List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4468325/publications.pdf Version: 2024-02-01

		28274	22166
168	13,810	55	113
papers	citations	h-index	g-index
171	171	171	11875
all docs	docs citations	times ranked	citing authors

WELL SONG

#	Article	IF	CITATIONS
1	The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48, 788-796.	10.3	1,582
2	Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon, 2013, 65, 124-139.	10.3	1,009
3	Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption. ACS Applied Materials & Interfaces, 2012, 4, 6949-6956.	8.0	823
4	Prestoring Lithium into Stable 3D Nickel Foam Host as Dendriteâ€Free Lithium Metal Anode. Advanced Functional Materials, 2017, 27, 1700348.	14.9	686
5	Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon, 2014, 66, 67-76.	10.3	473
6	Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance. Angewandte Chemie - International Edition, 2012, 51, 6498-6501.	13.8	356
7	High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Applied Physics Letters, 2009, 94, .	3.3	333
8	Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon, 2014, 77, 130-142.	10.3	271
9	Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon, 2018, 127, 209-217.	10.3	268
10	Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon, 2015, 93, 151-160.	10.3	213
11	Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. Journal of Materials Chemistry A, 2015, 3, 2097-2107.	10.3	208
12	High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scripta Materialia, 2009, 61, 201-204.	5.2	204
13	Interfacial Engineering of Carbon Nanofiber–Graphene–Carbon Nanofiber Heterojunctions in Flexible Lightweight Electromagnetic Shielding Networks. ACS Applied Materials & Interfaces, 2014, 6, 10516-10523.	8.0	198
14	Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon, 2016, 100, 109-117.	10.3	195
15	Flexible Stable Solid tate Alâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1806799.	14.9	177
16	Rechargeable ultrahigh-capacity tellurium–aluminum batteries. Energy and Environmental Science, 2019, 12, 1918-1927.	30.8	172
17	Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. Journal of Materials Chemistry C, 2014, 2, 5057-5064.	5.5	159
18	Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochimica Acta, 2013, 105, 299-304.	5.2	155

#	Article	IF	CITATIONS
19	Unusual continuous dual absorption peaks in Ca-doped BiFeO ₃ nanostructures for broadened microwave absorption. Nanoscale, 2016, 8, 10415-10424.	5.6	147
20	Nonaqueous Rechargeable Aluminum Batteries: Progresses, Challenges, and Perspectives. Chemical Reviews, 2021, 121, 4903-4961.	47.7	147
21	Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding. ACS Applied Materials & Interfaces, 2017, 9, 36119-36129.	8.0	135
22	Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Composites Science and Technology, 2018, 162, 206-214.	7.8	128
23	Hollow core–shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. Nanoscale, 2014, 6, 3138-3142.	5.6	126
24	Electro–Chemo–Mechanical Issues at the Interfaces in Solidâ€ S tate Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1900950.	14.9	124
25	Hollow Core–Shell SnO ₂ /C Fibers as Highly Stable Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 21472-21478.	8.0	123
26	Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: Dielectric properties, electromagnetic interference shielding and microwave absorption. Materials Research Bulletin, 2012, 47, 1747-1754.	5.2	122
27	Boron Nitride Nanomaterials for Thermal Management Applications. ChemPhysChem, 2015, 16, 1339-1346.	2.1	119
28	Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. Carbon, 2015, 82, 337-345.	10.3	117
29	In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field. Energy Storage Materials, 2018, 11, 118-126.	18.0	107
30	Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon, 2017, 111, 658-666.	10.3	104
31	Rational design of graphene/porous carbon aerogels for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10895-10903.	10.3	103
32	A wearable microwave absorption cloth. Journal of Materials Chemistry C, 2017, 5, 2432-2441.	5.5	100
33	Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites. Journal of Materials Chemistry C, 2013, 1, 1846.	5.5	98
34	Flexible Graphene–Graphene Composites of Superior Thermal and Electrical Transport Properties. ACS Applied Materials & Interfaces, 2014, 6, 15026-15032.	8.0	97
35	Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries. Electrochimica Acta, 2014, 132, 538-544.	5.2	96
36	Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chemical Engineering Journal, 2018, 344, 342-352.	12.7	90

