
Monica Campo Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4470589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epoxy Composites Reinforced with ZnO from Waste Alkaline Batteries. Materials, 2022, 15, 2842.	2.9	1
2	3D printed anti-icing and de-icing system based on CNT/GNP doped epoxy composites with self-curing and structural health monitoring capabilities. Smart Materials and Structures, 2021, 30, 025016.	3.5	16
3	Complex Geometry Strain Sensors Based on 3D Printed Nanocomposites: Spring, Three-Column Device and Footstep-Sensing Platform. Nanomaterials, 2021, 11, 1106.	4.1	12
4	Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites. Sensors, 2021, 21, 5530.	3.8	9
5	Assessment of Manufacturing Parameters for New 3D-Printed Heating Circuits Based on CNT-Doped Nanocomposites Processed by UV-Assisted Direct Write. Applied Sciences (Switzerland), 2021, 11, 7534.	2.5	4
6	4D-Printed Resins and Nanocomposites Thermally Stimulated by Conventional Heating and IR Radiation. ACS Applied Polymer Materials, 2021, 3, 5207-5215.	4.4	8
7	DLP 4Dâ€Printing of Remotely, Modularly, and Selectively Controllable Shape Memory Polymer Nanocomposites Embedding Carbon Nanotubes. Advanced Functional Materials, 2021, 31, 2106774.	14.9	56
8	Tribological Properties of Different Types of Graphene Nanoplatelets as Additives for the Epoxy Resin. Applied Sciences (Switzerland), 2020, 10, 4363.	2.5	9
9	3D printed epoxy-CNTs/GNPs conductive inks with application in anti-icing and de-icing systems. European Polymer Journal, 2020, 141, 110090.	5.4	22
10	New Manufacturing Process of Composites Reinforced with ZnO Nanoparticles Recycled from Alkaline Batteries. Polymers, 2020, 12, 1619.	4.5	10
11	Highly Multifunctional GNP/Epoxy Nanocomposites: From Strain-Sensing to Joule Heating Applications. Nanomaterials, 2020, 10, 2431.	4.1	20
12	The role of graphene interactions and geometry on thermal and electrical properties of epoxy nanocomposites: A theoretical to experimental approach. Polymer Testing, 2020, 90, 106638.	4.8	12
13	Application of DOE and ANOVA in Optimization of HVOF Spraying Parameters in the Development of New Ti Coatings. Journal of Thermal Spray Technology, 2020, 29, 384-399.	3.1	15
14	Barrier properties of thermal and electrical conductive hydrophobic multigraphitic/epoxy coatings. Journal of Applied Polymer Science, 2020, 137, 49281.	2.6	8
15	Mechanical and Strain-Sensing Capabilities of Carbon Nanotube Reinforced Composites by Digital Light Processing 3D Printing Technology. Polymers, 2020, 12, 975.	4.5	41
16	Heat dissipation on electrical conductor composites by combination of carbon nanotubes and graphene nanoplatelets. Journal of Coatings Technology Research, 2019, 16, 491-498.	2.5	13
17	Anti-icing and de-icing coatings based Joule's heating of graphene nanoplatelets. Composites Science and Technology, 2018, 164, 65-73.	7.8	80
18	Effect of filtration in functionalized and non-functionalized CNTs and surface modification of fibers as an effective alternative approach. Composites Part B: Engineering, 2016, 94, 286-291.	12.0	13

