Jacqueline Boultwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4469000/publications.pdf

Version: 2024-02-01

47006 33894 10,783 148 47 99 citations h-index g-index papers 151 151 151 11193 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular International Prognostic Scoring System for Myelodysplastic Syndromes., 2022, 1, .		259
2	The utilisation of glutamine and glucose by a 3-D tumour model trapped in quiescence. International Journal of Biochemistry and Cell Biology, 2021, 133, 105935.	2.8	2
3	MDMX acts as a pervasive preleukemic-to-acute myeloid leukemia transition mechanism. Cancer Cell, 2021, 39, 529-547.e7.	16.8	17
4	BCL-2 Inhibitor ABT-737 Effectively Targets Leukemia-Initiating Cells with Differential Regulation of Relevant Genes Leading to Extended Survival in a NRAS/BCL-2 Mouse Model of High Risk-Myelodysplastic Syndrome. International Journal of Molecular Sciences, 2021, 22, 10658.	4.1	4
5	ASXL1 mutations are associated with distinct epigenomic alterations that lead to sensitivity to venetoclax and azacytidine. Blood Cancer Journal, 2021, 11, 157.	6.2	27
6	SF3B1 mutant myelodysplastic syndrome: Recent advances. Advances in Biological Regulation, 2021, 79, 100776.	2.3	8
7	Splicing factor mutant myelodysplastic syndromes: Recent advances. Advances in Biological Regulation, 2020, 75, 100655.	2.3	18
8	Recent advances in MDS mutation landscape: Splicing and signalling. Advances in Biological Regulation, 2020, 75, 100673.	2.3	7
9	Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nature Medicine, 2020, 26, 1549-1556.	30.7	372
10	Phospholipase C beta1 (Piâ€PLCbeta1)/Cyclin D3/protein kinase C (PKC) alpha signaling modulation during ironâ€induced oxidative stress in myelodysplastic syndromes (MDS). FASEB Journal, 2020, 34, 15400-15416.	0.5	5
11	Spliceosome mutations: 1 plus 1 does not always equal 2. Blood, 2020, 136, 1471-1472.	1.4	1
12	<i>SF3B1</i> -mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood, 2020, 136, 157-170.	1.4	195
13	SF3B1 mutations induce R-loop accumulation and DNA damage in MDS and leukemia cells with therapeutic implications. Leukemia, 2020, 34, 2525-2530.	7.2	61
14	Sequential Analysis of miRNA Profiling during Azacitidine and Lenalidomide Therapy in Myelodysplastic Syndromes. Blood, 2020, 136, 6-7.	1.4	0
15	Azacitidine and Lenalidomide in Higher-Risk Myelodysplastic Syndromes. Long-Term Results of a Randomized Phase II Multicenter Study and Impact of Cytogenetic Scores and Mutational Status on Long-Lasting Responses. Blood, 2020, 136, 45-45.	1.4	O
16	U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nature Cell Biology, 2019, 21, 640-650.	10.3	165
17	<i>De novo UBE2A</i> mutations are recurrently acquired during chronic myeloid leukemia progression and interfere with myeloid differentiation pathways. Haematologica, 2019, 104, 1789-1797.	3.5	21
18	Response of high-risk MDS to azacitidine and lenalidomide is impacted by baseline and acquired mutations in a cluster of three inositide-specific genes. Leukemia, 2019, 33, 2276-2290.	7.2	25

#	Article	IF	CITATIONS
19	Non-del(5q) myelodysplastic syndromes–associated loci detected by SNP-array genome-wide association meta-analysis. Blood Advances, 2019, 3, 3579-3589.	5.2	7
20	The impact of spliceosome mutations in MDS. HemaSphere, 2019, 3, 132-134.	2.7	2
21	PRR14L mutations are associated with chromosome 22 acquired uniparental disomy, age-related clonal hematopoiesis and myeloid neoplasia. Leukemia, 2019, 33, 1184-1194.	7.2	11
22	TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia, 2019, 33, 1747-1758.	7.2	195
