Yong Sheng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4468379/publications.pdf

Version: 2024-02-01

247 papers 12,918 citations

20759 60 h-index 100 g-index

255 all docs 255 docs citations

255 times ranked

10915 citing authors

#	Article	IF	CITATIONS
1	Exciton funneling amplified photoluminescence anisotropy in organic radical-doped microcrystals. Journal of Materials Chemistry C, 2022, 10, 2551-2555.	2.7	11
2	An Optically Reconfigurable Förster Resonance Energy Transfer Process for Broadband Switchable Organic Single-Mode Microlasers. CCS Chemistry, 2022, 4, 250-258.	4.6	63
3	Ultrahigh Color Rendering in RGB Perovskite Microâ€Lightâ€Emitting Diode Arrays with Resonanceâ€Enhanced Photon Recycling for Next Generation Displays. Advanced Optical Materials, 2022, 10, 2101642.	3.6	19
4	Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites. Angewandte Chemie, 2022, 134, .	1.6	1
5	Organoplatinum(II) Cruciform: A Versatile Building Block to Fabricate 2D Microcrystals with Fullâ€Color and White Phosphorescence and Anisotropic Photon Transport. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
6	Differential Polymer Chain Scission Enables Freeâ€Standing Microcavity Laser Arrays. Advanced Materials, 2022, 34, e2107611.	11.1	12
7	Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
8	Gridizationâ€Driven Mesoscale Selfâ€Assembly of Conjugated Nanopolymers into Luminescenceâ€Anisotropic Photonic Crystals. Advanced Materials, 2022, 34, e2109399.	11.1	14
9	Laser Action in Hybrid Organic–Inorganic Perovskites. , 2022, , 107-135.		O
10	Halide Perovskites for Photonics and Optoelectronics: introduction to special issue. Optical Materials Express, 2022, 12, 1764.	1.6	0
11	Excitonâ€Polaritons and Their Bose–Einstein Condensates in Organic Semiconductor Microcavities. Advanced Materials, 2022, 34, e2106095.	11.1	22
12	Framework-Shrinkage-Induced Wavelength-Switchable Lasing from a Single Hydrogen-Bonded Organic Framework Microcrystal. Journal of Physical Chemistry Letters, 2022, 13, 130-135.	2.1	24
13	Screen-Overprinted Perovskite RGB Microdisk Arrays Based on Wet-Solute-Chemical Dynamics for Full-Color Laser Displays. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1774-1782.	4.0	10
14	Pursuing electrically pumped lasing with organic semiconductors. CheM, 2022, 8, 1535.	5.8	1
15	Accumulating bright excitons on the hybridized local and charge transfer excited state for organic semiconductor lasers. Journal of Materials Chemistry C, 2022, 10, 9945-9952.	2.7	2
16	Simulating the Structure of Carbon Dots via Crystalline Ï€â€Aggregated Organic Nanodots Prepared by Kinetically Trapped Selfâ€Assembly. Angewandte Chemie, 2022, 134, .	1.6	3
17	Simulating the Structure of Carbon Dots via Crystalline Ï€â€Aggregated Organic Nanodots Prepared by Kinetically Trapped Selfâ€Assembly. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
18	Organic donor-acceptor heterojunctions for high performance circularly polarized light detection. Nature Communications, 2022, 13, .	5.8	33

#	Article	IF	CITATIONS
19	Energyâ€Controllable Excitonâ€Polariton Bose–Einstein Condensation in Perovskite Microstrip Cavities. Advanced Optical Materials, 2022, 10, .	3.6	3
20	Singleâ€Crystalline Perovskite p–n Junction Nanowire Arrays for Ultrasensitive Photodetection. Advanced Materials, 2022, 34, .	11.1	26
21	Realization of Single-Crystal Dye Lasers by Taming Charge Transfer in Molecular Self-Assemblies. ACS Nano, 2022, 16, 12345-12351.	7.3	5
22	Highly Luminescent Zero-Dimensional Organic Copper Halide with Low-Loss Optical Waveguides and Highly Polarized Emission., 2022, 4, 1446-1452.		21
23	Smart responsive organic microlasers with multiple emission states for high-security optical encryption. National Science Review, 2021, 8, nwaa162.	4.6	32
24	Topologicalâ€Distortionâ€Driven Amorphous Spherical Metalâ€Organic Frameworks for Highâ€Quality Singleâ€Mode Microlasers. Angewandte Chemie - International Edition, 2021, 60, 6362-6366.	7.2	23
25	Controlled Shape Evolution of Pureâ€MOF 1D Microcrystals towards Efficient Waveguide and Laser Applications. Chemistry - A European Journal, 2021, 27, 3297-3301.	1.7	14
26	A switchable multimode microlaser based on an AIE microsphere. Journal of Materials Chemistry C, 2021, 9, 11180-11188.	2.7	6
27	Topologicalâ€Distortionâ€Driven Amorphous Spherical Metalâ€Organic Frameworks for Highâ€Quality Singleâ€Mode Microlasers. Angewandte Chemie, 2021, 133, 6432-6436.	1.6	2
28	Superkinetic Growth of Oval Organic Semiconductor Microcrystals for Chaotic Lasing. Advanced Materials, 2021, 33, e2100484.	11.1	25
29	Organic Microlaser Arrays: From Materials Engineering to Optoelectronic Applications. Accounts of Materials Research, 2021, 2, 340-351.	5.9	28
30	A Universal In Situ Crossâ€Linking Strategy Enables Orthogonal Processing of Fullâ€Color Organic Microlaser Arrays. Advanced Functional Materials, 2021, 31, 2103031.	7.8	22
31	Smart Protein-Based Biolasers: An Alternative Way to Protein Conformation Detection. ACS Applied Materials & Detection. A	4.0	15
32	Lightâ€Emitting Metal–Organic Halide 1D and 2D Structures: Nearâ€Unity Quantum Efficiency, Lowâ€Loss Optical Waveguide and Highly Polarized Emission. Angewandte Chemie - International Edition, 2021, 60, 13548-13553.	7.2	50
33	Lightâ€Emitting Metal–Organic Halide 1D and 2D Structures: Nearâ€Unity Quantum Efficiency, Lowâ€Loss Optical Waveguide and Highly Polarized Emission. Angewandte Chemie, 2021, 133, 13660-13665.	1.6	5
34	Full-color flexible laser displays based on random laser arrays. Science China Materials, 2021, 64, 2805-2812.	3.5	24
35	Hydrogen-Bonded Organic Framework Microlasers with Conformation-Induced Color-Tunable Output. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28662-28667.	4.0	39
36	Room temperature exciton–polariton Bose–Einstein condensation in organic single-crystal microribbon cavities. Nature Communications, 2021, 12, 3265.	5.8	48

