List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/447003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal Desorption of Interstellar Ices: A Review on the Controlling Parameters and Their Implications from Snowlines to Chemical Complexity. ACS Earth and Space Chemistry, 2022, 6, 597-630.	2.7	55
2	Using Laboratory Investigations to Aid the Identification of Small Aromatic Molecules in Water-Containing Astrophysical Ices. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	4
3	Using Surface Science Techniques to Investigate the Interaction of Acetonitrile with Dust Grain Analogue Surfaces. Johnson Matthey Technology Review, 2021, 65, 600-614.	1.0	3
4	A new technique for determining the refractive index of ices at cryogenic temperatures. Physical Chemistry Chemical Physics, 2020, 22, 25353-25365.	2.8	10
5	Thermal Processing and Interactions of Ethyl Formate in Model Astrophysical Ices Containing Water and Ethanol. ACS Earth and Space Chemistry, 2019, 3, 1524-1536.	2.7	4
6	A TPD and RAIRS comparison of the low temperature surface behavior of benzene, toluene, and xylene on graphite. Journal of Chemical Physics, 2018, 149, 164705.	3.0	10
7	A fibre-coupled UHV-compatible variable angle reflection-absorption UV/visible spectrometer. Review of Scientific Instruments, 2018, 89, 054102.	1.3	4
8	Desorption and crystallisation of binary 2-propanol and water ices adsorbed on graphite. RSC Advances, 2017, 7, 51621-51631.	3.6	7
9	Peeling the astronomical onion. Physical Chemistry Chemical Physics, 2016, 18, 31930-31935.	2.8	14
10	A RAIRS, TPD and femtosecond laser-induced desorption study of CO, NO and coadsorbed CO + NO on Pd(111). RSC Advances, 2016, 6, 66346-66359.	3.6	4
11	Trapping and desorption of complex organic molecules in water at 20 K. Journal of Chemical Physics, 2015, 143, 164704.	3.0	14
12	Glycolaldehyde, methyl formate and acetic acid adsorption and thermal desorption from interstellar ices. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1444-1451.	4.4	37
13	The effects of methanol on the trapping of volatile ice components. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1807-1815.	4.4	7
14	Adsorption and Thermal Processing of Glycolaldehyde, Methyl Formate, and Acetic Acid on Graphite at 20 K. Journal of Physical Chemistry A, 2015, 119, 6837-6849.	2.5	21
15	Ethylene oxide and acetaldehyde in hot cores. Astronomy and Astrophysics, 2014, 564, A123.	5.1	15
16	Astrochemistry. Physical Chemistry Chemical Physics, 2014, 16, 3343.	2.8	6
17	GLYCOLALDEHYDE FORMATION VIA THE DIMERIZATION OF THE FORMYL RADICAL. Astrophysical Journal, 2013, 777, 90.	4.5	62
18	Surface science investigations of the role of CO ₂ in astrophysical ices. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20110578.	3.4	27

