt doped niobium nitride porous spheres as an efficient polysulfide convertor for advanced lithium-sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 6276-6282.	10.3	58
93	Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries. Journal of Materials Chemistry A, 2020, 8, 14190-14197.	10.3	42
94	Dual taming of polysufides by phosphorus-doped carbon for improving electrochemical performances of lithium–sulfur battery. Electrochimica Acta, 2020, 354, 136648.	5.2	40
95	Nanoporous Si@Carbon: Porosity―and Graphitizationâ€Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithiumâ€Metal Anode (Adv.) Tj ETQq1 J	0 <i>4</i> 7. 0 431	4 ₂gBT /Ove
96	Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Research, 2020, 13, 802-809.	10.4	61
97	Construction of hierarchical MoSe ₂ @C hollow nanospheres for efficient lithium/sodium ion storage. Inorganic Chemistry Frontiers, 2020, 7, 1691-1698.	6.0	22
98	Silicothermic reduction reaction for fabricating interconnected Si–Ge nanocrystals with fast and stable Li-storage. Journal of Materials Chemistry A, 2020, 8, 6597-6606.	10.3	19
99	Formation of Solid–Electrolyte Interfaces in Aqueous Electrolytes by Altering Cationâ€Solvation Shell Structure. Advanced Energy Materials, 2020, 10, 1903665.	19.5	59
100	Stable Lithium Deposition Enabled by an Acid-Treated g-C ₃ N ₄ Interface Layer for a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 11265-11272.	8.0	24
101	Amidationâ€Dominated Reâ€Assembly Strategy for Singleâ€Atom Design/Nanoâ€Engineering: Constructing Ni/S/C Nanotubes with Fast and Stable Kâ€Storage. Angewandte Chemie - International Edition, 2020, 59, 6459-6465.	13.8	23
102	Amidationâ€Dominated Reâ€Assembly Strategy for Singleâ€Atom Design/Nanoâ€Engineering: Constructing Ni/S/C Nanotubes with Fast and Stable Kâ€Storage. Angewandte Chemie, 2020, 132, 6521-6527.	2.0	1
103	ZIF-Derived Cobalt-Containing N-Doped Carbon-Coated SiO _{<i>x</i>} Nanoparticles for Superior Lithium Storage. ACS Applied Materials & Interfaces, 2020, 12, 7206-7211.	8.0	43
104	Micron-Sized Nanoporous Vanadium Pentoxide Arrays for High-Performance Gel Zinc-Ion Batteries and Potassium Batteries. Chemistry of Materials, 2020, 32, 4054-4064.	6.7	105
105	Regulating the Interfacial Electronic Coupling of Fe ₂ N via Orbital Steering for Hydrogen Evolution Catalysis. Advanced Materials, 2020, 32, e1904346.	21.0	86
106	Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Materials, 2020, 30, 206-227.	18.0	95
107	Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Materials, 2020, 30, 337-345.	18.0	92
108	Edge-Plane Exposed N-Doped Carbon Nanofibers Toward Fast K-Ion Adsorption/Diffusion Kinetics for K-Ion Capacitors. CCS Chemistry, 2020, 2, 495-506.	7.8	17

#	Article	IF	CITATIONS
109	A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes. Energy Storage Materials, 2019, 17, 93-100.	18.0	113
110	An Al ₂ O ₃ coating layer on mesoporous Si nanospheres for stable solid electrolyte interphase and high-rate capacity for lithium ion batteries. Nanoscale, 2019, 11, 16781-16787.	5.6	22
111	Uniform Li deposition by regulating the initial nucleation barrier <i>via</i> a simple liquid-metal coating for a dendrite-free Li–metal anode. Journal of Materials Chemistry A, 2019, 7, 18861-18870.	10.3	93
112	Rechargeable aqueous hybrid ion batteries: developments and prospects. Journal of Materials Chemistry A, 2019, 7, 18708-18734.	10.3	128
113	Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries. Journal of Colloid and Interface Science, 2019, 554, 674-681.	9.4	38
114	Layered (NH ₄) ₂ V ₆ O ₁₆ ·1.5H ₂ O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19130-19139.	10.3	121
115	In Situ Revealing the Electroactivity of PO and PC Bonds in Hard Carbon for Highâ€Capacity and Longâ€Life Li/Kâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1901676.	19.5	202
116	Waterâ€Induced Growth of a Highly Oriented Mesoporous Graphitic Carbon Nanospring for Fast Potassiumâ€Ion Adsorption/Intercalation Storage. Angewandte Chemie, 2019, 131, 18276-18283.	2.0	16
117	Waterâ€Induced Growth of a Highly Oriented Mesoporous Graphitic Carbon Nanospring for Fast Potassiumâ€Ion Adsorption/Intercalation Storage. Angewandte Chemie - International Edition, 2019, 58, 18108-18115.	13.8	106
118	Roomâ€Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binderâ€Free Anode for Nextâ€Generation Lithiumâ€Ion Batteries. Small, 2019, 15, e1903214.	10.0	79
119	Scalable and Physical Synthesis of 2D Silicon from Bulk Layered Alloy for Lithium-Ion Batteries and Lithium Metal Batteries. ACS Nano, 2019, 13, 13690-13701.	14.6	143
120	Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Research, 2019, 12, 2941-2946.	10.4	25
121	Green and tunable fabrication of graphene-like N-doped carbon on a 3D metal substrate as a binder-free anode for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 21966-21975.	10.3	48
122	Converting Waste Polyethylene into ZnCCo ₃ and ZnCNi ₃ by a One-Step Thermal Reduction Process. ACS Omega, 2019, 4, 15729-15733.	3.5	11
123	Passivation effect for current collectors enables high-voltage aqueous sodium ion batteries. Materials Today Energy, 2019, 14, 100337.	4.7	32
124	Flexible and Free-Standing Ti ₃ C ₂ T _{<i>x</i>} MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries. ACS Nano, 2019, 13, 11676-11685.	14.6	420
125	Coral-like Ni _x Co _{1â^'x} Se ₂ for Na-ion battery with ultralong cycle life and ultrahigh rate capability. Journal of Materials Chemistry A, 2019, 7, 3933-3940.	10.3	85
126	Carbon nanotube-stabilized Co ₉ S ₈ dual-shell hollow spheres for high-performance K-ion storage. Chemical Communications, 2019, 55, 1406-1409.	4.1	39