#	Article	IF	Citations
37	Organic composite materials: Understanding and manipulating excited states toward higher lightâ \in emitting performance. Aggregate, 2021, 2, e103.	5.2	7
38	Photonic skins based on flexible organic microlaser arrays. Science Advances, 2021, 7, .	4.7	42
39	Geometry-Programmable Perovskite Microlaser Patterns for Two-Dimensional Optical Encryption. Nano Letters, 2021, 21, 6792-6799.	4.5	34
40	Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angewandte Chemie - International Edition, 2021, 60, 24519-24525.	7.2	27
41	2D Metalâ€Organic Complex Luminescent Crystals. Advanced Functional Materials, 2021, 31, 2106160.	7.8	12
42	3D Laser Displays Based on Circularly Polarized Lasing from Cholesteric Liquid Crystal Arrays. Advanced Materials, 2021, 33, e2104418.	11.1	109
43	Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angewandte Chemie, 2021, 133, 24724.	1.6	6
44	Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection. Journal of the American Chemical Society, 2021, 143, 15319-15325.	6.6	5
45	Randomly Induced Phase Transformation in Silk Proteinâ€Based Microlaser Arrays for Anticounterfeiting. Advanced Materials, 2021, 33, e2102586.	11.1	29
46	Perovskite Origami for Programmable Microtube Lasing. Advanced Functional Materials, 2021, 31, 2109080.	7.8	14
47	Chiral Hybrid Perovskite Singleâ€Crystal Nanowire Arrays for Highâ€Performance Circularly Polarized Light Detection. Advanced Science, 2021, 8, e2102065.	5.6	34
48	Innenrücktitelbild: Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding (Angew. Chem. 46/2021). Angewandte Chemie, 2021, 133, 24931-24931.	1.6	0
49	Large-area periodic lead halide perovskite nanostructures for lenticular printing laser displays. Science China Chemistry, 2021, 64, 629-635.	4.2	5
50	Thermally Activated Lasing in Organic Microcrystals toward Laser Displays. Journal of the American Chemical Society, 2021, 143, 20249-20255.	6.6	29
51	Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Science China Chemistry, 2021, 64, 2060-2104.	4.2	248
52	Pursuing electrically pumped lasing with organic semiconductors. CheM, 2021, 7, 3221-3231.	5.8	21
53	Recent advances in luminescent metal–organic frameworks and their photonic applications. Chemical Communications, 2021, 57, 13678-13691.	2.2	22
54	Orientationâ€Controlled 2D Anisotropic and Isotropic Photon Transport in Coâ€crystal Polymorph Microplates. Angewandte Chemie - International Edition, 2020, 59, 4456-4463.	7.2	77

#	Article	IF	Citations
55	Loss compensation of surface plasmon polaritons in organic/metal nanowire heterostructures toward photonic logic processing. Science China Materials, 2020, 63, 1464-1471.	3.5	7
56	Spatially Responsive Multicolor Lanthanideâ€MOF Heterostructures for Covert Photonic Barcodes. Angewandte Chemie - International Edition, 2020, 59, 19060-19064.	7.2	71
57	Spatially Responsive Multicolor Lanthanideâ€MOF Heterostructures for Covert Photonic Barcodes. Angewandte Chemie, 2020, 132, 19222-19226.	1.6	12
58	Promising Organic Materials Screened out by Computational Strategy Towards Electrically Pumped Lasers. Chemical Research in Chinese Universities, 2020, 36, 1149-1150.	1.3	0
59	Lanthanide MOFs for inducing molecular chirality of achiral stilbazolium with strong circularly polarized luminescence and efficient energy transfer for color tuning. Chemical Science, 2020, 11, 9154-9161.	3.7	62
60	Organic micro/nanoscale materials for photonic barcodes. Organic Chemistry Frontiers, 2020, 7, 2776-2788.	2.3	22
61	Experimentally Observed Reverse Intersystem Crossingâ€Boosted Lasing. Angewandte Chemie, 2020, 132, 21861-21866.	1.6	31
62	Experimentally Observed Reverse Intersystem Crossingâ€Boosted Lasing. Angewandte Chemie - International Edition, 2020, 59, 21677-21682.	7.2	46
63	Optically Pumped Lasing in Microscale Light-Emitting Electrochemical Cell Arrays for Multicolor Displays. Nano Letters, 2020, 20, 7116-7122.	4.5	19
64	Supercrystallographic Reconstruction of 3D Nanorod Assembly with Collectively Anisotropic Upconversion Fluorescence. Nano Letters, 2020, 20, 7367-7374.	4.5	17
65	Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. Light: Science and Applications, 2020, 9, 151.	7.7	41
66	Strong Exciton–Photon Coupling in Dyeâ€Doped Polymer Microcavities. Macromolecular Materials and Engineering, 2020, 305, 2000456.	1.7	1
67	Organic Self-assembled Microcavities and Microlasers. , 2020, , 203-231.		1
68	Wettabilityâ€Guided Screen Printing of Perovskite Microlaser Arrays for Currentâ€Driven Displays. Advanced Materials, 2020, 32, e2001999.	11.1	66
69	A Photoisomerizationâ€Activated Intramolecular Chargeâ€Transfer Process for Broadbandâ€Tunable Singleâ€Mode Microlasers. Angewandte Chemie - International Edition, 2020, 59, 15992-15996.	7.2	31
70	A Photoisomerizationâ€Activated Intramolecular Chargeâ€Transfer Process for Broadbandâ€Tunable Singleâ€Mode Microlasers. Angewandte Chemie, 2020, 132, 16126-16130.	1.6	3
71	Controllable Growth of Highâ€Quality Inorganic Perovskite Microplate Arrays for Functional Optoelectronics. Advanced Materials, 2020, 32, e1908006.	11.1	66
72	Pure Metal–Organic Framework Microlasers with Controlled Cavity Shapes. Nano Letters, 2020, 20, 2020-2025.	4.5	31

