
Christian Sell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4469900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA damage-induced degradation of Sp1 promotes cellular senescence. GeroScience, 2022, 44, 683-698.	4.6	8
2	The methyltransferase enzymes KMT2D, SETD1B, and ASH1L are key mediators of both metabolic and epigenetic changes during cellular senescence. Molecular Biology of the Cell, 2022, 33, mbcE20080523.	2.1	3
3	Maf1 limits RNA polymerase III-directed transcription to preserve genomic integrity and extend lifespan. Cell Cycle, 2021, 20, 247-255.	2.6	7
4	Enhanced stress-induced senescence-response may increase species lifespan. Aging, 2021, 13, 15694-15696.	3.1	1
5	MTOR Inhibition Alters miRNA Profile in Cultured Bone Marrow Mesenchymal Stem Cells. Innovation in Aging, 2021, 5, 667-667.	0.1	1
6	A pro longevity role for cellular senescence. GeroScience, 2020, 42, 867-879.	4.6	18
7	Maf1â€dependent transcriptional regulation of tRNAs prevents genomic instability and is associated with extended lifespan. Aging Cell, 2020, 19, e13068.	6.7	24
8	Development and Longevity: Cellular and Molecular Determinants – A Mini-Review. Gerontology, 2020, 66, 223-230.	2.8	11
9	Commentary: rapamycin for the aging skin. GeroScience, 2020, 42, 813-815.	4.6	2
10	Obesity May Accelerate the Aging Process. Frontiers in Endocrinology, 2019, 10, 266.	3.5	139
11	Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. GeroScience, 2019, 41, 861-869.	4.6	114
12	Accumulation of Senescent Cells in Kidneys is Dependent on Host Immune Status. FASEB Journal, 2019, 33, 802.67.	0.5	0
13	Distinct patterns of gene expression in human cardiac fibroblasts exposed to rapamycin treatment or methionine restriction. Annals of the New York Academy of Sciences, 2018, 1418, 95-105.	3.8	6
14	Correlations between age, functional status, and the senescence-associated proteins HMGB2 and p16INK4a. GeroScience, 2018, 40, 193-199.	4.6	23
15	Rapamycin increases oxidative metabolism and enhances metabolic flexibility in human cardiac fibroblasts. GeroScience, 2018, 40, 243-256.	4.6	43
16	DNA Damage Detection by 53BP1: Relationship to Species Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw170.	3.6	20
17	Convergent adaptation of cellular machineries in the evolution of large body masses and long life spans. Biogerontology, 2017, 18, 485-497.	3.9	8
18	Targeting metabolism in cellular senescence, a role for intervention. Molecular and Cellular Endocrinology, 2017, 455, 83-92.	3.2	62

CHRISTIAN SELL

#	Article	lF	CITATIONS
19	Fate of microglia during HIVâ€1 infection: From activation to senescence?. Clia, 2017, 65, 431-446.	4.9	78
20	Changes in the Transcriptome of Human Astrocytes Accompanying Oxidative Stress-Induced Senescence. Frontiers in Aging Neuroscience, 2016, 8, 208.	3.4	72
21	Mitochondrial stress induces cellular senescence in an mTORC1-dependent manner. Free Radical Biology and Medicine, 2016, 95, 133-154.	2.9	35
22	Mitochondrial Haplogroup Influences Motor Function in Long-Term HIV-1-Infected Individuals. PLoS ONE, 2016, 11, e0163772.	2.5	3
23	Reactive Oxygen Species in Stem Cells. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-2.	4.0	28
24	Altered metabolism and resistance to obesity in long-lived mice producing reduced levels of IGF-I. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E545-E553.	3.5	14
25	Minireview: The Complexities of IGF/Insulin Signaling in Aging: Why Flies and Worms Are Not Humans. Molecular Endocrinology, 2015, 29, 1107-1113.	3.7	16
26	Aberrant mTOR activation in senescence and aging: A mitochondrial stress response?. Experimental Gerontology, 2015, 68, 66-70.	2.8	69
27	Inhibition of mTOR Prevents ROS Production Initiated by Ethidium Bromide-Induced Mitochondrial DNA Depletion. Frontiers in Endocrinology, 2014, 5, 122.	3.5	28
28	Mice Producing Reduced Levels of Insulin-Like Growth Factor Type 1 Display an Increase in Maximum, but not Mean, Life Span. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 410-419.	3.6	40
29	p62/SQSTM1 at the interface of aging, autophagy, and disease. Age, 2014, 36, 9626.	3.0	123
30	Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts. Aging Cell, 2013, 12, 966-977.	6.7	106
31	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
32	Long-Term IGF-I Exposure Decreases Autophagy and Cell Viability. PLoS ONE, 2010, 5, e12592.	2.5	49
33	Effects of lifelong decreased IGFâ€1 on physiological status in mice. FASEB Journal, 2010, 24, 630.4.	0.5	0
34	Vincent Cristofalo (1933–2006): Extraordinary Gerontologist. Aging Clinical and Experimental Research, 2006, 18, 463-469.	2.9	0
35	Mitogen-Independent Phosphorylation of S6K1 and Decreased Ribosomal S6 Phosphorylation in Senescent Human Fibroblasts. Experimental Cell Research, 2000, 259, 284-292.	2.6	25