#	Article	IF	CITATIONS
127	Study on the effect of transition metal sulfide in lithium–sulfur battery. Inorganic Chemistry Frontiers, 2019, 6, 477-481.	6.0	41
128	In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Materials, 2019, 23, 35-45.	18.0	189
129	Meso-porous amorphous Ge: Synthesis and mechanism of an anode material for Na and K storage. Nano Research, 2019, 12, 1824-1830.	10.4	22
130	Double-Shelled Ni–Fe–P/N-Doped Carbon Nanobox Derived from a Prussian Blue Analogue as an Electrode Material for K-Ion Batteries and Li–S Batteries. ACS Energy Letters, 2019, 4, 1496-1504.	17.4	138
131	Polyanions Enhance Conversion Reactions for Lithium/Sodiumâ€ion Batteries: The Case of SbVO ₄ Nanoparticles on Reduced Graphene Oxide. Small Methods, 2019, 3, 1900231.	8.6	31
132	Amine-induced phase transition from white phosphorus to red/black phosphorus for Li/K-ion storage. Chemical Communications, 2019, 55, 6751-6754.	4.1	22
133	Self-templating growth of Sb ₂ Se ₃ @C microtube: a convention-alloying-type anode material for enhanced K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12283-12291.	10.3	96
134	Prelithiated Surface Oxide Layer Enabled High-Performance Si Anode for Lithium Storage. ACS Applied Materials & Interfaces, 2019, 11, 18305-18312.	8.0	58
135	Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated Si@C channels for enhanced lithium storage. Carbon, 2019, 149, 664-671.	10.3	49
136	Water Splitting: Boosting Water Dissociation Kinetics on Pt–Ni Nanowires by Nâ€Induced Orbital Tuning (Adv. Mater. 16/2019). Advanced Materials, 2019, 31, 1970116.	21.0	1
137	A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9716-9725.	10.3	162
138	Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Research, 2019, 12, 1115-1120.	10.4	24
139	Spatial separation of lithiophilic surface and superior conductivity for advanced Li metal anode: the case of acetylene black and N-doped carbon spheres. Journal of Materials Chemistry A, 2019, 7, 8765-8770.	10.3	25
140	Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nature Communications, 2019, 10, 1217.	12.8	322
141	Ultrathin mesoporous F-doped α-Ni(OH) ₂ nanosheets as an efficient electrode material for water splitting and supercapacitors. Journal of Materials Chemistry A, 2019, 7, 9656-9664.	10.3	85
142	Manipulating the water dissociation kinetics of Ni ₃ N nanosheets <i>via in situ</i> interfacial engineering. Journal of Materials Chemistry A, 2019, 7, 10924-10929.	10.3	79
143	Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. Energy Storage Materials, 2019, 23, 587-593.	18.0	73
144	Sulfurâ€Deficient TiS _{2â€x} for Promoted Polysulfide Redox Conversion in Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 2231-2237.	3.4	37

#	Article	IF	CITATIONS
145	Boosting Water Dissociation Kinetics on Pt–Ni Nanowires by Nâ€Induced Orbital Tuning. Advanced Materials, 2019, 31, e1807780.	21.0	167
146	New Insights into the Electrochemistry Superiority of Liquid Na–K Alloy in Metal Batteries. Small, 2019, 15, e1804916.	10.0	26
147	Pyridinic and pyrrolic nitrogen-enriched carbon as a polysulfide blocker for high-performance lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2019, 6, 955-960.	6.0	22
148	One-step chemical synthesis of MgCNi3 nanoparticles embedded in carbon nanosheets utilizing waste polyethylene as carbon source. Materials Research Express, 2019, 6, 126003.	1.6	3
149	Hierarchical desert-waves-like LiNi0.5Mn1.5O4 as advanced cathodes with superior rate capability and cycling stability. Materials Today Energy, 2019, 14, 100363.	4.7	11
150	Enhancing kinetics of Li-S batteries by graphene-like N,S-codoped biochar fabricated in NaCl non-aqueous ionic liquid. Science China Materials, 2019, 62, 455-464.	6.3	23
151	Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Storage Materials, 2019, 20, 46-54.	18.0	78
152	Fully integrated hierarchical double-shelled Co ₉ S ₈ @CNT nanostructures with unprecedented performance for Li–S batteries. Nanoscale Horizons, 2019, 4, 182-189.	8.0	62
153	Mesoporous Hollow Ge Microspheres Prepared via Molten-Salt Metallothermic Reaction for High-Performance Li-Storage Anode. ACS Applied Materials & Interfaces, 2018, 10, 8399-8404.	8.0	32
154	Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries. ACS Nano, 2018, 12, 4993-5002.	14.6	269
155	Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Energy Storage Materials, 2018, 15, 234-241.	18.0	179
156	Self-Standing Hierarchical P/CNTs@rGO with Unprecedented Capacity and Stability for Lithium and Sodium Storage. CheM, 2018, 4, 372-385.	11.7	128
157	Manipulating the Redox Kinetics of Li–S Chemistry by Tellurium Doping for Improved Li–S Batteries. ACS Energy Letters, 2018, 3, 420-427.	17.4	146
158	Amorphous mesoporous GeO <i> _x </i> anode for Na-ion batteries with high capacity and long lifespan. Royal Society Open Science, 2018, 5, 171477.	2.4	9
159	Embedding MnO@Mn ₃ O ₄ Nanoparticles in an Nâ€Doped arbon Framework Derived from Mnâ€Organic Clusters for Efficient Lithium Storage. Advanced Materials, 2018, 30, 1704244.	21.0	374
160	Hierarchical Porous Nanosheets Constructed by Grapheneâ€Coated, Interconnected TiO ₂ Nanoparticles for Ultrafast Sodium Storage. Advanced Materials, 2018, 30, 1705788.	21.0	247
161	Ultrafine Co _{1â^'x} S nanoparticles embedded in a nitrogen-doped porous carbon hollow nanosphere composite as an anode for superb sodium-ion batteries and lithium-ion batteries. Nanoscale, 2018, 10, 2804-2811.	5.6	69
162	Sulfur–hydrazine hydrate-based chemical synthesis of sulfur@graphene composite for lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2018, 5, 785-792.	6.0	14

#	Article	IF	CITATIONS
163	Mesoporous germanium nanoparticles synthesized in molten zinc chloride at low temperature as a high-performance anode for lithium-ion batteries. Dalton Transactions, 2018, 47, 7402-7406.	3.3	22
164	Stabilizing Si/graphite composites with Cu and <i>in situ</i> synthesized carbon nanotubes for high-performance Li-ion battery anodes. Inorganic Chemistry Frontiers, 2018, 5, 1463-1469.	6.0	38
165	Synchronous synthesis of Kirkendall effect induced hollow FeSe ₂ /C nanospheres as anodes for high performance sodium ion batteries. Chemical Communications, 2018, 54, 5704-5707.	4.1	89
166	Solid-Solution Anion-Enhanced Electrochemical Performances of Metal Sulfides/Selenides for Sodium-Ion Capacitors: The Case of FeS _{2–<i>x</i>} Se _{<i>x</i>} . ACS Applied Materials & Interfaces, 2018, 10, 10945-10954.	8.0	91
167	Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries. Nano Energy, 2018, 47, 503-511.	16.0	221
168	Heteroatom dopings and hierarchical pores of graphene for synergistic improvement of lithium–sulfur battery performance. Inorganic Chemistry Frontiers, 2018, 5, 1053-1061.	6.0	22
169	Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Materials, 2018, 11, 38-46.	18.0	206
170	Conductive Nanocrystalline Niobium Carbide as Highâ€Efficiency Polysulfides Tamer for Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1704865.	14.9	210
171	One step conversion of waste polyethylene to Cr ₃ C ₂ nanorods and Cr ₂ AlC particles under mild conditions. Inorganic Chemistry Frontiers, 2018, 5, 2893-2897.	6.0	16
172	Metallothermic Reduction of Molten Adduct [PCl4+][AlCl4–] at 50 °C to Amorphous Phosphorus or Crystallized Phosphides. ACS Applied Materials & Interfaces, 2018, 10, 42469-42474.	8.0	5
173	Layered-Structure SbPO ₄ /Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries. ACS Nano, 2018, 12, 12869-12878.	14.6	87
174	Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries. ACS Nano, 2018, 12, 12932-12940.	14.6	223
175	Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry. Joule, 2018, 2, 2681-2693.	24.0	406
176	Conductive and Polar Titanium Boride as a Sulfur Host for Advanced Lithium–Sulfur Batteries. Chemistry of Materials, 2018, 30, 6969-6977.	6.7	101
177	In Situ Li ₃ PS ₄ Solid‣tate Electrolyte Protection Layers for Superior Longâ€Life and Highâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1804684.	21.0	140
178	Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Materials Today Energy, 2018, 10, 241-248.	4.7	107
179	The Dualâ€Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward Highâ€Performance Li–S Full Cell. Advanced Energy Materials, 2018, 8, 1802561.	19.5	114
180	Hierarchical Grapheneâ€Scaffolded Silicon/Graphite Composites as High Performance Anodes for Lithiumâ€Ion Batteries. Small, 2018, 14, e1802457.	10.0	91

