
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4470465/publications.pdf Version: 2024-02-01



LIKE ALO'NELL

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Relationship between type 2 cytokine and inflammasome responses in obesity-associated asthma.<br>Journal of Allergy and Clinical Immunology, 2022, 149, 1270-1280.                                                       | 2.9  | 21        |
| 2  | Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response. IScience, 2022, 25, 103827.                                                                                 | 4.1  | 51        |
| 3  | Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell<br>Metabolism, 2022, 34, 487-501.e8.                                                                             | 16.2 | 107       |
| 4  | Immunothrombosis and the molecular control of tissue factor by pyroptosis: prospects for new anticoagulants. Biochemical Journal, 2022, 479, 731-750.                                                                    | 3.7  | 9         |
| 5  | Creating ATP via creatine kinase B for NLRP3 activation. Nature Immunology, 2022, 23, 653-655.                                                                                                                           | 14.5 | 0         |
| 6  | Innate immune signaling and immunothrombosis: New insights and therapeutic opportunities.<br>European Journal of Immunology, 2022, 52, 1024-1034.                                                                        | 2.9  | 12        |
| 7  | The itaconate family of immunomodulators grows. Nature Metabolism, 2022, 4, 499-500.                                                                                                                                     | 11.9 | 4         |
| 8  | Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature<br>Immunology, 2021, 22, 2-6.                                                                                         | 14.5 | 274       |
| 9  | Bridging the gap – a new role for STAT3 in TLR4â€mediated metabolic reprogramming. Immunology and Cell Biology, 2021, 99, 122-125.                                                                                       | 2.3  | 3         |
| 10 | Ironing Out Vaccine Efficacy. Med, 2021, 2, 113-114.                                                                                                                                                                     | 4.4  | 1         |
| 11 | Glutathione transferase Omega 1 confers protection against azoxymethane-induced colorectal tumour formation. Carcinogenesis, 2021, 42, 853-863.                                                                          | 2.8  | 4         |
| 12 | Targeting mitochondria to beat HIV-1. Nature Immunology, 2021, 22, 398-399.                                                                                                                                              | 14.5 | 5         |
| 13 | SARS-CoV-2 targets MAVS for immune evasion. Nature Cell Biology, 2021, 23, 682-683.                                                                                                                                      | 10.3 | 15        |
| 14 | Targeting immunometabolism to treat COVID-19. Immunotherapy Advances, 2021, 1, ltab013.                                                                                                                                  | 3.0  | 29        |
| 15 | Immune-mediated inflammation across disease boundaries: breaking down research silos. Nature<br>Immunology, 2021, 22, 1344-1348.                                                                                         | 14.5 | 15        |
| 16 | 4-Octyl-Itaconate and Dimethyl Fumarate Inhibit COX2 Expression and Prostaglandin Production in Macrophages. Journal of Immunology, 2021, 207, 2561-2569.                                                                | 0.8  | 14        |
| 17 | Metabolic regulation of RA macrophages is distinct from RA fibroblasts and blockade of glycolysis<br>alleviates inflammatory phenotype in both cell types. Cellular and Molecular Life Sciences, 2021, 78,<br>7693-7707. | 5.4  | 25        |
| 18 | ACLY Nuclear Translocation in Human Macrophages Drives Proinflammatory Gene Expression by NF-κB<br>Acetylation. Cells, 2021, 10, 2962.                                                                                   | 4.1  | 24        |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The role of the electron transport chain in immunity. FASEB Journal, 2021, 35, e21974.                                                                                                                                      | 0.5  | 49        |
| 20 | Influenza A virus causes maternal and fetal pathology via innate and adaptive vascular inflammation<br>in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>24964-24973. | 7.1  | 34        |
| 21 | Role for Retinoic Acid-Related Orphan Receptor Alpha (RORα) Expressing Macrophages in Diet-Induced<br>Obesity. Frontiers in Immunology, 2020, 11, 1966.                                                                     | 4.8  | 12        |
| 22 | The Immunomodulatory Metabolite Itaconate Modifies NLRP3 and Inhibits Inflammasome Activation.<br>Cell Metabolism, 2020, 32, 468-478.e7.                                                                                    | 16.2 | 283       |
| 23 | The Role of HIF in Immunity and Inflammation. Cell Metabolism, 2020, 32, 524-536.                                                                                                                                           | 16.2 | 304       |