2

#	Article	IF	CITATIONS
19	ON THE FORMATION OF GLYCOLALDEHYDE IN DENSE MOLECULAR CORES. Astrophysical Journal, 2012, 750, 19.	4.5	54
20	lce in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces. Physical Chemistry Chemical Physics, 2010, 12, 5947.	2.8	141
21	Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 799-806.	2.1	17
22	Low Pressure RAIRS Studies of Model Catalytic Systems. Journal of Physical Chemistry C, 2010, 114, 6879-6893.	3.1	18
23	Computational Study of Carbonyl Sulphide Formation on Model Interstellar Dust Grains. Journal of Physical Chemistry C, 2010, 114, 1892-1900.	3.1	24
24	Formation of H ₂ on an olivine surface: a computational study. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1403-1407.	4.4	40
25	Applying laboratory thermal desorption data in an interstellar context: sublimation of methanol thin films. Monthly Notices of the Royal Astronomical Society, 2009, 398, 357-367.	4.4	43
26	An embedded cluster study of the formation of water on interstellar dust grains. Physical Chemistry Chemical Physics, 2009, 11, 5431.	2.8	78
27	Formation of CO ₂ on a carbonaceous surface: a quantum chemical study. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1158-1164.	4.4	65
28	The adsorption and desorption of ethanol ices from a model grain surface. Journal of Chemical Physics, 2008, 128, 104702.	3.0	27
29	Thermally induced mixing of water dominated interstellar ices. Physical Chemistry Chemical Physics, 2008, 10, 4956.	2.8	8
30	Catalysis of Addition Reactions by a Negatively Charged Silica Surface Site on a Dust Grain. Journal of Physical Chemistry C, 2008, 112, 15419-15422.	3.1	16
31	Redox Behavior of the Model Catalyst Pd/CeO2â^'x/Pt(111). Journal of Physical Chemistry C, 2008, 112, 10918-10922.	3.1	62
32	Hydrogenation of CO on a silica surface: An embedded cluster approach. Journal of Chemical Physics, 2008, 128, 134709.	3.0	23
33	Surface science investigations of photoprocesses in model interstellar ices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 919-924.	2.1	18
34	Desorption of Hot Molecules from Photon Irradiated Interstellar Ices. Astrophysical Journal, 2008, 673, 1233-1239.	4.5	30
35	Studies of Binary Layered CH3OH/H2O Ices Adsorbed on a Graphite Surface. Journal of Physical Chemistry C, 2007, 111, 5990-5999.	3.1	24
36	CO Adsorption on the Model Catalyst Pd/CeO ₂₋ <i>_x</i> (111)/Rh(111). Journal of Physical Chemistry C, 2007, 111, 14215-14222.	3.1	34

#	Article	IF	CITATIONS
37	Structure and stability of the (001) α-quartz surface. Physical Chemistry Chemical Physics, 2007, 9, 2146-2152.	2.8	189
38	Fundamental data on the desorption of pure interstellar ices. Monthly Notices of the Royal Astronomical Society, 2007, 374, 1006-1014.	4.4	88
39	Silica grain catalysis of methanol formation. Monthly Notices of the Royal Astronomical Society, 2007, 382, 1829-1832.	4.4	19
40	Molecules, ices and astronomy. Astronomy and Geophysics, 2007, 48, 1.25-1.34.	0.2	19
41	Laboratory investigations of the role of the grain surface in astrochemical models. Faraday Discussions, 2006, 133, 113.	3.2	11
42	RAIRS studies of CO adsorption on Pd/CeO2â^'x(111)/Pt(111). Surface Science, 2006, 600, 2555-2561.	1.9	13
43	Studies of physisorbed ammonia overlayers adsorbed on graphite. Surface Science, 2005, 598, 45-56.	1.9	32
44	Reflection absorption infrared spectroscopy and temperature programmed desorption investigations of the interaction of methanol with a graphite surface. Journal of Chemical Physics, 2005, 122, 044713.	3.0	64
45	Reflection Absorption Infrared Spectroscopy and Temperature-Programmed Desorption Studies of the Adsorption and Desorption of Amorphous and Crystalline Water on a Graphite Surface. Journal of Physical Chemistry B, 2005, 109, 16836-16845.	2.6	107
46	The making of Stars 'R' Us!. Astronomy and Geophysics, 2004, 45, 6.22-6.24.	0.2	0
47	The Temperature Dependence of the Adsorption of NO on Pt{211}:Â A RAIRS and DFT Investigation. Journal of Physical Chemistry B, 2004, 108, 289-296.	2.6	29
48	Stars â€~R' Us!. Astronomy and Geophysics, 2004, 45, 5.4-5.4.	0.2	0
49	The Adsorption of CO on the Stepped Pt{211} Surface: A Comparison of Theory and Experiment. Catalysis Letters, 2003, 88, 39-45.	2.6	30
50	An investigation of the effect of pre-dosed O atoms on the adsorption of NO on Pt{211}. Surface Science, 2003, 547, 27-44.	1.9	22
51	A RAIRS and TPD investigation of the adsorption of CO on Pt{211}. Surface Science, 2003, 527, 198-208.	1.9	52
52	The influence of steps on the dissociation of NO on Pt surfaces: Temperature-programmed desorption studies of NO adsorption on Pt{211}. Journal of Chemical Physics, 2003, 119, 10844-10852.	3.0	17
53	NO Chemisorption and Reactions on Metal Surfaces:Â A New Perspective. Journal of Physical Chemistry B, 2000, 104, 2578-2595.	2.6	349
54	NO monomer and (NO)x polymeric chain chemisorption on Pt{110}: Structure and energetics. Journal of Chemical Physics, 1999, 110, 12082-12088.	3.0	25