Υίται Qian

#	Article	IF	CITATIONS
181	Mechanical Pressing Route for Scalable Preparation of Microstructured/Nanostrutured Si/Graphite Composite for Lithium Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 14230-14238.	6.7	42
182	Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Data in Brief, 2018, 20, 1999-2002.	1.0	11
183	Crystal structural design of exposed planes: express channels, high-rate capability cathodes for lithium-ion batteries. Nanoscale, 2018, 10, 17435-17455.	5.6	82
184	Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale, 2018, 10, 13236-13241.	5.6	125
185	A novel class of functional additives for cyclability enhancement of the sulfur cathode in lithium sulfur batteries. Inorganic Chemistry Frontiers, 2018, 5, 2013-2017.	6.0	13
186	Facile synthesis ofÂN,O-codoped hard carbon on the kilogram scale for fast capacitive sodium storage. Journal of Materials Chemistry A, 2018, 6, 16465-16474.	10.3	50
187	Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode. Nano Research, 2018, 11, 6294-6303.	10.4	35
188	Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. Journal of Materials Chemistry A, 2018, 6, 15859-15867.	10.3	90
189	Truncated cobalt hexacyanoferrate nanocubes threaded by carbon nanotubes as a high-capacity and high-rate cathode material for dual-ion rechargable aqueous batteries. Journal of Power Sources, 2018, 399, 1-7.	7.8	35
190	NiS _{1.03} Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries. ACS Nano, 2018, 12, 8277-8287.	14.6	127
191	Optimization of Microporous Carbon Structures for Lithium–Sulfur Battery Applications in Carbonateâ€Based Electrolyte. Small, 2017, 13, 1603533.	10.0	64
192	Facile synthesis and electrochemistry of a new cubic rocksalt Li _x V _y O ₂ (x = 0.78, y = 0.75) electrode material. Journal of Materials Chemistry A, 2017, 5, 5148-5155.	10.3	7
193	General Fabrication of Boride, Carbide, and Nitride Nanocrystals via a Metal-Hydrolysis-Assisted Process. Inorganic Chemistry, 2017, 56, 2440-2447.	4.0	23
194	Sulfurâ€Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2017, 56, 2937-2941.	13.8	50
195	Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Research, 2017, 10, 1794-1803.	10.4	67
196	Sulfurâ€Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. Angewandte Chemie, 2017, 129, 2983-2987.	2.0	6
197	MoSe ₂ â€Covered N,Pâ€Doped Carbon Nanosheets as a Longâ€Life and Highâ€Rate Anode Material for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1700522.	14.9	454
198	Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. Journal of Materials Chemistry A, 2017, 5, 730-738.	10.3	287

#	Article	IF	CITATIONS
199	Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12144-12148.	10.3	88
200	Wetâ€Chemical Synthesis of Hollow Redâ€Phosphorus Nanospheres with Porous Shells as Anodes for Highâ€Performance Lithiumâ€ion and Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1700214.	21.0	213
201	Ultramicroporous Carbon through an Activation-Free Approach for Li–S and Na–S Batteries in Carbonate-Based Electrolyte. ACS Applied Materials & Interfaces, 2017, 9, 13813-13818.	8.0	61
202	One-Dimensional Yolk–Shell Sb@Ti–O–P Nanostructures as a High-Capacity and High-Rate Anode Material for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 447-454.	8.0	79
203	One-step solid state reaction for the synthesis of ternary nitrides Co ₃ Mo ₃ N and Fe ₃ Mo ₃ N. Inorganic Chemistry Frontiers, 2017, 4, 2055-2058.	6.0	8
204	Controllable Self-Assembly of Micro-Nanostructured Si-Embedded Graphite/Graphene Composite Anode for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 39318-39325.	8.0	64
205	Scalable synthesis of carbon stabilized SiO/graphite sheets composite as anode for high-performance Li ion batteries. RSC Advances, 2017, 7, 39762-39766.	3.6	22
206	Biphase-Interface Enhanced Sodium Storage and Accelerated Charge Transfer: Flower-Like Anatase/Bronze TiO ₂ /C as an Advanced Anode Material for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 43648-43656.	8.0	63
207	Sole Chemical Confinement of Polysulfides on Nonporous Nitrogen/Oxygen Dualâ€Doped Carbon at the Kilogram Scale for Lithium–Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1604265.	14.9	173
208	Designed Formation of MnO ₂ @NiO/NiMoO ₄ Nanowires@Nanosheets Hierarchical Structures with Enhanced Pseudocapacitive Properties. ChemElectroChem, 2016, 3, 1347-1353.	3.4	32
209	Synthesis of MoS ₂ @C Nanotubes Via the Kirkendall Effect with Enhanced Electrochemical Performance for Lithium Ion and Sodium Ion Batteries. Small, 2016, 12, 2484-2491.	10.0	192
210	Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Efficient Scaffolds for Lithium–Sulfur Batteries. Advanced Functional Materials, 2016, 26, 1571-1579.	14.9	177
211	A Composite Structure of Cu ₃ Ge/Ge/C Anode Promise Better Rate Property for Lithium Battery. Small, 2016, 12, 6024-6032.	10.0	26
212	Synthesis of S/CoS2 Nanoparticles-Embedded N-doped Carbon Polyhedrons from Polyhedrons ZIF-67 and their Properties in Lithium-Sulfur Batteries. Electrochimica Acta, 2016, 218, 243-251.	5.2	141
213	B,N-Co-doped Graphene Supported Sulfur for Superior Stable Li–S Half Cell and Ge–S Full Battery. ACS Applied Materials & Interfaces, 2016, 8, 27679-27687.	8.0	56
214	MoO 2 nanoparticles as high capacity intercalation anode material for long-cycle lithium ion battery. Electrochimica Acta, 2016, 213, 416-422.	5.2	26
215	Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/Potassium Storage Properties. ACS Applied Materials & Interfaces, 2016, 8, 20682-20690.	8.0	263
216	A molten salt strategy for deriving a porous Si@C nano-composite from Si-rich biomass for high-performance Li-ion batteries. RSC Advances, 2016, 6, 79890-79893.	3.6	12