#	Article	IF	CITATIONS
37	Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology, 2013, 24, 115708.	2.6	87
38	A novel dual-graphite aluminum-ion battery. Energy Storage Materials, 2018, 12, 119-127.	18.0	86
39	Ultrathin Flexible Carbon Fiber Reinforced Hierarchical Metastructure for Broadband Microwave Absorption with Nano Lossy Composite and Multiscale Optimization. ACS Applied Materials & Interfaces, 2018, 10, 44731-44740.	8.0	86
40	Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells. ACS Applied Materials & Interfaces, 2017, 9, 43179-43187.	8.0	84
41	Dense graphene papers: Toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density. Energy Storage Materials, 2018, 13, 103-111.	18.0	81
42	Ultraâ€Lightweight 3D Carbon Current Collectors: Constructing Allâ€Carbon Electrodes for Stable and High Energy Density Dualâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1801439.	19.5	80
43	Polymer/carbon nanocomposites for enhanced thermal transport properties – carbon nanotubes versus graphene sheets as nanoscale fillers. Journal of Materials Chemistry, 2012, 22, 17133.	6.7	77
44	Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technology, 2013, 237, 309-313.	4.2	75
45	Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries. Journal of Membrane Science, 2015, 486, 21-28.	8.2	73
46	Biomass derivative/graphene aerogels for binder-free supercapacitors. Energy Storage Materials, 2016, 3, 113-122.	18.0	72
47	Rechargeable Nickel Telluride/Aluminum Batteries with High Capacity and Enhanced Cycling Performance. ACS Nano, 2020, 14, 3469-3476.	14.6	70
48	A Versatile Strategy toward Binary Three-Dimensional Architectures Based on Engineering Graphene Aerogels with Porous Carbon Fabrics for Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 4257-4264.	8.0	66
49	High-temperature dielectric properties and enhanced temperature-response attenuation of β-MnO2 nanorods. Applied Physics Letters, 2008, 93, 223112.	3.3	65
50	Hierarchical porous reduced graphene oxide/SnO 2 networks as highly stable anodes for lithium-ion batteries. Electrochimica Acta, 2016, 207, 9-15.	5.2	65
51	Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites. Ceramics International, 2013, 39, 5979-5983.	4.8	63
52	Ultrathin multifunctional carbon/glass fiber reinforced lossy lattice metastructure for integrated design of broadband microwave absorption and effective load bearing. Carbon, 2019, 144, 449-456.	10.3	62
53	A universal permittivity-attenuation evaluation diagram for accelerating design of dielectric-based microwave absorption materials: A case of graphene-based composites. Carbon, 2017, 118, 86-97.	10.3	61
54	High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale, 2019, 11, 12537-12546.	5.6	61

#	Article	IF	CITATIONS
55	Ionic Conductive Gels for Optically Manipulatable Microwave Stealth Structures. Advanced Science, 2020, 7, 1902162.	11.2	57
56	Scalable fabrication of exceptional 3D carbon networks for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16104-16111.	10.3	55
57	Tuning broadband microwave absorption via highly conductive Fe3O4/graphene heterostructural nanofillers. Materials Research Bulletin, 2015, 72, 316-323.	5.2	55
58	A strategy for scalable synthesis of Li4Ti5O12/reduced graphene oxide toward high rate lithium-ion batteries. Electrochemistry Communications, 2014, 40, 1-4.	4.7	54
59	Gel electrolytes with a wide potential window for high-rate Al-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20348-20356.	10.3	54
60	Stable High apacity Organic Aluminum–Porphyrin Batteries. Advanced Energy Materials, 2021, 11, 2101446.	19.5	54
61	Microwave responses and general model of nanotetraneedle ZnO: Integration of interface scattering, microcurrent, dielectric relaxation, and microantenna. Journal of Applied Physics, 2010, 107, 054304.	2.5	53
62	Weather-Manipulated Smart Broadband Electromagnetic Metamaterials. ACS Applied Materials & Interfaces, 2018, 10, 40815-40823.	8.0	53
63	Facile Fabrication of Binder-free Metallic Tin Nanoparticle/Carbon Nanofiber Hybrid Electrodes for Lithium-ion Batteries. Electrochimica Acta, 2015, 153, 468-475.	5.2	50
64	Customized Kirigami Electrodes for Flexible and Deformable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 780-788.	8.0	50
65	Active Reconfigurable Tristable Squareâ€īwist Origami. Advanced Functional Materials, 2020, 30, 1909087.	14.9	50
66	High dielectric loss and microwave absorption behavior of multiferroic BiFeO 3 ceramic. Ceramics International, 2013, 39, 7241-7246.	4.8	49
67	Three-dimensional porous carbon-coated graphene composite as high-stable and long-life anode for sodium-ion batteries. Chemical Engineering Journal, 2017, 316, 645-654.	12.7	49
68	Active cyano groups to coordinate AlCl2+ cation for rechargeable aluminum batteries. Energy Storage Materials, 2020, 33, 250-257.	18.0	49
69	Flexible Semitransparent Energy Harvester with High Pressure Sensitivity and Power Density Based on Laterally Aligned PZT Single-Crystal Nanowires. ACS Applied Materials & Interfaces, 2017, 9, 24696-24703.	8.0	48
70	Effect of alumina on triethylene glycol diacetate-2-propenoic acid butyl ester composite polymer electrolytes for flexible lithium ion batteries. Journal of Power Sources, 2015, 279, 405-412.	7.8	47
71	Failure mechanisms of 2D silicon film anodes: <i>in situ</i> observations and simulations on crack evolution. Chemical Communications, 2018, 54, 3997-4000.	4.1	47
72	Engineering graphene aerogels with porous carbon of large surface area for flexible all-solid-state supercapacitors. Electrochimica Acta, 2015, 165, 92-97.	5.2	46