#	Article	IF	CITATIONS
73	Materials chemistry and engineering in metal halide perovskite lasers. Chemical Society Reviews, 2020, 49, 951-982.	18.7	263
74	Orientationâ€Controlled 2D Anisotropic and Isotropic Photon Transport in Coâ€crystal Polymorph Microplates. Angewandte Chemie, 2020, 132, 4486-4493.	1.6	21
75	Grain Boundary Enhanced Photoluminescence Anisotropy in Twoâ€Dimensional Hybrid Perovskite Films. Advanced Optical Materials, 2020, 8, 1901780.	3.6	14
76	Organic Printed Core–Shell Heterostructure Arrays: A Universal Approach to All olor Laser Display Panels. Angewandte Chemie - International Edition, 2020, 59, 11814-11818.	7.2	41
77	Organic Printed Core–Shell Heterostructure Arrays: A Universal Approach to Allâ€Color Laser Display Panels. Angewandte Chemie, 2020, 132, 11912-11916.	1.6	12
78	Flat-Panel Laser Displays Based on Liquid Crystal Microlaser Arrays. CCS Chemistry, 2020, 2, 369-375.	4.6	95
79	Wavelength-Tunable Single-Mode Microlasers Based on Photoresponsive Pitch Modulation of Liquid Crystals for Information Encryption. Research, 2020, 2020, 6539431.	2.8	14
80	Innenrù⁄4cktitelbild: Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation (Angew. Chem. 39/2019). Angewandte Chemie, 2019, 131, 14135-14135.	1.6	1
81	Lead-free thermochromic perovskites with tunable transition temperatures for smart window applications. Science China Chemistry, 2019, 62, 1257-1262.	4.2	39
82	Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie, 2019, 131, 14028-14034.	1.6	23
83	Controlled self-assembly of Triazatruxene overlength microwires for optical waveguide. Organic Electronics, 2019, 74, 276-281.	1.4	9
84	Heteroepitaxial Growth of Multiblock Lnâ€MOF Microrods for Photonic Barcodes. Angewandte Chemie - International Edition, 2019, 58, 13803-13807.	7.2	94
85	Heteroepitaxial Growth of Multiblock Lnâ€MOF Microrods for Photonic Barcodes. Angewandte Chemie, 2019, 131, 13941-13945.	1.6	23
86	3D-printed optical-electronic integrated devices. Science China Chemistry, 2019, 62, 1398-1404.	4.2	7
87	Micro―and Nanolasers. Advanced Optical Materials, 2019, 7, 1901158.	3.6	1
88	Near-Infrared Microlasers from Self-Assembled Spiropyrane-Based Microsphercial Caps. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38226-38231.	4.0	19
89	Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides. Journal of the American Chemical Society, 2019, 141, 15755-15760.	6.6	124
90	Epitaxial growth of dual-color-emitting organic heterostructures <i>via</i> binary solvent synergism driven sequential crystallization. Nanoscale, 2019, 11, 7111-7116.	2.8	24