Υίται Qian

#	Article	IF	CITATIONS
217	A simple melting-diffusing-reacting strategy to fabricate S/NiS ₂ –C for lithium–sulfur batteries. Nanoscale, 2016, 8, 17616-17622.	5.6	100
218	A scalable in situ surfactant-free synthesis of a uniform MnO/graphene composite for highly reversible lithium storage. Dalton Transactions, 2016, 45, 19221-19225.	3.3	12
219	One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Scientific Reports, 2016, 6, 26146.	3.3	342
220	Doubleâ€Walled Sb@TiO _{2â^'x} Nanotubes as a Superior Highâ€Rate and Ultralongâ€Lifespan Anode Material for Naâ€Ion and Liâ€Ion Batteries. Advanced Materials, 2016, 28, 4126-4133.	21.0	412
221	Design and synthesis of a stable-performance P2-type layered cathode material for sodium ion batteries. RSC Advances, 2016, 6, 55327-55330.	3.6	6
222	One-step thermolysis synthesis of two-dimensional ultrafine Fe ₃ O ₄ particles/carbon nanonetworks for high-performance lithium-ion batteries. Nanoscale, 2016, 8, 4733-4741.	5.6	67
223	A Deep Reduction and Partial Oxidation Strategy for Fabrication of Mesoporous Si Anode for Lithium Ion Batteries. ACS Nano, 2016, 10, 2295-2304.	14.6	121
224	Trace Fe ³⁺ mediated synthesis of LiFePO ₄ micro/nanostructures towards improved electrochemical performance for lithium-ion batteries. RSC Advances, 2016, 6, 456-463.	3.6	17
225	Porous silicon nano-aggregate from silica fume as an anode for high-energy lithium-ion batteries. RSC Advances, 2016, 6, 30577-30581.	3.6	15
226	A graphene oxide-wrapped bipyramidal sulfur@polyaniline core–shell structure as a cathode for Li–S batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2016, 4, 6404-6410.	10.3	98
227	A scalable synthesis of N-doped Si nanoparticles for high-performance Li-ion batteries. Chemical Communications, 2016, 52, 3813-3816.	4.1	26
228	In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries. Nanoscale, 2016, 8, 4903-4907.	5.6	30
229	Origin of additional capacities in selenium-based ZnSe@C nanocomposite Li-ion battery electrodes. Electrochemistry Communications, 2016, 65, 44-47.	4.7	49
230	Mesh-like LiZnBO ₃ /C composites as a prominent stable anode for lithium ion rechargeable batteries. Journal of Materials Chemistry A, 2016, 4, 5489-5494.	10.3	13
231	Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. Journal of Materials Chemistry A, 2016, 4, 856-860.	10.3	62
232	Hydrothermal Synthesis of Unique Hollow Hexagonal Prismatic Pencils of Co ₃ V ₂ O ₈ â‹ <i>n</i> H ₂ O: A New Anode Material for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 10787-10791.	13.8	115
233	A Facile Method for Synthesis of Porous NiCo ₂ O ₄ Nanorods as a High-Performance Anode Material for Li-Ion Batteries. Particle and Particle Systems Characterization, 2015, 32, 1012-1019.	2.3	63
234	One-Pot Hydrothermal Synthesis of FeMoO ₄ Nanocubes as an Anode Material for Lithium-Ion Batteries with Excellent Electrochemical Performance. Small, 2015, 11, 4753-4761.	10.0	87

#	Article	IF	CITATIONS
235	A New Saltâ€Baked Approach for Confining Selenium in Metal Complexâ€Derived Porous Carbon with Superior Lithium Storage Properties. Advanced Functional Materials, 2015, 25, 5229-5238.	14.9	117
236	Porous MnFe ₂ O ₄ microrods as advanced anodes for Li-ion batteries with long cycle lifespan. Journal of Materials Chemistry A, 2015, 3, 9550-9555.	10.3	49
237	Rational design of SnO2 aggregation nanostructure with uniform pores and its supercapacitor application. Journal of Materials Science: Materials in Electronics, 2015, 26, 6143-6147.	2.2	10
238	Polyaniline-Assisted Synthesis of Si@C/RGO as Anode Material for Rechargeable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 409-414.	8.0	78
239	Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 1037-1041.	10.3	192
240	A synchronous approach for facile production of Ge–carbon hybrid nanoparticles for high-performance lithium batteries. Chemical Communications, 2015, 51, 3882-3885.	4.1	40
241	Preparation of Nanocrystalline Silicon from SiCl ₄ at 200 °C in Molten Salt for Highâ€Performance Anodes for Lithium Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 3822-3825.	13.8	154
242	Electrochemical performance of rod-like Sb–C composite as anodes for Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3276-3280.	10.3	94
243	High yield fabrication of hollow vesica-like silicon based on the Kirkendall effect and its application to energy storage. Nanoscale, 2015, 7, 3440-3444.	5.6	51
244	A potential pyrrhotite (Fe ₇ S ₈) anode material for lithium storage. RSC Advances, 2015, 5, 14828-14831.	3.6	65
245	The design of a high-energy Li-ion battery using germanium-based anode and LiCoO2 cathode. Journal of Power Sources, 2015, 293, 868-875.	7.8	47
246	Facile fabrication of hierarchical porous rose-like NiCo ₂ O ₄ nanoflake/MnCo ₂ O ₄ nanoparticle composites with enhanced electrochemical performance for energy storage. Journal of Materials Chemistry A, 2015, 3, 16142-16149.	10.3	106
247	Synchronous synthesis of a Si/Cu/C ternary nano-composite as an anode for Li ion batteries. Journal of Materials Chemistry A, 2015, 3, 17544-17548.	10.3	13
248	Amorphous S-rich S _{1â^'x} Se _x /C (x ≤0.1) composites promise better lithium–sulfur batteries in a carbonate-based electrolyte. Energy and Environmental Science, 2015, 8, 3181-3186.	30.8	164
249	Rationally designed hierarchical MnO ₂ @NiO nanostructures for improved lithium ion storage. RSC Advances, 2015, 5, 61148-61154.	3.6	9
250	Enhancing the electrode performance of Co ₃ O ₄ through Co ₃ O ₄ @a-TiO ₂ core–shell microcubes with controllable pore size. RSC Advances, 2015, 5, 40899-40906.	3.6	7
251	Hydrogenated TiO ₂ Branches Coated Mn ₃ O ₄ Nanorods as an Advanced Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 10348-10355.	8.0	81
252	Mnâ€Doped αâ€FeOOH Nanorods and αâ€Fe ₂ O ₃ Mesoporous Nanorods: Facile Synthesis and Applications as High Performance Anodes for LIBs. Advanced Electronic Materials, 2015, 1, 1400057.	5.1	55

