Chien-Hsun Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4469804/publications.pdf Version: 2024-02-01

CHIEN-HSUN HUANC

#	Article	IF	CITATIONS
1	Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution. Molecular Biology and Evolution, 2022, 39, .	8.9	31
2	A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. Molecular Plant, 2022, 15, 755-777.	8.3	47
3	Phylogenomic conflict analyses in the apple genus <i>Malus</i> s.l. reveal widespread hybridization and allopolyploidy driving diversification, with insights into the complex biogeographic history in the Northern Hemisphere. Journal of Integrative Plant Biology, 2022, 64, 1020-1043.	8.5	31
4	Phylogenomic Analyses of Alismatales Shed Light into Adaptations to Aquatic Environments. Molecular Biology and Evolution, 2022, 39, .	8.9	25
5	Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. Journal of Integrative Plant Biology, 2021, 63, 1273-1293.	8.5	55
6	Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Molecular Plant, 2021, 14, 748-773.	8.3	86
7	Analysis of Paralogs in Target Enrichment Data Pinpoints Multiple Ancient Polyploidy Events in <i>Alchemilla</i> s.l. (Rosaceae). Systematic Biology, 2021, 71, 190-207.	5.6	26
8	Significance of AtMTM1 and AtMTM2 for Mitochondrial MnSOD Activation in Arabidopsis. Frontiers in Plant Science, 2021, 12, 690064.	3.6	7
9	Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns. Journal of Integrative Plant Biology, 2020, 62, 433-455.	8.5	43
10	Asterid Phylogenomics/Phylotranscriptomics Uncover Morphological Evolutionary Histories and Support Phylogenetic Placement for Numerous Whole-Genome Duplications. Molecular Biology and Evolution, 2020, 37, 3188-3210.	8.9	82
11	Phylogenomic Insights into Deep Phylogeny of Angiosperms Based on Broad Nuclear Gene Sampling. Plant Communications, 2020, 1, 100027.	7.7	61
12	Phylotranscriptomics in Cucurbitaceae Reveal Multiple Whole-Genome Duplications and Key Morphological and Molecular Innovations. Molecular Plant, 2020, 13, 1117-1133.	8.3	89
13	Whole-Genome Duplications in Pear and Apple. Compendium of Plant Genomes, 2019, , 279-299.	0.5	11
14	A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. Molecular Phylogenetics and Evolution, 2018, 127, 961-977.	2.7	80
15	Evolution of Rosaceae Fruit Types Based on Nuclear Phylogeny in the Context of Geological Times and Genome Duplication. Molecular Biology and Evolution, 2017, 34, msw242.	8.9	200
16	Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics. Molecular Biology and Evolution, 2016, 33, 2820-2835.	8.9	149
17	Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution. Molecular Biology and Evolution, 2016, 33, 394-412.	8.9	259
18	<scp>CHAPERONIN</scp> 20 mediates iron superoxide dismutase (Fe <scp>SOD</scp>) activity independent of its coâ€chaperonin role in Arabidopsis chloroplasts. New Phytologist, 2013, 197, 99-110.	7.3	76

#	Article	IF	CITATIONS
19	Chaperonin 20 might be an iron chaperone for superoxide dismutase in activating iron superoxide dismutase (FeSOD). Plant Signaling and Behavior, 2013, 8, e23074.	2.4	11
20	Cellular Extract Preparation for Superoxide Dismutase (SOD) Activity Assay. Bio-protocol, 2013, 3, .	0.4	26
21	Copper Chaperone-Dependent and -Independent Activation of Three Copper-Zinc Superoxide Dismutase Homologs Localized in Different Cellular Compartments in Arabidopsis À À. Plant Physiology, 2012, 158, 737-746.	4.8	69
22	Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 428-430.	2.4	12
23	Characterization of copper/zinc and manganese superoxide dismutase in green bamboo (Bambusa) Tj ETQq1 1 C).784314 r	gBT_/Overloc