| 24 | BCG-induced trained immunity: can it offer protection against COVID-19?. Nature Reviews Immunology, 2020, 20, 335-337.                                                                                                      | 22.7 | 384       |
| 25 | Pseudomonas Persists by Feeding off Itaconate. Cell Metabolism, 2020, 31, 1045-1047.                                                                                                                                        | 16.2 | 2         |
| 26 | How should we talk about metabolism?. Nature Immunology, 2020, 21, 713-715.                                                                                                                                                 | 14.5 | 13        |
| 27 | Targeting immunometabolism as an anti-inflammatory strategy. Cell Research, 2020, 30, 300-314.                                                                                                                              | 12.0 | 285       |
| 28 | Caspase-11 promotes allergic airway inflammation. Nature Communications, 2020, 11, 1055.                                                                                                                                    | 12.8 | 52        |
| 29 | Krebs Cycle Reborn in Macrophage Immunometabolism. Annual Review of Immunology, 2020, 38, 289-313.                                                                                                                          | 21.8 | 244       |
| 30 | Cytokine-like Roles for Metabolites in Immunity. Molecular Cell, 2020, 78, 814-823.                                                                                                                                         | 9.7  | 119       |
| 31 | A Vision for Cytokine Biology with 20/20 Clarity. Function, 2020, 2, zqaa042.                                                                                                                                               | 2.3  | 1         |
| 32 | Glutathione Transferase Omega-1 Regulates NLRP3 Inflammasome Activation through NEK7<br>Deglutathionylation. Cell Reports, 2019, 29, 151-161.e5.                                                                            | 6.4  | 58        |
| 33 | Itaconate: the poster child of metabolic reprogramming in macrophage function. Nature Reviews<br>Immunology, 2019, 19, 273-281.                                                                                             | 22.7 | 359       |
| 34 | The Immunomodulatory Potential of the Metabolite Itaconate. Trends in Immunology, 2019, 40, 687-698.                                                                                                                        | 6.8  | 138       |
| 35 | Spontaneous atopic dermatitis in mice with a defective skin barrier is independent of ILC2 and mediated by ILâ€1β. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1920-1933.                       | 5.7  | 51        |
| 36 | Targeting macrophage immunometabolism to prevent atherosclerosis. Nature Metabolism, 2019, 1,<br>1173-1174.                                                                                                                 | 11.9 | 3         |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nature Metabolism, 2019, 1, 16-33.                                                                                  | 11.9 | 260       |
| 38 | Macrophages Remember Cheeseburgers and Promote Inflammation via NLRP3. Trends in Molecular Medicine, 2018, 24, 335-337.                                                                    | 6.7  | 7         |
| 39 | Metabolic regulation of <scp>NLRP</scp> 3. Immunological Reviews, 2018, 281, 88-98.                                                                                                        | 6.0  | 231       |
| 40 | Loss of MicroRNA-21 Influences the Gut Microbiota, Causing Reduced Susceptibility in a Murine Model of Colitis. Journal of Crohn's and Colitis, 2018, 12, 835-848.                         | 1.3  | 48        |
| 41 | Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature, 2018, 556, 113-117.                                                                      | 27.8 | 1,115     |
| 42 | GOTcha: IncRNA-ACOD1 targets metabolism during viral infection. Cell Research, 2018, 28, 137-138.                                                                                          | 12.0 | 15        |
| 43 | Rocking the world of innate immunity: an interview with Luke O'Neill. DMM Disease Models and Mechanisms, 2018, 11, .                                                                       | 2.4  | 0         |
| 44 | Dimethyl fumarate: targeting glycolysis to treat MS. Cell Research, 2018, 28, 613-615.                                                                                                     | 12.0 | 22        |
| 45 | Krebs Cycle Reimagined: The Emerging Roles of Succinate and Itaconate as Signal Transducers. Cell, 2018, 174, 780-784.                                                                     | 28.9 | 237       |
| 46 | Circadian clock protein BMAL1 regulates IL- $1\hat{l}^2$ in macrophages via NRF2. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8460-E8468. | 7.1  | 230       |
| 47 | Glutathione and Glutathione Transferase Omega 1 as Key Posttranslational Regulators in<br>Macrophages. Microbiology Spectrum, 2017, 5, .                                                   | 3.0  | 22        |
| 48 | Inflammasomes in the lung. Molecular Immunology, 2017, 86, 44-55.                                                                                                                          | 2.2  | 126       |