23	Application of induced pluripotent stem cell technology for the investigation of hematological disorders. Advances in Biological Regulation, 2019, 71, 19-33.	2.3	6
24	SF3B1 Mutations Induce Oncogenic IRAK4 Isoforms and Activate Targetable Innate Immune Pathways in MDS and AML. Blood, 2019, 134, 4224-4224.	1.4	12
25	Splicing factor mutations in the myelodysplastic syndromes: target genes and therapeutic approaches. Advances in Biological Regulation, 2018, 67, 13-29.	2.3	21
26	Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nature Communications, 2018, 9, 4004.	12.8	71
27	Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells. Journal of Clinical Investigation, 2018, 128, 5479-5488.	8.2	68
28	SIRT1 Activation Disrupts Maintenance of Myelodysplastic Syndrome Stem and Progenitor Cells by Restoring TET2 Function. Cell Stem Cell, 2018, 23, 355-369.e9.	11.1	68
29	Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood, 2018, 132, 1225-1240.	1.4	168
30	L-leucine increases translation of <i>RPS14</i> and <i>LARP1</i> in erythroblasts from del(5q) myelodysplastic syndrome patients. Haematologica, 2018, 103, e496-e500.	3.5	4
31	Progression in patients with low- and intermediate-1-risk del(5q) myelodysplastic syndromes is predicted by a limited subset of mutations. Haematologica, 2017, 102, 498-508.	3.5	34
32	Gene expression and risk of leukemic transformation in myelodysplasia. Blood, 2017, 130, 2642-2653.	1.4	64
33	Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes. Cell Reports, 2017, 20, 572-585.	6.4	99
34	Epigenetically Aberrant Stroma in MDS Propagates Disease via Wnt/ \hat{l}^2 -Catenin Activation. Cancer Research, 2017, 77, 4846-4857.	0.9	61
35	Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications. Advances in Biological Regulation, 2017, 63, 59-70.	2.3	29
36	The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes. Journal of Clinical Investigation, 2017, 127, 2206-2221.	8.2	69

#	Article	IF	CITATIONS
37	Recurrent genetic defects on chromosome 5q in myeloid neoplasms. Oncotarget, 2017, 8, 6483-6495.	1.8	34
38	Expression of CDKN1C in the bone marrow of patients with myelodysplastic syndrome and secondary acute myeloid leukemia is associated with poor survival after conventional chemotherapy. International Journal of Cancer, 2016, 139, 1402-1413.	5.1	10
39	GFI136N as a therapeutic and prognostic marker for myelodysplastic syndrome. Experimental Hematology, 2016, 44, 590-595.e1.	0.4	11
40	Downregulation of $\langle i \rangle$ Protection of Telomeres $1 \langle i \rangle$ expression in myelodysplastic syndromes with 7q deletion. British Journal of Haematology, 2016, 173, 161-165.	2.5	4
41	Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancer Research, 2016, 76, 4841-4849.	0.9	32
42	The Effects of Severe Hypoxia on Glycolytic Flux and Enzyme Activity in a Model of Solid Tumors. Journal of Cellular Biochemistry, 2016, 117, 1890-1901.	2.6	23
43	Application of genome editing technologies to the study and treatment of hematological disease. Advances in Biological Regulation, 2016, 60, 122-134.	2.3	14
44	Targeting MDS and AML Stem Cells with AZD-9150 Mediated Inhibition of STAT3. Blood, 2016, 128, 4314-4314.	1.4	2
45	Impact of Splicing Factor Mutations on Pre-mRNA Splicing in the Myelodysplastic Syndromes. Current Pharmaceutical Design, 2016, 22, 2333-2344.	1.9	17
46	Progression in Patients with with Low- and Intermediate-1 Risk Del(5q) MDS Is Predicted By a Limited Subset of Mutations. Blood, 2016, 128, 4329-4329.	1.4	0
47	<i>CSNK1A1</i> mutations and gene expression analysis in myelodysplastic syndromes with del(5q). British Journal of Haematology, 2015, 171, 210-214.	2.5	19