#	Article	IF	CITATIONS
91	Solvent modulated excited state processes of push–pull molecule with hybridized local excitation and intramolecular charge transfer character. Physical Chemistry Chemical Physics, 2019, 21, 3894-3902.	1.3	39
92	Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie - International Edition, 2019, 58, 13890-13896.	7.2	108
93	Exciton funneling in light-harvesting organic semiconductor microcrystals for wavelength-tunable lasers. Science Advances, 2019, 5, eaaw2953.	4.7	37
94	Organic Janus Microspheres: A General Approach to All-Color Dual-Wavelength Microlasers. Journal of the American Chemical Society, 2019, 141, 5116-5120.	6.6	55
95	Controlling the Output of Organic Micro/Nanolasers. Advanced Optical Materials, 2019, 7, 1900037.	3.6	17
96	Efficient triphenylamine-based polymorphs with different mechanochromism and lasing emission: manipulating molecular packing and intermolecular interactions. Journal of Materials Chemistry C, 2019, 7, 4434-4440.	2.7	37
97	Photoluminescent Anisotropy Amplification in Polymorphic Organic Nanocrystals by Light-Harvesting Energy Transfer. Journal of the American Chemical Society, 2019, 141, 6157-6161.	6.6	92
98	Dual-wavelength lasing from organic dye encapsulated metal–organic framework microcrystals. Chemical Communications, 2019, 55, 3445-3448.	2.2	20
99	Full-color laser displays based on organic printed microlaser arrays. Nature Communications, 2019, 10, 870.	5.8	153
100	Steric-Hindrance-Controlled Laser Switch Based on Pure Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2019, 141, 19959-19963.	6.6	57
101	Controlled Outcoupling of Whispering-Gallery-Mode Lasers Based on Self-Assembled Organic Single-Crystalline Microrings. Nano Letters, 2019, 19, 1098-1103.	4.5	24
102	In Situ Visualization of Assembly and Photonic Signal Processing in a Triplet Light-Harvesting Nanosystem. Journal of the American Chemical Society, 2018, 140, 4269-4278.	6.6	93
103	Tailoring the structures and photonic properties of low-dimensional organic materials by crystal engineering. Nanoscale, 2018, 10, 4680-4685.	2.8	18
104	Recent Advances in Microâ€∮Nanostructured Metal–Organic Frameworks towards Photonic and Electronic Applications. Chemistry - A European Journal, 2018, 24, 6484-6493.	1.7	45
105	Organic Microcrystal Vibronic Lasers with Fullâ€Spectrum Tunable Output beyond the Franck–Condon Principle. Angewandte Chemie - International Edition, 2018, 57, 3108-3112.	7.2	52
106	Solid-state fluorescent materials based on coumarin derivatives: polymorphism, stimuli-responsive emission, self-assembly and optical waveguides. Materials Chemistry Frontiers, 2018, 2, 910-916.	3.2	46
107	Organic Microcrystal Vibronic Lasers with Fullâ€Spectrum Tunable Output beyond the Franck–Condon Principle. Angewandte Chemie, 2018, 130, 3162-3166.	1.6	24
108	Switchable Single-Mode Perovskite Microlasers Modulated by Responsive Organic Microdisks. Nano Letters, 2018, 18, 1241-1245.	4.5	67

#	Article	IF	CITATIONS
109	Controlled Assembly of Organic Composite Microdisk/Microwire Heterostructures for Output Coupling of Dualâ€Color Lasers. Advanced Optical Materials, 2018, 6, 1701077.	3.6	22
110	Two-Dimensional Pyramid-like WS ₂ Layered Structures for Highly Efficient Edge Second-Harmonic Generation. ACS Nano, 2018, 12, 689-696.	7.3	63
111	Loss compensation during subwavelength propagation of enhanced second-harmonic generation signals in a hybrid plasmonic waveguide. Materials Chemistry Frontiers, 2018, 2, 491-496.	3.2	4
112	Frontispiece: Recent Advances in Micro-/Nanostructured Metal-Organic Frameworks towards Photonic and Electronic Applications. Chemistry - A European Journal, 2018, 24, .	1.7	0
113	Strong Photonicâ€Bandâ€Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals. ChemPhysChem, 2018, 19, 2101-2106.	1.0	12
114	Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Science Advances, 2018, 4, eaap9861.	4.7	56
115	Wavelength Division Multiplexer Based on Semiconductor Heterostructures Constructed via Nanoarchitectonics. Small, 2018, 14, 1702698.	5. 2	10
116	Tailoring the Energy Levels and Cavity Structures toward Organic Cocrystal Microlasers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42740-42746.	4.0	34
117	Suppressing Nonradiative Processes of Organic Dye with Metal–Organic Framework Encapsulation toward Near-Infrared Solid-State Microlasers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35455-35461.	4.0	33
118	Stimulated Emission-Controlled Photonic Transistor on a Single Organic Triblock Nanowire. Journal of the American Chemical Society, 2018, 140, 13147-13150.	6.6	47
119	Proton-Controlled Organic Microlaser Switch. ACS Nano, 2018, 12, 5734-5740.	7.3	42
120	Supramolecular Polymer-Based Fluorescent Microfibers for Switchable Optical Waveguides. ACS Applied Materials & Description (2018), 10, 26526-26532.	4.0	22
121	Surface tension driven aggregation of organic nanowires <i>via</i> lab in a droplet. Nanoscale, 2018, 10, 11006-11012.	2.8	35
122	Rational Design, Controlled Fabrication, and Photonic Applications of Organic Composite Nanomaterials. Advanced Optical Materials, 2018, 6, 1701193.	3.6	22
123	Hybrid Three-Dimensional Spiral WSe ₂ Plasmonic Structures for Highly Efficient Second-Order Nonlinear Parametric Processes. Research, 2018, 2018, 4164029.	2.8	15
124	Research progress on organic micro/nanoscale lasers. Scientia Sinica Chimica, 2018, 48, 127-142.	0.2	4
125	Polymorph-Dependent Electrogenerated Chemiluminescence of Low-Dimensional Organic Semiconductor Structures for Sensing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8891-8899.	4.0	35
126	A Single Crystal with Multiple Functions of Optical Waveguide, Aggregation-Induced Emission, and Mechanochromism. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8910-8918.	4.0	144