| 49 | The Hunger Games: Salmonella , Anorexia, and NLRP3. Cell Metabolism, 2017, 25, 225-226.                                                                                                    | 16.2 | 3         |
| 50 | Role for NLRP3 Inflammasome–mediated, IL-1β–Dependent Responses in Severe, Steroid-Resistant Asthma.<br>American Journal of Respiratory and Critical Care Medicine, 2017, 196, 283-297.    | 5.6  | 304       |
| 51 | Mitochondria are the powerhouses of immunity. Nature Immunology, 2017, 18, 488-498.                                                                                                        | 14.5 | 704       |
| 52 | Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome.<br>Journal of Experimental Medicine, 2017, 214, 1737-1752.                             | 8.5  | 289       |
| 53 | The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. Journal of Biological Chemistry, 2017, 292, 12077-12087.       | 3.4  | 122       |
| 54 | The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. American<br>Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L855-L860. | 2.9  | 50        |

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Immunometabolism and the land of milk and honey. Nature Reviews Immunology, 2017, 17, 217-217.                                                                                                                                                             | 22.7 | 9         |
| 56 | The Induction of Pro–IL-1β by Lipopolysaccharide Requires Endogenous Prostaglandin E2 Production.<br>Journal of Immunology, 2017, 198, 3558-3564.                                                                                                          | 0.8  | 85        |
| 57 | The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome. Journal of Biological Chemistry, 2017, 292, 6869-6881.                                                                                           | 3.4  | 53        |
| 58 | MyD88 is an essential component of retinoic acid-induced differentiation in human pluripotent embryonal carcinoma cells. Cell Death and Differentiation, 2017, 24, 1975-1986.                                                                              | 11.2 | 5         |
| 59 | Solution structure of the TLR adaptor MAL/TIRAP reveals an intact BB loop and supports MAL Cys91 glutathionylation for signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6480-E6489.                 | 7.1  | 33        |
| 60 | Loss of the molecular clock in myeloid cells exacerbates T cell-mediated CNS autoimmune disease.<br>Nature Communications, 2017, 8, 1923.                                                                                                                  | 12.8 | 90        |
| 61 | Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy. Nature<br>Communications, 2017, 8, 69.                                                                                                                       | 12.8 | 111       |
| 62 | A Potent Anti-Inflammatory Response in Bat Macrophages May Be Linked to Extended Longevity and<br>Viral Tolerance. Acta Chiropterologica, 2017, 19, 219-228.                                                                                               | 0.6  | 46        |
| 63 | GSTO1-1 plays a pro-inflammatory role in models of inflammation, colitis and obesity. Scientific Reports, 2017, 7, 17832.                                                                                                                                  | 3.3  | 47        |
| 64 | A guide to immunometabolism for immunologists. Nature Reviews Immunology, 2016, 16, 553-565.                                                                                                                                                               | 22.7 | 2,100     |
| 65 | The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood, 2016, 128, 2960-2975.                                                                                                                                       | 1.4  | 271       |
| 66 | Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nature<br>Reviews Rheumatology, 2016, 12, 344-357.                                                                                                                   | 8.0  | 150       |
| 67 | A Metabolic Roadblock in Inflammatory Macrophages. Cell Reports, 2016, 17, 625-626.                                                                                                                                                                        | 6.4  | 33        |
| 68 | <i>Trypanosoma brucei</i> metabolite indolepyruvate decreases HIF-1α and glycolysis in macrophages as<br>a mechanism of innate immune evasion. Proceedings of the National Academy of Sciences of the United<br>States of America, 2016, 113, E7778-E7787. | 7.1  | 50        |
| 69 | Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory<br>Macrophages. Cell, 2016, 167, 457-470.e13.                                                                                                                 | 28.9 | 1,396     |
| 70 | T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4 <sup>+</sup> T<br>cells. Science, 2016, 352, aad1210.                                                                                                                    | 12.6 | 395       |
| 71 | A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling. Immunity, 2016, 44,<br>368-379.                                                                                                                                                  | 14.3 | 30        |