48	Recurrent ETNK1 mutations in atypical chronic myeloid leukemia. Blood, 2015, 125, 499-503.	1.4	115
49	PAK1 is a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood, 2015, 126, 1118-1127.	1.4	49
50	<i>ASXL1</i> mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget, 2015, 6, 44061-44071.	1.8	52
51	RECENT ADVANCES IN THE 5Q- SYNDROME. Mediterranean Journal of Hematology and Infectious Diseases, 2015, 7, e2015037.	1.3	32
52	IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells. Blood, 2015, 125, 3144-3152.	1.4	149
53	Clinical associations of CSNK1A1 mutation in myelodysplastic syndrome. Lancet Haematology,the, 2015, 2, e182-e183.	4.6	0
54	The molecular pathogenesis of the myelodysplastic syndromes. European Journal of Haematology, 2015, 95, 3-15.	2.2	92

#	Article	IF	CITATIONS
55	Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nature Communications, 2015, 6, 5901.	12.8	196
56	Application of CRISPR/Cas9 genome editing to the study and treatment of disease. Archives of Toxicology, 2015, 89, 1023-1034.	4.2	47
57	Reduced <i>DOCK4</i> expression leads to erythroid dysplasia in myelodysplastic syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6359-68.	7.1	45
58	Somatic Mutations in MDS Patients Are Associated with Clinical Features and Predict Prognosis Independent of the IPSS-R: Analysis of Combined Datasets from the International Working Group for Prognosis in MDS-Molecular Committee. Blood, 2015, 126, 907-907.	1.4	85
59	An Integrative Genomics Approach Uncovers the Basis of Resistance to AZA Therapy in MDS and CMML. Blood, 2015, 126, 710-710.	1.4	0
60	The role of splicing factor mutations in the pathogenesis of the myelodysplastic syndromes. Advances in Biological Regulation, 2014, 54, 153-161.	2.3	31
61	Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells InÂVivo. Cancer Cell, 2014, 25, 794-808.	16.8	272
62	Reduced translation of GATA1 in Diamond-Blackfan anemia. Nature Medicine, 2014, 20, 703-704.	30.7	7
63	Identification of a BRCA1-mRNA Splicing Complex Required for Efficient DNA Repair and Maintenance of Genomic Stability. Molecular Cell, 2014, 54, 445-459.	9.7	146
64	Aberrant overexpression of CD14 on granulocytes sensitizes the innate immune response in mDia1 heterozygous del(5q) MDS. Blood, 2014, 124, 780-790.	1.4	42
65	TP53 Mutation Status Divides MDS Patients with Complex Karyotypes into Distinct Prognostic Risk Groups: Analysis of Combined Datasets from the International Working Group for MDS-Molecular Prognosis Committee. Blood, 2014, 124, 532-532.	1.4	6
66	Analysis of Clonal Hierarchy Shows That Other Ancestral Events May Precede Evolution of Del(5q) in Myeloid Neoplasms. Blood, 2014, 124, 4605-4605.	1.4	1
67	Efficacy of Dual Inhibition of p38 Mitogen Activated Protein Kinase (MAPK) and Tie-2 Kinase in Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML). Blood, 2014, 124, 4628-4628.	1.4	0
68	PAK1 Is a Therapeutic Target in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood, 2014, 124, 4614-4614.	1.4	0
69	Mutations in <i><scp>SETBP</scp>1</i> are recurrent in myelodysplastic syndromes and often coexist with cytogenetic markers associated with disease progression. British Journal of Haematology, 2013, 163, 235-239.	2.5	37
70	Identification of Gene Expression–Based Prognostic Markers in the Hematopoietic Stem Cells of Patients With Myelodysplastic Syndromes. Journal of Clinical Oncology, 2013, 31, 3557-3564.	1.6	45
71	<i>TP53</i> suppression promotes erythropoiesis in del(5q) MDS, suggesting a targeted therapeutic strategy in lenalidomide-resistant patients. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16127-16132.	7.1	51