#	Article	IF	CITATIONS
127	Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors. Chemical Communications, 2017, 53, 3102-3105.	2.2	40
128	Single Crystals: Directâ€Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing (Small 8/2017). Small, 2017, 13, .	5.2	1
129	Host–guest composite organic microlasers. Journal of Materials Chemistry C, 2017, 5, 5600-5609.	2.7	38
130	A New Benzodithiopheneâ€Based Cruciform Electronâ€Donor–Electronâ€Acceptor Molecule with Ambipolar/Photoresponsive Semiconducting and Redâ€Lightâ€Emissive Properties. Asian Journal of Organic Chemistry, 2017, 6, 1277-1284.	1.3	4
131	Lanthanide Metal–Organic Framework Microrods: Colored Optical Waveguides and Chiral Polarized Emission. Angewandte Chemie - International Edition, 2017, 56, 7853-7857.	7.2	270
132	Lanthanide Metal–Organic Framework Microrods: Colored Optical Waveguides and Chiral Polarized Emission. Angewandte Chemie, 2017, 129, 7961-7965.	1.6	50
133	Covert Photonic Barcodes Based on Light Controlled Acidichromism in Organic Dye Doped Whisperingâ€Galleryâ€Mode Microdisks. Advanced Materials, 2017, 29, 1701558.	11.1	56
134	1,6- and 2,7- $\langle i \rangle$ trans $\langle i \rangle$ - \hat{l}^2 -Styryl Substituted Pyrenes Exhibiting Both Emissive and Semiconducting Properties in the Solid State. Chemistry of Materials, 2017, 29, 3580-3588.	3.2	63
135	Ionic liquids for absorption and separation of gases: An extensive database and a systematic screening method. AICHE Journal, 2017, 63, 1353-1367.	1.8	76
136	Metal-organic framework microlasers. Science Bulletin, 2017, 62, 3-4.	4.3	18
137	Dual-Wavelength Switchable Vibronic Lasing in Single-Crystal Organic Microdisks. Nano Letters, 2017, 17, 91-96.	4.5	63
138	Directâ€Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing. Small, 2017, 13, 1603217.	5.2	117
139	Starch-Based Biological Microlasers. ACS Nano, 2017, 11, 597-602.	7.3	50
140	Simultaneous structure and luminescence property control of barium carbonate nanocrystals through small amount of lanthanide doping. Science Bulletin, 2017, 62, 1239-1244.	4.3	5
141	Orientation-Dependent Exciton–Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures. ACS Nano, 2017, 11, 10106-10112.	7.3	17
142	All-Color Subwavelength Output of Organic Flexible Microlasers. Journal of the American Chemical Society, 2017, 139, 11329-11332.	6.6	46
143	Dual-color single-mode lasing in axially coupled organic nanowire resonators. Science Advances, 2017, 3, e1700225.	4.7	122
144	Development of benzylidene-methyloxazolone based AlEgens and decipherment of their working mechanism. Journal of Materials Chemistry C, 2017, 5, 7191-7199.	2.7	33

#	Article	IF	CITATIONS
145	Wavelengthâ€Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal–Organic Frameworks. Advanced Materials, 2016, 28, 7424-7429.	11.1	103
146	Crystalline Solids: Tuning the Solid State Emission of the Carbazole and Cyano-Substituted Tetraphenylethylene by Co-Crystallization with Solvents (Small 47/2016). Small, 2016, 12, 6553-6553.	5.2	1
147	Constructing small molecular AIE luminophores through a 2,2-(2,2-diphenylethene-1,1-diyl)dithiophene core and peripheral triphenylamine with applications in piezofluorochromism, optical waveguides, and explosive detection. Journal of Materials Chemistry C, 2016, 4, 8407-8415.	2.7	35
148	Organic Micro/Nanoscale Lasers. Accounts of Chemical Research, 2016, 49, 1691-1700.	7.6	285
149	Tuning the Solid State Emission of the Carbazole and Cyanoâ€Substituted Tetraphenylethylene by Coâ€Crystallization with Solvents. Small, 2016, 12, 6554-6561.	5.2	55
150	Hydrogen Sulfide Solubility in Ionic Liquids (ILs): An Extensive Database and a New ELM Model Mainly Established by Imidazolium-Based ILs. Journal of Chemical & Engineering Data, 2016, 61, 3970-3978.	1.0	35
151	Excimer Emission in Selfâ€Assembled Organic Spherical Microstructures: An Effective Approach to Wavelength Switchable Microlasers. Advanced Optical Materials, 2016, 4, 1009-1014.	3.6	50
152	Construction of Nanowire Heterojunctions: Photonic Functionâ€Oriented Nanoarchitectonics. Advanced Materials, 2016, 28, 1319-1326.	11.1	40
153	Controlling the Cavity Structures of Twoâ€Photonâ€Pumped Perovskite Microlasers. Advanced Materials, 2016, 28, 4040-4046.	11.1	207
154	Wavelengthâ€Controlled Organic Microlasers Based on Polymorphismâ€Dependent Intramolecular Chargeâ€Transfer Process. Chemistry - an Asian Journal, 2016, 11, 2656-2661.	1.7	17
155	Hybrid Top-Down/Bottom-Up Strategy Using Superwettability for the Fabrication of Patterned Colloidal Assembly. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4985-4993.	4.0	25
156	Broadband Tunable Microlasers Based on Controlled Intramolecular Charge-Transfer Process in Organic Supramolecular Microcrystals. Journal of the American Chemical Society, 2016, 138, 1118-1121.	6.6	139
157	Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy and Environmental Science, 2016, 9, 1012-1023.	15.6	138
158	Photonic Applications of Metal–Dielectric Heterostructured Nanomaterials. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3703-3713.	4.0	12
159	Organic nanophotonic materials: the relationship between excited-state processes and photonic performances. Chemical Communications, 2016, 52, 8906-8917.	2.2	25
160	Output Coupling of Perovskite Lasers from Embedded Nanoscale Plasmonic Waveguides. Journal of the American Chemical Society, 2016, 138, 2122-2125.	6.6	144
161	A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity. Talanta, 2016, 146, 41-48.	2.9	29
162	"Hâ€â€like Organic Nanowire Heterojunctions Constructed from Cooperative Molecular Assembly for Photonic Applications. Advanced Science, 2015, 2, 1500130.	5.6	32