| 72 | Immunometabolism governs dendritic cell and macrophage function. Journal of Experimental<br>Medicine, 2016, 213, 15-23.                                                                                                                                    | 8.5  | 1,206     |

| #  | Article                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Circadian control of innate immunity in macrophages by miR-155 targeting <i>Bmal1</i> . Proceedings of the United States of America, 2015, 112, 7231-7236.                                                                                                                                  | 7.1  | 244       |
| 74 | How Low Cholesterol Is Good for Anti-viral Immunity. Cell, 2015, 163, 1572-1574.                                                                                                                                                                                                            | 28.9 | 23        |
| 75 | Pyruvate Kinase M2 Regulates Hif- $\hat{l}_{\pm}$ Activity and IL- $\hat{l}_{-}^2$ Induction and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages. Cell Metabolism, 2015, 21, 65-80.                                                                            | 16.2 | 887       |
| 76 | A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases.<br>Nature Medicine, 2015, 21, 248-255.                                                                                                                                                     | 30.7 | 1,967     |
| 77 | Metformin Inhibits the Production of Reactive Oxygen Species from NADH:Ubiquinone Oxidoreductase to Limit Induction of Interleukin-1β (IL-1β) and Boosts Interleukin-10 (IL-10) in Lipopolysaccharide (LPS)-activated Macrophages. Journal of Biological Chemistry, 2015, 290, 20348-20359. | 3.4  | 252       |
| 78 | GSTO1-1 modulates metabolism in macrophages activated through the LPS and TLR4 pathway. Journal of<br>Cell Science, 2015, 128, 1982-1990.                                                                                                                                                   | 2.0  | 55        |
| 79 | A Broken Krebs Cycle in Macrophages. Immunity, 2015, 42, 393-394.                                                                                                                                                                                                                           | 14.3 | 169       |
| 80 | The Cellular and Molecular Basis of Translational Immunometabolism. Immunity, 2015, 43, 421-434.                                                                                                                                                                                            | 14.3 | 161       |
| 81 | The MyD88+ Phenotype Is an Adverse Prognostic Factor in Epithelial Ovarian Cancer. PLoS ONE, 2014, 9, e100816.                                                                                                                                                                              | 2.5  | 36        |
| 82 | Metabolic Reprograming in Macrophage Polarization. Frontiers in Immunology, 2014, 5, 420.                                                                                                                                                                                                   | 4.8  | 649       |
| 83 | Glycolytic reprogramming by TLRs in dendritic cells. Nature Immunology, 2014, 15, 314-315.                                                                                                                                                                                                  | 14.5 | 39        |
| 84 | Circadian Clock Proteins and Immunity. Immunity, 2014, 40, 178-186.                                                                                                                                                                                                                         | 14.3 | 451       |
| 85 | Succinate: a metabolic signal in inflammation. Trends in Cell Biology, 2014, 24, 313-320.                                                                                                                                                                                                   | 7.9  | 507       |
| 86 | Succinate strikes. Nature, 2014, 515, 350-351.                                                                                                                                                                                                                                              | 27.8 | 14        |
| 87 | The Role of Ets2 Transcription Factor in the Induction of MicroRNA-155 (miR-155) by Lipopolysaccharide and Its Targeting by Interleukin-10. Journal of Biological Chemistry, 2014, 289, 4316-4325.                                                                                          | 3.4  | 98        |
| 88 | mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345,<br>1250684.                                                                                                                                                                       | 12.6 | 1,517     |
| 89 | Glutathione transferase Omega 1 is required for the lipopolysaccharide-stimulated induction of<br>NADPH oxidase 1 and the production of reactive oxygen species in macrophages. Free Radical Biology<br>and Medicine, 2014, 73, 318-327.                                                    | 2.9  | 62        |