#	Article	IF	CITATIONS
73	Integrated design of component and configuration for a flexible and ultrabroadband radar absorbing composite. Composites Science and Technology, 2019, 176, 81-89.	7.8	46
74	Twistable Origami and Kirigami: from Structure-Guided Smartness to Mechanical Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 3450-3458.	8.0	45
75	Threeâ€Dimensional Interconnected Network of Grapheneâ€Wrapped Silicon/Carbon Nanofiber Hybrids for Binderâ€Free Anodes in Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1699-1706.	3.4	44
76	High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors. Scientific Reports, 2015, 5, 15388.	3.3	44
77	Supercritical fluid conversion of graphene oxides. Journal of Supercritical Fluids, 2012, 61, 206-211.	3.2	42
78	Cu-Doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^îî} as a highly active cathode for solid oxide electrolytic cells. Chemical Communications, 2019, 55, 8009-8012.	4.1	42
79	Polymeric nanocomposites with graphene sheets – Materials and device for superior thermal transport properties. Polymer, 2012, 53, 3910-3916.	3.8	41
80	Effect of polyacrylonitrile on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes with interpenetrating crosslinked network for flexible lithium ion batteries. Journal of Power Sources, 2015, 295, 139-148.	7.8	40
81	Mg-substitution for promoting magnetic and ferroelectric properties of BiFeO3 multiferroic nanoparticles. Materials Letters, 2016, 175, 207-211.	2.6	40
82	Flexible, high-voltage and free-standing composite polymer electrolyte membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for lithium-ion batteries. Journal of Membrane Science, 2015, 492, 490-496.	8.2	38
83	Confined Porous Graphene/SnO _{<i>x</i>} Frameworks within Polyaniline-Derived Carbon as Highly Stable Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2016, 8, 13410-13417.	8.0	38
84	Geometric design of micron-sized crystalline silicon anodes through in situ observation of deformation and fracture behaviors. Journal of Materials Chemistry A, 2017, 5, 12793-12802.	10.3	38
85	Highly stable GeO _x @C core–shell fibrous anodes for improved capacity in lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19907-19912.	10.3	37
86	A general model of dielectric constant for porous materials. Applied Physics Letters, 2016, 108, .	3.3	37
87	Promoting the thermal transport via understanding the intrinsic relation between thermal conductivity and interfacial contact probability in the polymeric composites with hybrid fillers. Composites Part B: Engineering, 2022, 232, 109613.	12.0	37
88	Tin nanoparticles embedded in porous N-doped graphene-like carbon network as high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 699, 730-737.	5.5	36
89	Modified separators for rechargeable high-capacity selenium-aluminium batteries. Chemical Engineering Journal, 2020, 385, 123452.	12.7	36
90	Threeâ€Dimensional Porous Carbon–Silicon Frameworks as Highâ€Performance Anodes for Lithiumâ€Ion Batteries. ChemElectroChem, 2014, 1, 2124-2130.	3.4	35