#	Article	IF	CITATIONS
253	Honeycomb-like Macro-Germanium as High-Capacity Anodes for Lithium-Ion Batteries with Good Cycling and Rate Performance. Chemistry of Materials, 2015, 27, 4156-4164.	6.7	70
254	Mn ₃ O ₄ @C core–shell composites as an improved anode for advanced lithium ion batteries. RSC Advances, 2015, 5, 46829-46833.	3.6	14
255	A Si/Ge nanocomposite prepared by a one-step solid-state metathesis reaction and its enhanced electrochemical performance. Journal of Materials Chemistry A, 2015, 3, 11199-11202.	10.3	26
256	Nanoporous germanium as high-capacity lithium-ion battery anode. Nano Energy, 2015, 13, 651-657.	16.0	131
257	Mesoporous quasi-single-crystalline NiCo ₂ O ₄ superlattice nanoribbons with optimizable lithium storage properties. Journal of Materials Chemistry A, 2015, 3, 10336-10344.	10.3	78
258	Chemical synthesis of porous hierarchical Ge–Sn binary composites using metathesis reaction for rechargeable Li-ion batteries. Chemical Communications, 2015, 51, 17156-17159.	4.1	27
259	A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries. Energy and Environmental Science, 2015, 8, 3187-3191.	30.8	193
260	Triple-walled SnO ₂ @N-doped carbon@SnO ₂ nanotubes as an advanced anode material for lithium and sodium storage. Journal of Materials Chemistry A, 2015, 3, 23194-23200.	10.3	68
261	Synchronously synthesized Si@C composites through solvothermal oxidation of Mg ₂ Si as lithium ion battery anode. RSC Advances, 2015, 5, 71355-71359.	3.6	8
262	Silicon nanoparticles obtained via a low temperature chemical "metathesis―synthesis route and their lithium-ion battery properties. Chemical Communications, 2015, 51, 2345-2348.	4.1	53
263	An aqueous rechargeable sodium ion battery based on a NaMnO ₂ –NaTi ₂ (PO ₄) ₃ hybrid system for stationary energy storage. Journal of Materials Chemistry A, 2015, 3, 1400-1404.	10.3	179
264	Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Research, 2015, 8, 1497-1504.	10.4	62
265	Anodes: Unusual Formation of ZnCo2O43D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material (Adv. Funct. Mater. 20/2014). Advanced Functional Materials, 2014, 24, 3011-3011.	14.9	2
266	Comparison between SnSb–C and Sn–C composites as anode materials for lithium-ion batteries. RSC Advances, 2014, 4, 62301-62307.	3.6	23
267	A comparative study of lithium-storage performances of hematite: Nanotubes vs. nanorods. Journal of Power Sources, 2014, 245, 429-435.	7.8	62
268	Unusual Formation of ZnCo ₂ O ₄ 3D Hierarchical Twin Microspheres as a Highâ€Rate and Ultralongâ€Life Lithiumâ€Ion Battery Anode Material. Advanced Functional Materials, 2014, 24, 3012-3020.	14.9	382
269	Stable Cycling of Fe ₂ O ₃ Nanorice as an Anode through Electrochemical Porousness and the Solid–Electrolyte Interphase Thermolysis Approach. ChemPlusChem, 2014, 79, 143-150.	2.8	14
270	Hierarchical core–shell α-Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 3439-3444.	10.3	55

#	Article	IF	CITATIONS
271	Fabrication of one-dimensional SnO2/MoO3/C nanostructure assembled of stacking SnO2 nanosheets from its heterostructure precursor and its application in lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 9784.	10.3	38
272	Recycling chicken eggshell membranes for high-capacity sodium battery anodes. RSC Advances, 2014, 4, 50950-50954.	3.6	31
273	Synthesis of novel morphologies of Li2FeSiO4/C micro/nano composites by a facile hydrothermal method. RSC Advances, 2014, 4, 39889-39893.	3.6	9
274	Embedding silicon nanoparticles in graphene based 3D framework by cross-linking reaction for high performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 19604-19608.	10.3	39
275	From ultrathin nanosheets, triangular plates to nanocrystals with exposed (102) facets, a morphology and phase transformation of sp2 hybrid BN nanomaterials. RSC Advances, 2014, 4, 14233.	3.6	26
276	One-pot synthesis of carbon nanoribbons and their enhanced lithium storage performance. Journal of Materials Chemistry A, 2014, 2, 11974-11979.	10.3	14
277	A facile synthesis of highly porous CdSnO3 nanoparticles and their enhanced performance in lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4970.	10.3	10
278	Bulk Ti ₂ Nb ₁₀ O ₂₉ as long-life and high-power Li-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 17258-17262.	10.3	112
279	Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2728.	10.3	68
280	Facile synthesis of hierarchically porous NiO micro-tubes as advanced anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16847-16850.	10.3	73
281	General synthesis of hollow MnO ₂ , Mn ₃ O ₄ and MnO nanospheres as superior anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 17421-17426.	10.3	213
282	Synthesis of urchin-like Sn–ZnO–C composite and its enhanced electrochemical performance for lithium-ion batteries. Science Bulletin, 2014, 59, 2006-2011.	1.7	4
283	Layer structured α-FeSe: A potential anode material for lithium storage. Electrochemistry Communications, 2014, 38, 124-127.	4.7	62
284	Graphene-Supported NaTi ₂ (PO ₄) ₃ as a High Rate Anode Material for Aqueous Sodium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1181-A1187.	2.9	98
285	3D Co ₃ O ₄ and CoO@C wall arrays: morphology control, formation mechanism, and lithium-storage properties. Journal of Materials Chemistry A, 2014, 2, 11597.	10.3	81
286	One pot synthesis of ultrathin boron nitride nanosheet-supported nanoscale zerovalent iron for rapid debromination of polybrominated diphenyl ethers. Journal of Materials Chemistry A, 2013, 1, 6379.	10.3	52
287	Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10985.	10.3	114
288	Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. Journal of Materials Chemistry A, 2013, 1, 15292.	10.3	151

#	Article	IF	CITATIONS
289	Formation of Grapheneâ€Wrapped Nanocrystals at Room Temperature through the Colloidal Coagulation Effect. Particle and Particle Systems Characterization, 2013, 30, 143-147.	2.3	39
290	Controlled Growth of Porous αâ€Fe ₂ O ₃ Branches on βâ€MnO ₂ Nanorods for Excellent Performance in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2013, 23, 4049-4056.	14.9	181
291	Effect of different carbon sources on the electrochemical properties of rod-like LiMnPO4–C nanocomposites. RSC Advances, 2013, 3, 6847.	3.6	37
292	MnO@1-D carbon composites from the precursor C4H4MnO6 and their high-performance in lithium batteries. RSC Advances, 2013, 3, 10001.	3.6	69
293	Spinel Mn1.5Co1.5O4 core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity. Journal of Materials Chemistry, 2012, 22, 23254.	6.7	140
294	A new carbon intercalated compound of Dion–Jacobson phase HLaNb2O7. Journal of Materials Chemistry, 2012, 22, 11086.	6.7	35
295	Synthesis of MnO@C core–shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 17864.	6.7	114
296	Synthesis of TiN hollow sphere by a modified one-step template self-assembly method. CrystEngComm, 2012, 14, 2186.	2.6	5
297	Facile synthesis of uniform h-BN nanocrystals and their application as a catalyst support towards the selective oxidation of benzyl alcohol. RSC Advances, 2012, 2, 10689.	3.6	20
298	A facile room-temperature route to flower-like CuO microspheres with greatly enhanced lithium storage capability. RSC Advances, 2012, 2, 8602.	3.6	40
299	Solid state synthesis of a new ternary nitride MgMoN2 nanosheets and micromeshes. Journal of Materials Chemistry, 2012, 22, 14559.	6.7	25
300	A novel benzene–water azeotrope route to new Na-based metal fluorosulphates NaFeSO4F and NaFeSO4F·2H2O in one minute. CrystEngComm, 2012, 14, 4251.	2.6	11
301	Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries. RSC Advances, 2012, 2, 284-291.	3.6	62
302	Mesoporous NiO ultrathin nanowire networks topotactically transformed from α-Ni(OH)2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment. Journal of Materials Chemistry, 2012, 22, 14276.	6.7	139
303	Hydrothermal synthesis of layered Li1.81H0.19Ti2O5·xH2O nanosheets and their transformation to single-crystalline Li4Ti5O12 nanosheets as the anode materials for Li-ion batteries. CrystEngComm, 2012, 14, 6435.	2.6	47
304	Fabrication of single-crystalline CuInS2 nanowires array via a diethylenetriamine-thermal route. CrystEngComm, 2012, 14, 7217.	2.6	22
305	A thermal reduction route to nanocrystalline transition metal carbides from waste polytetrafluoroethylene and metal oxides. Materials Chemistry and Physics, 2012, 137, 1-4.	4.0	24
306	Synthesis of Mn ₃ O ₄ nanowires and their transformation to LiMn ₂ O ₄ polyhedrons, application of LiMn ₂ O ₄ as a cathode in a lithium-ion battery. CrystEngComm, 2012, 14, 1485-1489.	2.6	30