72	Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood, 2013, 122, 3616-3627.	1.4	1,562

#	Article	IF	Citations
73	Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nature Genetics, 2013, 45, 18-24.	21.4	359
74	Activation of the mTOR pathway by the amino acid l-leucine in the 5q- syndrome and other ribosomopathies. Advances in Biological Regulation, 2013, 53, 8-17.	2.3	33
75	Targeted re-sequencing analysis of 25 genes commonly mutated in myeloid disorders in del(5q) myelodysplastic syndromes. Haematologica, 2013, 98, 1856-1864.	3.5	29
76	Silencing of <scp>ASXL</scp> 1 impairs the granulomonocytic lineage potential of human <scp>CD</scp> 34 ⁺ progenitor cells. British Journal of Haematology, 2013, 160, 842-850.	2.5	19
77	The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts. Leukemia, 2013, 27, 889-896.	7.2	89
78	CUX1 in leukemia: dosage matters. Blood, 2013, 121, 869-871.	1.4	10
79	Association Between Gene Expression Profiles and Commonly Mutated Genes In The Hematopoietic Stem Cells Of Patients With Myelodysplastic Syndromes. Blood, 2013, 122, 2779-2779.	1.4	1
80	Inhibition Of CXCR2 As a Therapeutic Strategy In AML and MDS. Blood, 2013, 122, 484-484.	1.4	1
81	Aberrant Overexpression Of CD14 In Granulocytes Sensitizes Innate Immune Response In mDia1 Heterozygous Myelodysplastic Syndromes. Blood, 2013, 122, 1557-1557.	1.4	О
82	Whole Exome Sequencing ("mutatomeâ€) Of Deletion 5q. Blood, 2013, 122, 656-656.	1.4	0
83	Aberration Of SF3B1 Results In Deregulated Splicing Of Key Genes and Pathways In Myelodysplastic Syndromes. Blood, 2013, 122, 2747-2747.	1.4	O
84	Mutation Patterns of 16 Genes in Primary and Secondary Acute Myeloid Leukemia (AML) with Normal Cytogenetics. PLoS ONE, 2012, 7, e42334.	2.5	60
85	Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood, 2012, 120, 2076-2086.	1.4	181
86	Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood, 2012, 120, 1290-1298.	1.4	165
87	Haploinsufficiency of ribosomal proteins and p53 activation in anemia: Diamond-Blackfan anemia and the 5q-syndrome. Advances in Biological Regulation, 2012, 52, 196-203.	2.3	29
88	Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood, 2012, 119, 6109-6117.	1.4	105
89	Aberrant Expression of DOCK4 Leads to Disruption of the F-Actin Skeleton and Altered Membrane Stability in MDS Erythroblasts and Mature Erythrocytes. Blood, 2012, 120, 924-924.	1.4	2
90	5q- syndrome. Current Pharmaceutical Design, 2012, 18, 3180-3183.	1.9	4

#	Article	IF	Citations
91	Activation of the mTOR Signaling Pathway by L-Leucine in RPS14-Deficient Erythroid Cells. Blood, 2012, 120, 171-171.	1.4	1
92	The Proliferation Inhibitor CDKN1C (P57KIP2) Is Over Expressed in CD34+ Cells of Patients with MDS and Determines a Worse Prognosis Independently of IPSS Score Factors. Blood, 2012, 120, 3820-3820.	1.4	0
93	Identification of Gene Expression Based Prognostic Markers in the Hematopoietic Stem Cells of Patients with Myelodysplastic Syndromes. Blood, 2012, 120, 3857-3857.	1.4	0
94	Recurrent SETBP1 Mutations in Atypical Chronic Myeloid Leukemia Abrogate an Ubiquitination Site and Dysregulate SETBP1 Protein Levels. Blood, 2012, 120, LBA-2-LBA-2.	1.4	0
95	Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood, 2011, 118, 6239-6246.	1.4	457
96	Marked downâ€regulation of nucleophosminâ€1 is associated with advanced del(5q) myelodysplastic syndrome. British Journal of Haematology, 2011, 155, 272-274.	2.5	6
97	Reduced SMAD7 Leads to Overactivation of TGF-β Signaling in MDS that Can Be Reversed by a Specific Inhibitor of TGF-β Receptor I Kinase. Cancer Research, 2011, 71, 955-963.	0.9	114