#	Article	IF	CITATIONS
55	The role of adsorption heats and bond energies in the assignment of surface reaction products: ethyne and ethene on Ni?110?. Journal of Molecular Catalysis A, 1999, 141, 21-29.	4.8	17
56	Determination of the Rh–C bond energy for C2H2 and C2H4 reactive adsorption on Rh{100}. Chemical Physics Letters, 1999, 311, 109-116.	2.6	11
57	Lateral potential energy surfaces for molecular chemisorption on metals from experiment and theory: NO on Pt{110}-(1×2). Chemical Physics Letters, 1999, 299, 253-259.	2.6	25
58	Multilayer influences on the monolayer structure for NO on Pt{110}-(1×2). Physical Chemistry Chemical Physics, 1999, 1, 1995-2000.	2.8	15
59	Calorimetric measurements of the adsorption heat for ethene on Pt{211} and Pt{311}. Surface Science, 1999, 440, 271-278.	1.9	36
60	Energetics and Kinetics of Step-Terrace Adsorbate Distribution: C2H2on Pt{211}. Journal of the American Chemical Society, 1999, 121, 4845-4851.	13.7	27
61	Role of Lateral Interactions in Adsorption Kinetics:  CO/Rh{100}. Journal of Physical Chemistry B, 1999, 103, 8722-8725.	2.6	41
62	Adsorbed CO chain condensation and evaporation on Pt{110}-(1×2) at 30–70 K studied by RAIRS. Chemical Physics Letters, 1998, 291, 1-6.	2.6	7
63	The adsorption of CO on Pt{110} over the temperature range from 90 to 300K studied by RAIRS. Surface Science, 1998, 414, 68-76.	1.9	38
64	Femtomole Adsorption Calorimetry on Single-Crystal Surfaces. Chemical Reviews, 1998, 98, 797-832.	47.7	285
65	Site Switching and Surface Restructuring Induced by NO Adsorption on Pt{110}. Journal of Physical Chemistry B, 1998, 102, 5303-5308.	2.6	35
66	Reflection Absorption Infrared Spectroscopy at Low Temperatures. , 1996, , 569-593.		0
67	Adsorption and Reactivity of NO and N2O on Cu{110}:  Combined RAIRS and Molecular Beam Studies. The Journal of Physical Chemistry, 1996, 100, 12559-12568.	2.9	67
68	Characterization and orientation of adsorbed NO dimers on Ag{111} at low temperatures. Journal of Chemical Physics, 1995, 102, 7277-7280.	3.0	78
69	Very Low Temperature Surface Reaction: N2O Formation from NO Dimers at 70 to 90 K on Ag{111}. The Journal of Physical Chemistry, 1995, 99, 7065-7074.	2.9	134
70	The adsorption of NO2 on Ag {111} : a low temperature RAIRS study. Surface Science, 1995, 330, 41-47.	1.9	36
71	3.7.2.5 Figures for 3.7.2. , 0, , 341-351.		0

72 3.7.2.6 References for 3.7.2., 0, , 352-361.