#	Article	IF	CITATIONS
307	Synchronously synthesized core–shell LiNi1/3Co1/3Mn1/3O2/carbon nanocomposites as cathode materials for high performance lithium ion batteries. RSC Advances, 2012, 2, 12886.	3.6	38
308	Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 11297.	6.7	66
309	Enhanced energy storage and rate performance induced by dense nanocavities inside MnWO4 nanobars. RSC Advances, 2012, 2, 6748.	3.6	30
310	Synthesis of superconducting sphereâ€like Mo ₂ C nanoparticles in an autoclave. Crystal Research and Technology, 2012, 47, 467-470.	1.3	5
311	One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Research, 2012, 5, 477-485.	10.4	241
312	Magnesium-assisted formation of metal carbides and nitrides from metal oxides. International Journal of Refractory Metals and Hard Materials, 2012, 31, 288-292.	3.8	23
313	Preparation of LiCoO2 concaved cuboctahedra and their electrochemical behavior in lithium-ion battery. Dalton Transactions, 2011, 40, 7645.	3.3	27
314	Mesoporous NiO with various hierarchical nanostructures by quasi-nanotubes/nanowires/nanorodsself-assembly: controllable preparation and application in supercapacitors. CrystEngComm, 2011, 13, 626-632.	2.6	121
315	Fabrication of $\hat{1}^3$ -MnO2/ $\hat{1}\pm$ -MnO2 hollow core/shell structures and their application to water treatment. Journal of Materials Chemistry, 2011, 21, 16210.	6.7	94
316	Convenient synthesis and applications of gram scale boron nitride nanosheets. Catalysis Science and Technology, 2011, 1, 1119.	4.1	53
317	Solid state synthesis of nitride, carbide and boride nanocrystals in an autoclave. Journal of Materials Chemistry, 2011, 21, 13756.	6.7	22
318	Formation and morphology control of nanoparticles via solution routes in an autoclave. Journal of Materials Chemistry, 2011, 21, 11457.	6.7	93
319	Cadmium sulfide rod-bundle structures decorated with nanoparticles from an inorganic/organic composite. Journal of Nanoparticle Research, 2011, 13, 3535-3543.	1.9	4
320	Synthesis and magnetic properties of Fe3O4/helical carbon nanofiber nanocomposites from the catalytic pyrolysis of ferrocene. Science Bulletin, 2011, 56, 3199.	1.7	3
321	Synthesis, transformation to octahedronâ€like crystals, and gasâ€sensing property of sixâ€horned nanospheres of Cu ₂ 0. Crystal Research and Technology, 2011, 46, 967-972.	1.3	0
322	Carbide Nanoparticles Encapsulated in the Caves of Carbon Nanotubes by an In Situ Reduction-Carbonization Route. Journal of Nanomaterials, 2011, 2011, 1-5.	2.7	32
323	Malic acid assisted precursor route to hierarchical structured nickel oxide. Crystal Research and Technology, 2010, 45, 545-550.	1.3	5
324	Mgâ€Assisted Autoclave Synthesis of RB ₆ (R = Sm, Eu, Gd, and Tb) Submicron Cubes and SmB ₆ Submicron Rods. European Journal of Inorganic Chemistry, 2010, 2010, 1289-1294.	2.0	26

#	Article	IF	CITATIONS
325	Double‧helled Mn ₂ O ₃ Hollow Spheres and Their Application in Water Treatment. European Journal of Inorganic Chemistry, 2010, 2010, 1172-1176.	2.0	42
326	Synthesis and Electrical Capacitance of Carbon Nanoplates. European Journal of Inorganic Chemistry, 2010, 2010, 4314-4320.	2.0	12
327	A simple pyrolysis route to synthesize leaf-like carbon sheets. Carbon, 2010, 48, 3420-3426.	10.3	20
328	Orthogonal Designâ€Assisted Solvothermal Strategy for Preparing Silicon Nitride Nanodendrites on a Large Scale. International Journal of Applied Ceramic Technology, 2010, 7, 889-894.	2.1	3
329	Hydrothermal Synthesis and Electrochemical Properties of Urchin-Like Coreâ^'Shell Copper Oxide Nanostructures. Journal of Physical Chemistry C, 2010, 114, 9645-9650.	3.1	66
330	CdS Hierarchical Nanostructures with Tunable Morphologies: Preparation and Photocatalytic Properties. Journal of Physical Chemistry C, 2010, 114, 14029-14035.	3.1	117
331	Recent Development of the Synthesis and Engineering Applications of One-Dimensional Boron Nitride Nanomaterials. Journal of Nanomaterials, 2010, 2010, 1-16.	2.7	12
332	A versatile route for the convenient synthesis of rare-earth and alkaline-earth hexaborides at mild temperatures. CrystEngComm, 2010, 12, 3923.	2.6	43
333	Tartatric Acid and <scp>L</scp> ysteine Synergisticâ€Assisted Synthesis of Antimony Trisulfide Hierarchical Structures in Aqueous Solution. European Journal of Inorganic Chemistry, 2009, 2009, 5302-5306.	2.0	15
334	Solution-phase synthesis of nanomaterials at low temperature. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 13-20.	0.2	14
335	Additiveâ€Assisted Nitridation to Synthesize Si ₃ N ₄ Nanomaterials at a Low Temperature. Journal of the American Ceramic Society, 2009, 92, 517-519.	3.8	12
336	The synthesis of nanostructured SiC from waste plastics and silicon powder. Nanotechnology, 2009, 20, 355604.	2.6	29
337	Acetylacetone-Directed Controllable Synthesis of Bi2S3 Nanostructures with Tunable Morphology. Crystal Growth and Design, 2009, 9, 3862-3867.	3.0	61
338	Sunlight-assisted fabrication of a hierarchical ZnO nanorod array structure. CrystEngComm, 2009, 11, 2009.	2.6	26
339	Thermal-induced shape evolution from uniform triangular to hexagonal r-BN nanoplates. Journal of Materials Chemistry, 2009, 19, 8086.	6.7	30
340	Growth and characterization of ZnS porous nanoribbon array constructed by connected nanocrystallities. CrystEngComm, 2009, 11, 2308.	2.6	15
341	A general route for the convenient synthesis of crystalline hexagonal boron nitride micromesh at mild temperature. Journal of Materials Chemistry, 2009, 19, 1989.	6.7	51
342	Largeâ€Scale Synthesis of Magnenium Silicon Nitride Powders at Low Temperature. Journal of the American Ceramic Society, 2008, 91, 333-336.	3.8	11