98	The Role of Haploinsufficiency of rps14 and p53 Activation in the Molecular Pathogenesis of the 5q-Syndrome. Mental Illness, 2011, 3, e10.	0.8	14
99	Somatic Mutation of SF3B1, a Gene Encoding a Core Component of RNA Splicing Machinery, in Myelodysplasia with Ring Sideroblasts. Blood, 2011, 118, 3-3.	1.4	3
100	Clinical and Genomic Characterization of Chromosome 7 Lesions in Myeloid Malignancies,. Blood, 2011, 118, 3549-3549.	1.4	4
101	Gene expression profiling of erythroblasts from refractory anaemia with ring sideroblasts (RARS) and effects of G SF. British Journal of Haematology, 2010, 149, 844-854.	2.5	31
102	Induction of p53 and up-regulation of the p53 pathway in the human 5qâ^' syndrome. Blood, 2010, 115, 2721-2723.	1.4	65
103	Advances in the 5qâ^' syndrome. Blood, 2010, 116, 5803-5811.	1.4	115
104	Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genetics, 2010, 42, 722-726.	21.4	1,034
105	A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q– syndrome. Nature Medicine, 2010, 16, 59-66.	30.7	312
106	Mutation Analysis of TET2 Reveals the Clonal Nature of Refractory Anemia with Ring Sideroblasts. Blood, 2010, 116, 1862-1862.	1.4	2
107	Frequent Mutation of the Polycomb-Associated Gene ASXL1 In Acute Myeloid Leukemia Secondary to Myelodysplastic Syndrome or Chronic Myelomonocytic Leukemia. Blood, 2010, 116, 2940-2940.	1.4	1
108	Investigation of the Molecular Action of Bortezomib Treatment In Multiple Myeloma. Blood, 2010, 116, 5038-5038.	1.4	0

#	Article	IF	CITATIONS
109	Identification of Prognostic Markers by Gene Expression Profiling In Myelodysplastic Syndrome Hematopoietic Stem Cells. Blood, 2010, 116, 298-298.	1.4	1
110	Clonal heterogeneity in the 5q- syndrome: p53 expressing progenitors prevail during lenalidomide treatment and expand at disease progression. Haematologica, 2009, 94, 1762-1766.	3.5	99
111	Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Blood, 2009, 114, 3538-3545.	1.4	135
112	Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells Blood, 2009, 114, 735-735.	1.4	2
113	Frequent Mutation of the Polycomb-Associated Gene ASXL1 in the Myelodysplastic Syndromes and in Acute Myeloid Leukaemia Blood, 2009, 114, 419-419.	1.4	1
114	Haploinsufficiency of <i>RPS14</i> in 5qâ^' syndrome is associated with deregulation of ribosomal―and translation―related genes. British Journal of Haematology, 2008, 142, 57-64.	2.5	91
115	Molecular Pathogenesis of the 5q– Syndrome: The Role of RPS14 in Pathogenesis and SPARC in the Hematologic Response to Lenalidomide. Clinical Leukemia, 2008, 2, 182-186.	0.2	O
116	Inhibition of the TGF-Î ² receptor I kinase promotes hematopoiesis in MDS. Blood, 2008, 112, 3434-3443.	1.4	157
117	Genome-wide analysis of copy number changes and loss of heterozygosity in myelodysplastic syndrome with del(5q) using high-density single nucleotide polymorphism arrays. Haematologica, 2008, 93, 994-1000.	3.5	42
118	Downregulation of Ribosomal Proteins Is Seen in Non 5q- MDS. Blood, 2008, 112, 854-854.	1.4	6
119	The Role of the Iron Transporter ABCB7 in Refractory Anemia with Ring Sideroblasts. PLoS ONE, 2008, 3, e1970.	2.5	113
120	Clonal Heterogeneity in the 5q-Syndrome: NPMc+ and p53 Expressing Progenitors Are Insensitive to Lenalidomide Treatment and Expand at Disease Progression. Blood, 2008, 112, 5104-5104.	1.4	1
121	Gene Expression Profiling of CD34+ Cells in Patients with Myelodysplastic Syndromes. Blood, 2008, 112, 3642-3642.	1.4	O
122	Haploinsufficiency of RPS14 and Deregulation of Ribosomal- and Translation-Related Genes in MDS Patients with Del(5q). Blood, 2008, 112, 3641-3641.	1.4	0
123	Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11406-11411.	7.1	230