| 90 | A Long Noncoding RNA Mediates Both Activation and Repression of Immune Response Genes. Science, 2013, 341, 789-792.                                                                                                                                                                         | 12.6 | 925       |

| #   | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Cardiolipin and the Nlrp3 Inflammasome. Cell Metabolism, 2013, 18, 610-612.                                                                                                                                   | 16.2 | 25        |
| 92  | Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature, 2013, 493, 346-355.                                                                                                                 | 27.8 | 946       |
| 93  | The history of Toll-like receptors — redefining innate immunity. Nature Reviews Immunology, 2013, 13, 453-460.                                                                                                | 22.7 | 1,338     |
| 94  | Bruton's Tyrosine Kinase Mediates the Synergistic Signalling between TLR9 and the B Cell Receptor by<br>Regulating Calcium and Calmodulin. PLoS ONE, 2013, 8, e74103.                                         | 2.5  | 49        |
| 95  | Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding<br>Interleukin 1β and Tumor Necrosis Factor α. PLoS ONE, 2013, 8, e70622.                                         | 2.5  | 33        |
| 96  | Treatment With OPN-305, a Humanized Anti–Toll-Like Receptor-2 Antibody, Reduces Myocardial<br>Ischemia/Reperfusion Injury in Pigs. Circulation: Cardiovascular Interventions, 2012, 5, 279-287.               | 3.9  | 95        |
| 97  | "Transflammation― When Innate Immunity Meets Induced Pluripotency. Cell, 2012, 151, 471-473.                                                                                                                  | 28.9 | 12        |
| 98  | The GOLD domain-containing protein TMED7 inhibits TLR4 signalling from the endosome upon LPS stimulation. Nature Communications, 2012, 3, 707.                                                                | 12.8 | 56        |
| 99  | Biochemical regulation of the inflammasome. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 424-443.                                                                                        | 5.2  | 114       |
| 100 | Innate Immunity in Plants Goes to the PUB. Science, 2011, 332, 1386-1387.                                                                                                                                     | 12.6 | 6         |
| 101 | Counter-regulation in the IKK family. Biochemical Journal, 2011, 434, e1-e2.                                                                                                                                  | 3.7  | 3         |
| 102 | A critical role for citrate metabolism in LPS signalling. Biochemical Journal, 2011, 438, e5-e6.                                                                                                              | 3.7  | 92        |
| 103 | The emerging role of metabolic regulation in the functioning of Tollâ€like receptors and the NODâ€like receptors and the NODâ€like receptor Nlrp3. FEBS Letters, 2011, 585, 1568-1572.                        | 2.8  | 61        |
| 104 | The Powerstroke and Camshaft of the RIG-I Antiviral RNA Detection Machine. Cell, 2011, 147, 259-261.                                                                                                          | 28.9 | 22        |
| 105 | The Inflammasome in Atherosclerosis and Type 2 Diabetes. Science Translational Medicine, 2011, 3, 81ps17.                                                                                                     | 12.4 | 134       |
| 106 | Myocardial Ischemia/Reperfusion Injury Is Mediated by Leukocytic Toll-Like Receptor-2 and Reduced by<br>Systemic Administration of a Novel Anti–Toll-Like Receptor-2 Antibody. Circulation, 2010, 121, 80-90. | 1.6  | 319       |
| 107 | Therapeutic Targeting of Toll-Like Receptors for Infectious and Inflammatory Diseases and Cancer.<br>Pharmacological Reviews, 2009, 61, 177-197.                                                              | 16.0 | 387       |
| 108 | The interleukinâ€1 receptor/Tollâ€like receptor superfamily: 10 years of progress. Immunological Reviews,<br>2008, 226, 10-18.                                                                                | 6.0  | 565       |

| #   | Article                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Tollâ€like Receptors. , 2008, , 1207-1212.                                                                                                  |      | Ο         |
| 110 | The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews<br>Immunology, 2007, 7, 353-364.        | 22.7 | 2,285     |
| 111 | Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs. Seminars in Immunopathology, 2007, 29, 239-248. | 6.1  | 153       |
| 112 | Camelpox virus encodes a schlafen-like protein that affects orthopoxvirus virulence. Journal of<br>General Virology, 2007, 88, 1667-1676.   | 2.9  | 31        |
| 113 | How Toll-like receptors signal: what we know and what we don't know. Current Opinion in<br>Immunology, 2006, 18, 3-9.                       | 5.5  | 572       |
| 114 | New insights into the regulation of TLR signaling. Journal of Leukocyte Biology, 2006, 80, 220-226.                                         | 3.3  | 229       |
| 115 | Immunity's Early-Warning System. Scientific American, 2005, 292, 38-45.                                                                     | 1.0  | 47        |