#	Article	IF	CITATIONS
343	Synthesis of MnV2O6 nanoflakes via simple hydrothermal process. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 275-278.	0.4	6
344	Sulfurâ€Assisted Approach for the Lowâ€Temperature Synthesis of β‣iC Nanowires. European Journal of Inorganic Chemistry, 2008, 2008, 3883-3888.	2.0	30
345	Solvothermal Synthesis of Si ₃ N ₄ Nanomaterials at a Low Temperature. Journal of the American Ceramic Society, 2008, 91, 1725-1728.	3.8	21
346	Controlled fabrication of SnO2 solid and hollow nanocubes with a simple hydrothermal route. Applied Physics Letters, 2008, 93, 152511.	3.3	26
347	A Facile Approach for the Synthesis of Uniform Hollow Carbon Nanospheres. Journal of Physical Chemistry C, 2008, 112, 1896-1900.	3.1	29
348	Hydrothermal Growth and Morphology Modification of β-NiS Three-Dimensional Flowerlike Architectures. Crystal Growth and Design, 2007, 7, 1918-1922.	3.0	99
349	Shape-Controlled Synthesis of Tellurium 1D Nanostructures via a Novel Circular Transformation Mechanism. Crystal Growth and Design, 2007, 7, 1185-1191.	3.0	40
350	Solution-Phase Synthesis of Single-Crystal CuO Nanoribbons and Nanorings. Crystal Growth and Design, 2007, 7, 930-934.	3.0	150
351	Synthesis of Kelp-Like Crystalline ?-SiC Nanobelts and their Apical Growth Mechanism. Journal of the American Ceramic Society, 2007, 90, 653-656.	3.8	14
352	<scp>l</scp> -Cysteine-Assisted Tunable Synthesis of PbS of Various Morphologies. Journal of Physical Chemistry C, 2007, 111, 16761-16767.	3.1	96
353	High-Yield Synthesis of NiO Nanoplatelets and Their Excellent Electrochemical Performance. Crystal Growth and Design, 2006, 6, 2163-2165.	3.0	132
354	lsostructural Cd3E2(E = P, As) Microcrystals Prepared via a Hydrothermal Route. Crystal Growth and Design, 2006, 6, 849-853.	3.0	18
355	Double-Source Approach to In2S3 Single Crystallites and Their Electrochemical Properties. Crystal Growth and Design, 2006, 6, 1304-1307.	3.0	69
356	The Fabrication and Characterization of Single-Crystalline Selenium Nanoneedles. Crystal Growth and Design, 2006, 6, 1711-1716.	3.0	36
357	Large-Scale Synthesis and Growth Mechanism of Single-Crystal Se Nanobelts. Crystal Growth and Design, 2006, 6, 1514-1517.	3.0	51
358	A Chemical Co-Reduction Route to Synthesize Nanocrystalline Vanadium Carbide. Journal of the American Ceramic Society, 2006, 89, 320-322.	3.8	12
359	Preparation of Semiconductor/Polymer Coaxial Nanocables by a Facile Solution Process. European Journal of Inorganic Chemistry, 2006, 2006, 207-212.	2.0	8
360	A Hydrothermal Reduction Route to Single-Crystalline Hexagonal Cobalt Nanowires. European Journal of Inorganic Chemistry, 2006, 2006, 2454-2459.	2.0	110

#	Article	IF	CITATIONS
361	Synthesis of Nanocrystalline Boron Carbide via a Solvothermal Reduction of CCl ₄ in the Presence of Amorphous Boron Powder. Journal of the American Ceramic Society, 2005, 88, 225-227.	3.8	31
362	Shape-Induced Enhanced Luminescent Properties of Red Phosphors: Sr2MgSi2O7:Eu3+ Nanotubes. European Journal of Inorganic Chemistry, 2005, 2005, 4031-4034.	2.0	15
363	Synthesis, Characterization, and Growth Mechanism of Tellurium Nanotubes. Crystal Growth and Design, 2005, 5, 325-328.	3.0	137
364	InP nanocrystals via surfactant-aided hydrothermal synthesis. Journal of Applied Physics, 2004, 95, 3683-3688.	2.5	34
365	Polyol-mediated preparation of disklike (ZnSe)2·EN precursor and its conversion to ZnSe crystals with quasi-network structure. Journal of Materials Research, 2004, 19, 1369-1373.	2.6	6
366	Lowâ€Temperature Synthesis of Nanocrystalline αâ€5i ₃ N ₄ Powders by the Reaction of Mg ₂ Si with NH ₄ Cl. Journal of the American Ceramic Society, 2004, 87, 1810-1813.	3.8	12
367	One-Dimensional Arrays of Co3O4Nanoparticles:Â Synthesis, Characterization, and Optical and Electrochemical Properties. Journal of Physical Chemistry B, 2004, 108, 16401-16404.	2.6	249
368	A Rational Self-Sacrificing Template Route toβ-Bi2O3 Nanotube Arrays. European Journal of Inorganic Chemistry, 2004, 2004, 1785-1787.	2.0	85
369	Selected-Control Solvothermal Synthesis of Nanoscale Hollow Spheres and Single-Crystal Tubes of PbTe. European Journal of Inorganic Chemistry, 2004, 2004, 4521-4524.	2.0	55
370	Formation of Carbon Nanotubes and Cubic and Spherical Nanocages. Journal of Physical Chemistry B, 2004, 108, 20090-20094.	2.6	21
371	Lithium-Assisted Synthesis and Characterization of Crystalline 3Câ^'SiC Nanobelts. Journal of Physical Chemistry B, 2004, 108, 20102-20104.	2.6	130
372	CuBr Crystal Growth in Ethylene Glycol Solvent by the Temperature-Difference Method. Crystal Growth and Design, 2004, 4, 413-414.	3.0	18
373	Single-step synthesis of copper sulfide hollow spheres by a template interface reaction routeElectronic supplementary information (ESI) available: XRD pattern of copper sulfide products. See http://www.rsc.org/suppdata/jm/b4/b407435a/. Journal of Materials Chemistry, 2004, 14, 2489.	6.7	66
374	Synthesis of nanocrystalline MoN from a new precursor by TPR method. Journal of Materials Science, 2003, 38, 3473-3478.	3.7	12
375	Solvothermal synthesis of titanium phosphides via sodium co-reduction of PCl3 and TiCl4. Journal of Materials Science Letters, 2003, 22, 1463-1464.	0.5	3
376	Large-Scale Synthesis of High Quality Trigonal Selenium Nanowires. European Journal of Inorganic Chemistry, 2003, 2003, 3250-3255.	2.0	61
377	A Template-Interface Co-Reduction Synthesis of Hollow Sphere-like Carbides. European Journal of Inorganic Chemistry, 2003, 2003, 3534-3537.	2.0	13
378	A Room-Temperature Route to Bismuth Nanotube Arrays. European Journal of Inorganic Chemistry, 2003, 2003, 3699-3702.	2.0	47