#	Article	IF	CITATIONS
91	A green electrochemical transformation of inferior coals to crystalline graphite for stable Li-ion storage. Journal of Materials Chemistry A, 2019, 7, 7533-7540.	10.3	35
92	Bioinspired Controllable Electroâ€Chemomechanical Coloration Films. Advanced Functional Materials, 2019, 29, 1806383.	14.9	34
93	Enhanced piezoelectric and mechanical properties of ZnO whiskers and Sb2O3 co-modified lead zirconate titanate composites. Materials Letters, 2010, 64, 1798-1801.	2.6	31
94	Facile fabrication of safe and robust polyimide fibrous membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester gel electrolytes for lithium-ion batteries. Electrochimica Acta, 2014, 149, 176-185.	5.2	29
95	Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band. Applied Physics A: Materials Science and Processing, 2014, 116, 1779-1783.	2.3	28
96	Interconnected TiOx/carbon hybrid framework incorporated silicon for stable lithium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 12709-12717.	10.3	27
97	All-carbon positive electrodes for stable aluminium batteries. Journal of Energy Chemistry, 2020, 42, 17-26.	12.9	27
98	From nanoscale to macroscale: Engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption. Applied Surface Science, 2018, 439, 176-185.	6.1	26
99	Metal–organic framework derived hollow porous CuO–CuCo ₂ O ₄ dodecahedrons as a cathode catalyst for Li–O ₂ batteries. RSC Advances, 2019, 9, 16288-16295.	3.6	26
100	Nonmetal Current Collectors: The Key Component for Highâ€Energyâ€Đensity Aluminum Batteries. Advanced Materials, 2020, 32, e2001212.	21.0	26
101	Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis. Journal of Cleaner Production, 2020, 261, 121314.	9.3	26
102	Enhanced electrochemical performance of Li4Ti5O12 as anode material for lithium-ion batteries with different carbons as support. Journal of Alloys and Compounds, 2015, 646, 189-194.	5.5	25
103	Bismuth ferrite: an abnormal perovskite with electrochemical extraction of ions from A site. Journal of Materials Chemistry A, 2019, 7, 12176-12190.	10.3	25
104	Liquid gallium as long cycle life and recyclable negative electrode for Al-ion batteries. Chemical Engineering Journal, 2020, 391, 123594.	12.7	25
105	Bidirectional Planar Flexible Snakeâ€Origami Batteries. Advanced Science, 2021, 8, e2101372.	11.2	24
106	Light-weight nanocomposite materials with enhanced thermal transport properties. Nanotechnology Reviews, 2012, 1, 363-376.	5.8	22
107	Nano-scale and micron-scale manganese dioxide vs corresponding paraffin composites for electromagnetic interference shielding and microwave absorption. Materials Research Bulletin, 2014, 51, 277-286.	5.2	22
108	Exceptional electrical and thermal transport properties in tunable all-graphene papers. RSC Advances, 2015, 5, 75239-75247.	3.6	22