124	Gene silencing by DNA methylation in haematological malignancies. British Journal of Haematology, 2007, 138, 3-11.	2.5	135
125	Gene expression profiling of CD34 ⁺ cells in patients with the 5qâ^' syndrome. British Journal of Haematology, 2007, 139, 578-589.	2.5	146
126	Gene Expression Profiling of Day 7 Erythroblasts from RARS Before and after Treatment with G-CSF Blood, 2007, 110, 2427-2427.	1.4	1

#	Article	IF	Citations
127	Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood, 2006, 108, 337-345.	1.4	198
128	Lenalidomide Up-Regulates SPARC and Inhibits In Vitro Growth of the Malignant Clone in Myelodysplastic Syndrome Patients with 5q Deletion Blood, 2006, 108, 855-855.	1.4	1
129	High-Resolution Genomic Profiling of Myelodysplasia (MDS) by Microarray Comparative Genomic Hybridization (CGH) Blood, 2006, 108, 2645-2645.	1.4	0
130	Expression Profiling of CD34+ Cells in Patients with Myelodysplastic Syndromes: Involvement of Interferon-Stimulated Genes and Correlation to FAB Subtype and Karyotype Blood, 2006, 108, 2626-2626.	1.4	0
131	Gene expression profiling in the myelodysplastic syndromes. Hematology, 2005, 10, 281-287.	1.5	17
132	Gene expression profiling in the myelodysplastic syndromes using cDNA microarray technology. British Journal of Haematology, 2004, 125, 576-583.	2.5	75
133	Low expression of the putative tumour suppressor gene gravin in chronic myeloid leukaemia, myelodysplastic syndromes and acute myeloid leukaemia. British Journal of Haematology, 2004, 126, 508-511.	2.5	12
134	Expression Profiling of CD34+ Cells in Patients with Myelodysplastic Syndromes with and without a del(5q) Blood, 2004, 104, 2363-2363.	1.4	0
135	NRAS, FLT3 and TP53 mutations in patients with myelodysplastic syndrome and a del(5q). Haematologica, 2004, 89, 865-6.	3.5	27
136	Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the $\hat{l}\pm$ -thalassemia myelodysplasia syndrome (ATMDS). Nature Genetics, 2003, 34, 446-449.	21.4	132
137	Narrowing and genomic annotation of the commonly deleted region of the 5qâ^² syndrome. Blood, 2002, 99, 4638-4641.	1.4	247
138	Clonality in the Myelodysplastic Syndromes. International Journal of Hematology, 2001, 73, 411-415.	1.6	42
139	Physical mapping of the MEGF1 gene, human homologue of the Drosophila tumour suppressor gene fat, to the critical region of the 5q-syndrome. GeneScreen, 2001, 1, 165-167.	0.6	2
140	Combined immunophenotyping and FISH identifies the involvement of B-cells in 5q-syndrome. Genes Chromosomes and Cancer, 2000, 29, 276-280.	2.8	41
141	Transcription Mapping of the 5qâ^ Syndrome Critical Region: Cloning of Two Novel Genes and Sequencing, Expression, and Mapping of a Further Six Novel cDNAs. Genomics, 2000, 66, 26-34.	2.9	34
142	BRAC2 gene deletion is rare in chronic lymphocytic leukemia. , 1998, 59, 318-318.		0
143	Molecular cytogenetic delineation of the critical deleted region in the 5qâ^' syndrome. , 1998, 22, 251-256.		70
144	Novel Genes Mapping to the Critical Region of the 5qâ^' Syndrome. Genomics, 1997, 45, 88-96.	2.9	20

#	ARTICLE	IF	CITATIONS
145	Chromosomal Deletions in Myelodysplasia. Leukemia and Lymphoma, 1995, 17, 71-78.	1.3	36
146	PRACTICAL CONSIDERATIONS IN THE ANALYSIS OF CHROMOSOMAL DELETION BREAKPOINTS BY PULSED FIELD GEL ELECTROPHORESIS. British Journal of Haematology, 1991, 77, 129-130.	2.5	2
147	HOMOZYGOUS DELETION OF FMS IN A PATIENT WITH THE 5q— SYNDROME. British Journal of Haematology, 1990, 76, 310-311.	2.5	9
148	Structure of the granulocyte macrophage colony-stimulating factor gene in patients with the myelodysplastic syndromes. American Journal of Hematology, 1990, 34, 157-158.	4.1	3