Monica Campo Gomez

#	Article	IF	CITATIONS
19	Strain Sensing Based on Multiscale Composite Materials Reinforced with Graphene Nanoplatelets. Journal of Visualized Experiments, 2016, , .	0.3	2
20	Al/SiCp and Al11Si/SiCp coatings on AZ91 magnesium alloy by HVOF. Surface and Coatings Technology, 2015, 261, 130-140.	4.8	27
21	Effect of type, percentage and dispersion method of multi-walled carbon nanotubes on tribological properties of epoxy composites. Wear, 2015, 324-325, 100-108.	3.1	42
22	Oxy-acetylene flame thermal sprayed coatings of aluminium matrix composites reinforced with MoSi2 intermetallic particles. Surface and Coatings Technology, 2013, 236, 274-283.	4.8	17
23	The influence of mechanical dispersion of MWCNT in epoxy matrix by calendering method: Batch method versus time controlled. Composites Part B: Engineering, 2013, 48, 88-94.	12.0	34
24	Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Composites Part B: Engineering, 2013, 45, 1613-1619.	12.0	139
25	Use of carbon nanotubes for strain and damage sensing of epoxy-based composites. International Journal of Smart and Nano Materials, 2012, 3, 152-161.	4.2	14
26	Influence of the functionalization of carbon nanotubes on calendering dispersion effectiveness in a low viscosity resin for VARIM processes. Composites Part B: Engineering, 2012, 43, 3482-3490.	12.0	36
27	Dispersion of carbon nanofibres in a low viscosity resin by calendering process to manufacture multiscale composites by VARIM. Composites Part B: Engineering, 2012, 43, 3104-3113.	12.0	22
28	Characterization of carbon nanofiber/epoxy nanocomposites by the nanoindentation technique. Composites Part B: Engineering, 2011, 42, 638-644.	12.0	62
29	Wear behaviour of thermal spray Al/SiCp coatings. Wear, 2010, 268, 828-836.	3.1	40
30	Corrosion behaviour of thermally sprayed Al and Al/SiCp composite coatings on ZE41 magnesium alloy in chloride medium. Corrosion Science, 2010, 52, 761-768.	6.6	54
31	The functionalization of carbon nanofibers with 4,4′-diaminodiphenylmethane, a curing agent for epoxy resins. Journal of Materials Research, 2009, 24, 1435-1445.	2.6	11
32	Properties and microstructure of Al–11Si/SiCp composite coatings fabricated by thermal spray. Surface and Coatings Technology, 2009, 203, 1947-1955.	4.8	24
33	Thermo-physical characterisation of epoxy resin reinforced by amino-functionalized carbon nanofibers. Composites Science and Technology, 2009, 69, 349-357.	7.8	101
34	Oxy-Acetylene Flame Thermal Spray of Al/SiCp Composites with High Fraction of Reinforcements. Journal of Thermal Spray Technology, 2009, 18, 642-651.	3.1	8
35	Corrosion resistance of thermally sprayed Al and Al/SiC coatings on Mg. Surface and Coatings Technology, 2009, 203, 3224-3230.	4.8	106
36	Effect of reinforcement coatings on the dry sliding wear behaviour of aluminium/SiC particles/carbon fibres hybrid composites. Wear, 2009, 266, 1128-1136.	3.1	66

#	Article	IF	CITATIONS
37	Microstructure and wear resistance of Al–SiC composites coatings on ZE41 magnesium alloy. Applied Surface Science, 2009, 255, 9174-9181.	6.1	58
38	Morphology Development in Thermosetting Mixtures through the Variation on Chemical Functionalization Degree of Poly(styrene- <i>b</i> -butadiene) Diblock Copolymer Modifiers. Thermomechanical Properties. Macromolecules, 2009, 42, 6215-6224.	4.8	79
39	Effects of dispersion techniques of carbon nanofibers on the thermo-physical properties of epoxy nanocomposites. Composites Science and Technology, 2008, 68, 2722-2730.	7.8	96
40	Al/SiC composite coatings of steels by thermal spraying. Materials Letters, 2008, 62, 2114-2117.	2.6	21
41	Surface modification of carbon nanofibers with platinum nanoparticles using a "polygonal barrel-sputtering―system. Materials Letters, 2008, 62, 2118-2121.	2.6	19
42	Thermal spray coatings of highly reinforced aluminium matrix composites with sol–gel silica coated SiC particles. Surface and Coatings Technology, 2007, 201, 7552-7559.	4.8	29
43	Wear behaviour of coatings of aluminium matrix composites fabricated by thermal spray method. Revista De Metalurgia, 2007, 43, .	0.5	8
44	Dual layer silica coatings of SiC particle reinforcements in aluminium matrix composites. Surface and Coatings Technology, 2006, 200, 4017-4026.	4.8	17
45	Effect of silica coatings on interfacial mechanical properties in aluminium—SiC composites characterized by nanoindentation. Scripta Materialia, 2005, 52, 977-982.	5.2	45
46	Effect of Reinforcement Coating on the Oxidation Behavior of AA6061/SiC/20p Composite. Oxidation of Metals, 2005, 63, 215-227.	2.1	28
47	Determinación mediante nanoindentación de las propiedades mecánicas de la interfaz en materiales compuestos de aluminio reforzados con partÃculas de SiC recubiertas de sÃlice. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2005, 44, 270-277.	1.9	3
48	Sol-gel coatings to improve processing of aluminium matrix SiC reinforced composite materials. Journal of Materials Research, 2004, 19, 2109-2116.	2.6	20
49	Effect of Reinforcement Coating on Corrosion Behavior of AA6061/SiC/20p Composite in High Relative Humidity Environments. Corrosion, 2004, 60, 945-953.	1.1	7
50	Sol–Gel Coatings as Active Barriers to Protect Ceramic Reinforcement in Aluminum Matrix Composites. Advanced Engineering Materials, 2004, 6, 57-61.	3.5	19
51	Estudio de la protección del refuerzo de partÃculas de SiC mediante barreras activas por sol-gel en materiales compuestos de matriz de aluminio. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 397-400.	1.9	2
52	Optimum Dispersion Technique of Carbon Nanotubes in Epoxy Resin as a Function of the Desired Behaviour. Journal of Nano Research, 0, 26, 177-186.	0.8	5