#	Article	IF	CITATIONS
163	Lowâ€Threshold Wavelengthâ€Switchable Organic Nanowire Lasers Based on Excitedâ€State Intramolecular Proton Transfer. Angewandte Chemie, 2015, 127, 7231-7235.	1.6	42
164	A Luminescent Nitrogenâ€Containing Polycyclic Aromatic Hydrocarbon Synthesized by Photocyclodehydrogenation with Unprecedented Regioselectivity. Chemistry - A European Journal, 2015, 21, 17973-17980.	1.7	17
165	Oneâ€Dimensional Dielectric/Metallic Hybrid Materials for Photonic Applications. Small, 2015, 11, 3728-3743.	5.2	21
166	Estimation of Heat Capacity of Ionic Liquids Using $\langle i \rangle S \langle i \rangle \langle sub \rangle f$ -profile $\langle sub \rangle \rangle$ Molecular Descriptors. Industrial & Engineering Chemistry Research, 2015, 54, 12987-12992.	1.8	31
167	Controlled Self-Assembly of Organic Composite Microdisks for Efficient Output Coupling of Whispering-Gallery-Mode Lasers. Journal of the American Chemical Society, 2015, 137, 62-65.	6.6	103
168	Dialkoxybenzo[j]fluoranthenes: synthesis, structures, photophysical properties, and optical waveguide application. RSC Advances, 2015, 5, 18609-18614.	1.7	9
169	Lowâ€Threshold Wavelengthâ€Switchable Organic Nanowire Lasers Based on Excitedâ€State Intramolecular Proton Transfer. Angewandte Chemie - International Edition, 2015, 54, 7125-7129.	7.2	183
170	Hexaphenylbenzeneâ€Based, Ï€â€Conjugated Snowflakeâ€Shaped Luminophores: Tunable Aggregationâ€Induced Emission Effect and Piezofluorochromism. Chemistry - A European Journal, 2015, 21, 8504-8510.	1.7	47
171	Organic printed photonics: From microring lasers to integrated circuits. Science Advances, 2015, 1, e1500257.	4.7	172
172	Polar-surface-driven growth of ZnS microsprings with novel optoelectronic properties. NPG Asia Materials, 2015, 7, e213-e213.	3.8	9
173	Highly Solidâ€State Emissive Pyridiniumâ€Substituted Tetraphenylethylene Salts: Emission Colorâ€Tuning with Counter Anions and Application for Optical Waveguides. Small, 2015, 11, 1335-1344.	5.2	68
174	Optical Wavelength Filters Based on Photonic Confinement in Semiconductor Nanowire Homojunctions. Advanced Materials, 2014, 26, 620-624.	11.1	29
175	Inclusion induced second harmonic generation in low dimensional supramolecular crystals. Journal of Materials Chemistry C, 2014, 2, 3199-3203.	2.7	12
176	Tailoring the structures and compositions of one-dimensional organic nanomaterials towards chemical sensing applications. Chemical Science, 2014, 5, 52-57.	3.7	41
177	A Cruciform Electron Donor–Acceptor Semiconductor with Solidâ€State Red Emission: 1D/2D Optical Waveguides and Highly Sensitive/Selective Detection of H ₂ S Gas. Advanced Functional Materials, 2014, 24, 4250-4258.	7.8	96
178	An Aggregationâ€Induced Emission Luminogen with Efficient Luminescent Mechanochromism and Optical Waveguiding Properties. Asian Journal of Organic Chemistry, 2014, 3, 118-121.	1.3	23
179	Donor–Acceptor Molecules: A Cruciform Electron Donor–Acceptor Semiconductor with Solidâ€State Red Emission: 1D/2D Optical Waveguides and Highly Sensitive/Selective Detection of H ₂ S Gas (Adv. Funct. Mater. 27/2014). Advanced Functional Materials, 2014, 24, 4376-4376.	7.8	1
180	Tetrahydro[5]helicene-based full-color emission dyes in both solution and solid states: synthesis, structures, photophysical properties and optical waveguide applications. Journal of Materials Chemistry C, 2014, 2, 8373-8380.	2.7	60