| 116 | Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Current Opinion in Pharmacology, 2003, 3, 396-403.   | 3.5  | 147       |
| 117 | Mal and MyD88: adapter proteins involved in signal transduction by Toll-like receptors. Journal of<br>Endotoxin Research, 2003, 9, 55-59.   | 2.5  | 36        |
| 118 | A gene for Crohn's disease is given the nod. Trends in Pharmacological Sciences, 2001, 22, 398-399.                                         | 8.7  | 0         |
| 119 | Specificity in the innate response: pathogen recognition by Toll-like receptor combinations. Trends in<br>Immunology, 2001, 22, 70.         | 6.8  | 16        |
| 120 | Who needs adaptive immunity?. Trends in Immunology, 2001, 22, 125.                                                                          | 6.8  | 0         |
| 121 | A roll-call of monocytic gene induction. Trends in Immunology, 2001, 22, 182.                                                               | 6.8  | 1         |
| 122 | Dioxins damage dendritic cells. Trends in Immunology, 2001, 22, 296.                                                                        | 6.8  | 2         |
| 123 | Fixing a broken heart with bone. Trends in Immunology, 2001, 22, 298.                                                                       | 6.8  | Ο         |
| 124 | A role for leptin in autoimmunity?. Trends in Immunology, 2001, 22, 352.                                                                    | 6.8  | 2         |
| 125 | Gob genes, mucus and asthma. Trends in Immunology, 2001, 22, 353.                                                                           | 6.8  | 4         |
| 126 | A vaccine for colorectral cancer. Trends in Immunology, 2001, 22, 354.                                                                      | 6.8  | 38        |

8

| #   | Article                                                                                                                                                                                                                                                             | IF        | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 127 | Vaccine safety concerns. Trends in Immunology, 2001, 22, 420-421.                                                                                                                                                                                                   | 6.8       | Ο         |
| 128 | Irish say no to Nice but yes to immunology. Trends in Immunology, 2001, 22, 421.                                                                                                                                                                                    | 6.8       | 1         |
| 129 | Passive smoking increases allergy. Trends in Immunology, 2001, 22, 660.                                                                                                                                                                                             | 6.8       | Ο         |
| 130 | IL1 and TLR Signal Transduction-Ancient Signalling Pathways Involved In Host Defence. Biochemical<br>Society Transactions, 2000, 28, A489-A489.                                                                                                                     | 3.4       | 0         |
| 131 | Staurosporine, but not Ro 31-8220, induces interleukin 2 production and synergizes with interleukin 1α<br>in EL4 thymoma cells: Activation of nuclear factor I®B as a common signal for staurosporine and<br>interleukin 1α. Biochemical Journal, 1997, 325, 39-45. | 3.7       | 10        |
| 132 | STUDIES INTO THE MECHANISM OF NFήB ACTIVATION BY IL1, TNF AND H2O2 IN PRIMARY AND TRANSFORMED ENDOTHELIAL CELLS. Biochemical Society Transactions, 1997, 25, 125S-125S.                                                                                             | 3.4       | 3         |
| 133 | VITAMIN C INHIBITS NFήB ACTIVATION IN ENDOTHELIAL CELLS. Biochemical Society Transactions, 1997, 25, 131S-131S.                                                                                                                                                     | 3.4       | 11        |
| 134 | Mechanism of NFκB activation by interleukin-1 and tumour necrosis factor in endothelial cells.<br>Biochemical Society Transactions, 1996, 24, 2S-2S.                                                                                                                | 3.4       | 8         |
| 135 | Autocrine regulation of the transcription factor NFκB by TNFα in the human T cell lymphoma line Hut 78.<br>Biochemical Society Transactions, 1995, 23, 113S-113S.                                                                                                   | 3.4       | 5         |
| 136 | SUSTAINED ACTIVATION OF NFήB AND TRANSIENT IήBα DEGRADATION INDUCED BY TUMOUR NECROSIS FACTO<br>IN 1321N1 HUMAN ASTROCYTOMA. Biochemical Society Transactions, 1995, 23, 597S-597S.                                                                                 | DR<br>3.4 | 1         |
| 137 | What is Life? The next fifty years. An introduction. , 1995, , 1-4.                                                                                                                                                                                                 |           | 3         |
| 138 | Glutathione and Glutathione Transferase Omega 1 as Key Posttranslational Regulators in<br>Macrophages. , 0, , 787-801.                                                                                                                                              |           | 1         |