#	Article	IF	CITATIONS
379	A Complex-Based Soft Template Route to PbSe Nanowires. European Journal of Inorganic Chemistry, 2003, 2003, 644-647.	2.0	29
380	Reductionâ€Nitridation Synthesis of Titanium Nitride Nanocrystals. Journal of the American Ceramic Society, 2003, 86, 206-208.	3.8	42
381	Selective synthesis and characterization of famatinite nanofibers and tetrahedrite nanoflakes. Journal of Materials Chemistry, 2003, 13, 301-303.	6.7	56
382	A Co-pyrolysis Method to Boron Nitride Nanotubes at Relative Low Temperature. Chemistry of Materials, 2003, 15, 2675-2680.	6.7	68
383	Soft solution processing of cerium hydroxysulfate powders with different morphologies. Journal of Materials Chemistry, 2003, 13, 150-153.	6.7	21
384	Surfactant-assisted growth of uniform nanorods of crystalline tellurium. Journal of Materials Chemistry, 2003, 13, 159-162.	6.7	97
385	Low-temperature route to nanoscale P ₃ N ₅ hollow spheres. Journal of Materials Research, 2003, 18, 2359-2363.	2.6	34
386	Wet Synthesis and Characterization of MSe (M = Cd, Hg) Nanocrystallites at Room Temperature. Journal of Materials Research, 2002, 17, 1147-1152.	2.6	16
387	Fabrication of BiTel submicrometer hollow spheresElectronic supplementary information (ESI) available: XRD pattern and TEM images of Bi2Te3. See http://www.rsc.org/suppdata/jm/b2/b200950c/. Journal of Materials Chemistry, 2002, 12, 2426-2429.	6.7	38
388	Synthesis of closed PbS nanowires with regular geometric morphologiesElectronic supplementary information (ESI) available: XRD pattern of the PbS CNWs, FTIR spectrum of the polymer, TEM images of more PbS CNWs. See http://www.rsc.org/suppdata/jm/b1/b111187f/. Journal of Materials Chemistry, 2002, 12, 403-405.	6.7	205
389	Microwave-templated synthesis of CdS nanotubes in aqueous solution at room temperature. New Journal of Chemistry, 2002, 26, 1440-1442.	2.8	38
390	Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. Journal of Materials Chemistry, 2002, 12, 748-753.	6.7	192
391	Aqueous solution route to nanocrystalline HgE (E=S, Se, Te). Journal of Materials Science Letters, 2002, 21, 1657-1659.	0.5	6
392	Solid-state room-temperature route to silver composite nanowires. Journal of Materials Science Letters, 2002, 21, 1737-1738.	0.5	1
393	Microtubes and balls of amorphous phosphorus nitride imide (HPN2) prepared by a benzene-thermal method. Chemical Communications, 2001, , 469-470.	4.1	9
394	A Solution Low-Temperature Route to MoS2Fiber. Chemistry of Materials, 2001, 13, 6-8.	6.7	53
395	Cu5.5FeS6.5 nanotubesââ,¬â€a new kind of ternary sulfide nanotube. New Journal of Chemistry, 2001, 25, 1359-1361.	2.8	18
396	Antimony sulfide tetragonal prismatic tubular crystals. Journal of Materials Chemistry, 2001, 11, 257-259.	6.7	25

#	Article	IF	CITATIONS
397	Metastable MnS Crystallites through Solvothermal Synthesis. Chemistry of Materials, 2001, 13, 2169-2172.	6.7	146
398	Ethanolthermal synthesis to \hat{I}^3 -Cul nanocrystals at low temperature. Journal of Materials Science Letters, 2001, 20, 1865-1867.	0.5	31
399	Preparation and characterization of CuInS ₂ nanorods and nanotubes from an elemental solvothermal reaction. Journal of Materials Research, 2001, 16, 2805-2809.	2.6	42
400	A novel twoÂstep radiation route to PbSe crystalline nanorods. Journal of Materials Chemistry, 2001, 11, 518-520.	6.7	24
401	Single-step synthesis of nanocrystalline CdS/polyacrylamide composites by Î ³ -irradiation. Journal of Materials Science, 2000, 35, 285-287.	3.7	18
402	Synthesis of short CdS nanofiber/poly(styrene-alt-maleic anhydride) composites using γâ€irradiation. Journal of Materials Chemistry, 2000, 10, 329-332.	6.7	22
403	Hydrothermal Evolution of the Thioureaâ^'Cerium(III) Nitrate System:Â Formation of Cerium Hydroxycarbonate and Hydroxysulfate. Inorganic Chemistry, 2000, 39, 4380-4382.	4.0	23
404	Syntheses, Structures and Magnetic Behaviors of Di- and Trinuclear Pivalate Complexes Containing Both Cobalt(II) and Lanthanide(III) Ions. Inorganic Chemistry, 2000, 39, 4165-4168.	4.0	37
405	Lowâ€Temperature Synthesis of Nanocrystalline Titanium Nitride via a Benzene–Thermal Route. Journal of the American Ceramic Society, 2000, 83, 430-432.	3.8	72
406	A solvothermal reaction route for the synthesis of CuFeS ₂ ultrafine powder. Journal of Materials Research, 1999, 14, 3870-3872.	2.6	6
407	A Novel Low-Temperature Synthetic Route to Crystalline Si3N4. Advanced Materials, 1999, 11, 653-655.	21.0	41
408	A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe. Inorganic Chemistry, 1998, 37, 2844-2845.	4.0	93
409	A Reduction-Pyrolysis-Catalysis Synthesis of Diamond. , 1998, 281, 246-247.		117
410	Structural variation and recovery of superconductivity by Ca substitution in Y0.4Pr0.6Bs2?x Ca x Cu3. Journal of Superconductivity and Novel Magnetism, 1996, 9, 89-91.	0.5	2
411	Low-temperature deposition of ultrafine rutile TiO2 thin films by the hydrothermal method. Physica Status Solidi A, 1996, 156, 381-385.	1.7	17
412	Preparation of Nanocrystalline Cadmium Powder by the γ-Radiation Method. Materials Transactions, JIM, 1995, 36, 80-81.	0.9	6
413	Oxygen Content, Crystal Structure, and Superconductivity in YSr2Cu2.75Mo0.25O7+l´. Physica Status Solidi (B): Basic Research, 1995, 189, 171-175.	1.5	2
414	Study of the Raman spectrum of nanometer SnO2. Journal of Applied Physics, 1994, 75, 1835-1836.	2.5	183

Υίται Qian

#	Article	IF	CITATIONS
415	Effects of ionic radius on structure and superconductivity for high-Tc oxide superconductors. Physica Status Solidi A, 1992, 130, 415-420.	1.7	6
416	Structural Characteristics of High Tc Superconducting Oxide in (Bi,Pb)-Sr-Ca-Cu-O System. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 184, 401-408.	0.3	0
417	Superconducting Behavior of Bi _{1.5} Pb _{0.5} Ca ₂ Sr ₂ Cu ₃ O _y at Low Magnetic Field. Physica Status Solidi (B): Basic Research, 1989, 154, K51.	1.5	0
418	SUPERCONDUCTIVITY ASSOCIATED WITH THE GRANULAR STRUCTURE IN Ba2YCu3O7â~'δ. Modern Physics Letters B, 1988, 02, 1011-1015.	1.9	0
419	TRANSPORT PROPERTIES IN SINGLE PHASE SUPERCONDUCTOR Ba2YCu3O9â^î´. International Journal of Modern Physics B, 1987, 01, 485-489.	2.0	0
420	Enhanced Hydrogen Evolution Catalysis from hierarchical nanostructure Coâ€P@CoMoâ€P electrode. European Journal of Inorganic Chemistry, 0, , .	2.0	1
421	Constructing Complementary Catalytic Components on Co ₄ N Nanowires to Achieve Efficient Hydrogen Evolution Catalysis. Advanced Energy and Sustainability Research, 0, , 2100219.	5.8	5
422	Polydimethylsiloxane functionalized separator for a stable and fast lithium metal anode. CrystEngComm, 0, , .	2.6	0