#	Article	IF	Citations
181	From Molecular Design and Materials Construction to Organic Nanophotonic Devices. Accounts of Chemical Research, 2014, 47, 3448-3458.	7.6	131
182	Controlled Synthesis of Organic Nanophotonic Materials with Specific Structures and Compositions. Advanced Materials, 2014, 26, 6852-6870.	11.1	57
183	Organic nanophotonics: from controllable assembly of functional molecules to low-dimensional materials with desired photonic properties. Chemical Society Reviews, 2014, 43, 4325-4340.	18.7	127
184	Arylacetyleneâ€Substituted Naphthalene Diimides with Dual Functions: Optical Waveguides and nâ€Type Semiconductors. Chemistry - an Asian Journal, 2014, 9, 3207-3214.	1.7	30
185	Twisted intramolecular charge transfer, aggregation-induced emission, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene. Journal of Materials Chemistry C, 2014, 2, 1801.	2.7	87
186	Tailoring the self-assembled structures and photonic properties of organic nanomaterials. Nanoscale, 2014, 6, 3467.	2.8	39
187	Toxicity of ionic liquids: Database and prediction via quantitative structure–activity relationship method. Journal of Hazardous Materials, 2014, 278, 320-329.	6.5	142
188	Electrically pumped polariton lasers. Journal of Materials Chemistry C, 2014, 2, 2295-2297.	2.7	7
189	Nanowires: Optical Wavelength Filters Based on Photonic Confinement in Semiconductor Nanowire Homojunctions (Adv. Mater. 4/2014). Advanced Materials, 2014, 26, 663-663.	11.1	1
190	A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. Journal of Materials Chemistry C , 2013 , 1 , 4640 .	2.7	193
191	New emissive organic molecule based on pyrido [3,4-g] isoquinoline framework: synthesis and fluorescence tuning as well as optical waveguide behavior. Tetrahedron, 2013, 69, 2687-2692.	1.0	18
192	Selfâ€Assembled Organic Crystalline Microrings as Active Whisperingâ€Galleryâ€Mode Optical Resonators. Advanced Optical Materials, 2013, 1, 357-361.	3.6	47
193	Synthesis and applications of organic nanorods, nanowires and nanotubes. Annual Reports on the Progress of Chemistry Section C, 2013, 109, 211.	4.4	49
194	Embedded Branchâ€Like Organic/Metal Nanowire Heterostructures: Liquidâ€Phase Synthesis, Efficient Photonâ€Plasmon Coupling, and Optical Signal Manipulation. Advanced Materials, 2013, 25, 2784-2788.	11.1	40
195	Recent Advances in Organic Oneâ€Dimensional Composite Materials: Design, Construction, and Photonic Elements for Information Processing. Advanced Materials, 2013, 25, 3627-3638.	11.1	77
196	Controlling the Structures and Photonic Properties of Organic Nanomaterials by Molecular Design. Angewandte Chemie - International Edition, 2013, 52, 8713-8717.	7.2	180
197	Self-Assembly Solid-State Enhanced Red Emission of Quinolinemalononitrile: Optical Waveguides and Stimuli Response. ACS Applied Materials & Stimuli Response.	4.0	183

Nanowire Heterostructures: Embedded Branchâ€Like Organic/Metal Nanowire Heterostructures:
Liquidâ€Phase Synthesis, Efficient Photonâ€Plasmon Coupling, and Optical Signal Manipulation (Adv.) Tj ETQq0 0 @rgBT /Overlock 10 T

#	Article	IF	Citations
199	Manipulation of Light Flows in Organic Colorâ€Graded Microstructures towards Integrated Photonic Heterojunction Devices. Advanced Materials, 2013, 25, 2854-2859.	11.1	65
200	Electrogenerated upconverted emission from doped organic nanowires. Chemical Communications, 2012, 48, 85-87.	2.2	20
201	Controlling growth of molecular crystal aggregates for efficient optical waveguides. Chemical Communications, 2012, 48, 9011.	2.2	39
202	Photonic applications of one-dimensional organic single-crystalline nanostructures: optical waveguides and optically pumped lasers. Journal of Materials Chemistry, 2012, 22, 4136-4140.	6.7	76
203	Nano- and microstructured gold tubes for surface-enhanced Raman scattering by vapor-induced strain of thin films. Journal of Materials Chemistry, 2012, 22, 19202.	6.7	1
204	Optical Modulation Based on Direct Photonâ€Plasmon Coupling in Organic/Metal Nanowire Heterojunctions. Advanced Materials, 2012, 24, 5681-5686.	11.1	64
205	Chemical Sensors: Hydrogen Peroxide Vapor Sensing with Organic Core/Sheath Nanowire Optical Waveguides (Adv. Mater. 35/2012). Advanced Materials, 2012, 24, OP186.	11.1	1
206	Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. Nanoscale, 2012, 4, 6235.	2.8	138
207	Tuning Growth of Low-Dimensional Organic Nanostructures for Efficient Optical Waveguide Applications. Journal of Physical Chemistry C, 2012, 116, 14134-14138.	1.5	32
208	Wire-on-Wire Growth of Fluorescent Organic Heterojunctions. Journal of the American Chemical Society, 2012, 134, 2880-2883.	6.6	133
209	Exciton Polaritons in 1D Organic Nanocrystals. Advanced Functional Materials, 2012, 22, 1330-1332.	7.8	28
210	Polymorphismâ€Dependent Emission for Di(pâ€methoxylphenyl)dibenzofulvene and Analogues: Optical Waveguide/Amplified Spontaneous Emission Behaviors. Advanced Functional Materials, 2012, 22, 4862-4872.	7.8	220
211	Coaxial Organic pâ€n Heterojunction Nanowire Arrays: Oneâ€Step Synthesis and Photoelectric Properties. Advanced Materials, 2012, 24, 2332-2336.	11.1	88
212	Hydrogen Peroxide Vapor Sensing with Organic Core/Sheath Nanowire Optical Waveguides. Advanced Materials, 2012, 24, OP194-9, OP186.	11.1	81
213	Electrogenerated Chemiluminescence of Metal–Organic Complex Nanowires: Reduced Graphene Oxide Enhancement and Biosensing Application. Advanced Materials, 2012, 24, 4745-4749.	11.1	61
214	Photonics: One-Dimensional Organic Photonic Heterostructures: Rational Construction and Spatial Engineering of Excitonic Emission (Adv. Mater. 13/2012). Advanced Materials, 2012, 24, 1622-1622.	11.1	0
215	Controlled Synthesis of Bulk Polymer Nanocomposites with Tunable Second Order Nonlinear Optical Properties. Advanced Materials, 2012, 24, 2249-2253.	11.1	28
216	Oneâ€Dimensional Organic Photonic Heterostructures: Rational Construction and Spatial Engineering of Excitonic Emission. Advanced Materials, 2012, 24, 1703-1708.	11.1	68

#	Article	IF	Citations
217	Optical waveguides at micro/nanoscale based on functional small organic molecules. Physical Chemistry Chemical Physics, 2011, 13, 9060.	1.3	156
218	Two-Photon Pumped Lasing in Single-Crystal Organic Nanowire Exciton Polariton Resonators. Journal of the American Chemical Society, 2011, 133, 7276-7279.	6.6	221
219	Tunable two-photon pumped lasing from alloyed semiconductor nanoribbons. Journal of Materials Chemistry, 2011, 21, 4837.	6.7	8
220	Organic composite nanomaterials: energy transfers and tunable luminescent behaviors. New Journal of Chemistry, 2011, 35, 973.	1.4	50
221	Construction of an organic crystal structural model based on combined electron and powder X-ray diffraction data and the charge flipping algorithm. Ultramicroscopy, 2011, 111, 812-816.	0.8	4
222	Selfâ€Modulated White Light Outcoupling in Doped Organic Nanowire Waveguides via the Fluctuations of Singlet and Triplet Excitons During Propagation. Advanced Materials, 2011, 23, 1380-1384.	11.1	74
223	Optical properties of one-dimensional nanomaterials based on small organic molecules. Scientia Sinica Chimica, 2011, 41, 1240-1256.	0.2	1
224	Delayed Fluorescent Emission from Pyrene Doped Phenanthrene Nanoparticles Based on Tripletâ€triplet Energy Transfer. Chinese Journal of Chemistry, 2010, 28, 2103-2108.	2.6	4
225	Construction and Optoelectronic Properties of Organic One-Dimensional Nanostructures. Accounts of Chemical Research, 2010, 43, 409-418.	7.6	398
226	Patterned Growth of Vertically Aligned Organic Nanowire Waveguide Arrays. ACS Nano, 2010, 4, 1630-1636.	7. 3	138
227	Detection of chemical vapors with tunable emission of binary organic nanobelts. Physical Chemistry Chemical Physics, 2010, 12, 12935.	1.3	30
228	Organic core–shell nanostructures: microemulsion synthesis and upconverted emission. Chemical Communications, 2010, 46, 4959.	2.2	46
229	Vertical Organic Nanowire Arrays: Controlled Synthesis and Chemical Sensors. Journal of the American Chemical Society, 2009, 131, 3158-3159.	6.6	155
230	Coreâ^Shell Nanopillars of Fullerene C ₆₀ /C ₇₀ Loading with Colloidal Au Nanoparticles: A Raman Scattering Investigation. Journal of Physical Chemistry A, 2009, 113, 9612-9616.	1.1	15
231	Optical Waveguide Based on Crystalline Organic Microtubes and Microrods. Angewandte Chemie - International Edition, 2008, 47, 7301-7305.	7.2	223
232	Nanowire Waveguides and Ultraviolet Lasers Based on Small Organic Molecules. Advanced Materials, 2008, 20, 1661-1665.	11.1	271
233	Lowâ€Dimensional Nanomaterials Based on Small Organic Molecules: Preparation and Optoelectronic Properties. Advanced Materials, 2008, 20, 2859-2876.	11.1	384
234	Photoluminescence quenching of conjugated polymer nanocomposites for gamma ray detection. Nanotechnology, 2008, 19, 505503.	1.3	24

#	Article	IF	CITATIONS
235	Fluorescence resonance energy transfer in conjugated polymer composites for radiation detection. Physical Chemistry Chemical Physics, 2008, 10, 1848.	1.3	19
236	Switch from Intra- to Intermolecular H-Bonds by Ultrasound: Induced Gelation and Distinct Nanoscale Morphologies. Langmuir, 2008, 24, 7635-7638.	1.6	62
237	A facile route to bulk high-Z polymer composites for gamma ray scintillation. Chemical Communications, 2008, , 6008.	2.2	13
238	Polymer Composites for Radiation Detection: Diiodobenzene and light emitting polymer molecular solutions for gamma detection. Materials Research Society Symposia Proceedings, 2007, 1038, 1.	0.1	1
239	Modulation of a fluorescence switch based on photochromic spirooxazine in composite organic nanoparticles. Nanotechnology, 2007, 18, 145707.	1.3	30
240	Fabrication and Size-Dependent Optical Properties of Copper/Lophine Core/Shell Nanocomposites. Journal of Nanoscience and Nanotechnology, 2007, 7, 1021-1027.	0.9	10
241	Organic nanocrystals with tunable morphologies and optical properties prepared through a sonication technique. Physical Chemistry Chemical Physics, 2006, 8, 3300.	1.3	37
242	Fabrication, structural characterization and photoluminescence of single-crystal ZnxCd1â^'xS zigzag nanowires. Nanotechnology, 2006, 17, 4644-4649.	1.3	40
243	2,4,5-Triphenylimidazole Nanowires with Fluorescence Narrowing Spectra Prepared through the Adsorbent-Assisted Physical Vapor Deposition Method. Chemistry of Materials, 2006, 18, 2302-2306.	3.2	71
244	Single Crystalline Submicrotubes from Small Organic Molecules. Chemistry of Materials, 2005, 17, 6430-6435.	3.2	110
245	Organoplatinum(II) Cruciform: A Versatile Building Block to Fabricate 2D Microcrystals with Fullâ€Color and White Phosphorescence and Anisotropic Photon Transport. Angewandte Chemie, 0, , .	1.6	0
246	Selective, Anisotropic, or Consistent Polarizedâ€Photon Outâ€Coupling of 2D Organic Microcrystals. Angewandte Chemie, 0, , .	1.6	0
247	Defect engineering in two-dimensional perovskite nanowire arrays by europium(<scp>iii</scp>) doping towards high-performance photodetection. Chemical Communications, 0, , .	2.2	1