#	Article	IF	CITATIONS
109	Scattering mechanisms and anomalous conductivity of heavily N-doped 3C-SiC in ultraviolet region. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2286-2289.	2.1	21
110	Graphene-supported Pd catalysts for reversible hydrogen storage in LiBH4. Journal of Alloys and Compounds, 2013, 564, 84-90.	5.5	21
111	Lithium redistribution around the crack tip of lithium-ion battery electrodes. Scripta Materialia, 2019, 167, 11-15.	5.2	21
112	Cellulose-derived flake graphite as positive electrodes for Al-ion batteries. Sustainable Energy and Fuels, 2019, 3, 3561-3568.	4.9	21
113	Electrocatalysis for Continuous Multiâ€6tep Reactions in Quasiâ€6olidâ€6tate Electrolytes Towards Highâ€Energy and Long‣ife Aluminum–Sulfur Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
114	Dynamic compressive response and failure behavior of fiber polymer composites embedded with tetra-needle-like ZnO nanowhiskers. Composite Structures, 2010, 92, 2984-2991.	5.8	20
115	Tetra-needle zinc oxide/silica composites: High-temperature dielectric properties at X-band. Solid State Communications, 2013, 154, 64-68.	1.9	20
116	In situ optical observations and simulations on defect induced failure of silicon island anodes. Journal of Power Sources, 2018, 405, 101-105.	7.8	20
117	Cu-Al Composite as the Negative Electrode for Long-life Al-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3539-A3545.	2.9	20
118	Synthesis of TiO _{<i>x</i>} Nanotubular Arrays with Oxygen Defects as Highâ€Performance Anodes for Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 421-426.	3.4	19
119	Al homogeneous deposition induced by N-containing functional groups for enhanced cycling stability of Al-ion battery negative electrode. Nano Research, 2021, 14, 646-653.	10.4	19
120	A Review of Integrated Systems Based on Perovskite Solar Cells and Energy Storage Units: Fundamental, Progresses, Challenges, and Perspectives. Advanced Science, 2021, 8, 2100552.	11.2	19
121	Internal field study of 21700 battery based on long-life embedded wireless temperature sensor. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 895-901.	3.4	19
122	Photo-electrochemical enhanced mechanism enables a fast-charging and high-energy aqueous Al/MnO2 battery. Energy Storage Materials, 2022, 45, 586-594.	18.0	19
123	Stable Quasi‧olid‧tate Aluminum Batteries. Advanced Materials, 2022, 34, e2104557.	21.0	19
124	Thickness evolution of graphite-based cathodes in the dual ion batteries via in operando optical observation. Journal of Energy Chemistry, 2019, 29, 122-128.	12.9	18
125	Visualizing two-dimensional internal temperature distribution in cylindrical Li-ion cells. Journal of Power Sources, 2020, 446, 227343.	7.8	18
126	Experimental demonstration of invisible electromagnetic impedance matching cylindrical transformation optics cloak shell. Journal of Optics (United Kingdom), 2018, 20, 045608.	2.2	17

#	Article	IF	CITATIONS
127	Preparation and properties of ZnO nano-whiskers. Science in China Series D: Earth Sciences, 2008, 51, 1433-1438.	0.9	16
128	Noncovalent Interactions of Derivatized Pyrenes with Metallic and Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 11010-11015.	3.1	16
129	Alcohol-dependent environments for fabricating graphene aerogels toward supercapacitors. Electrochimica Acta, 2015, 173, 1-6.	5.2	16
130	Graphene oxide foams: the simplest carbon-air prototypes for unique variable dielectrics. Journal of Materials Chemistry C, 2017, 5, 3397-3407.	5.5	16
131	Effect of Defects on Diffusion Behaviors of Lithium-Ion Battery Electrodes: In Situ Optical Observation and Simulation. ACS Applied Materials & Interfaces, 2018, 10, 43623-43630.	8.0	16
132	Smart mechano-hydro-dielectric coupled hybrid sponges for multifunctional sensors. Sensors and Actuators B: Chemical, 2018, 270, 239-246.	7.8	16
133	A dual-protection strategy using CMK-3 coated selenium and modified separators for high-energy Al–Se batteries. Inorganic Chemistry Frontiers, 2021, 8, 1030-1038.	6.0	16
134	Enhanced rate performance of lithium titanium oxide anode material by bromine doping. Ionics, 2015, 21, 3169-3176.	2.4	15
135	Stable wide-temperature and low volume expansion Al batteries: Integrating few-layer graphene with multifunctional cobalt boride nanocluster as positive electrode. Nano Research, 2020, 13, 419-429.	10.4	15
136	Assembling carbon fiber–graphene–carbon fiber hetero-structures into 1D–2D–1D junction fillers and patterned structures for improved microwave absorption. Journal Physics D: Applied Physics, 2017, 50, 135303.	2.8	14
137	Ultrabroadband Three-Dimensional Printed Radial Perfectly Symmetric Gradient Honeycomb All-Dielectric Dual-Directional Lightweight Planar Luneburg Lens. ACS Applied Materials & Interfaces, 2018, 10, 38404-38409.	8.0	14
138	Electrochemomechanical coupled behaviors of deformation and failure in electrode materials for lithium-ion batteries. Science China Technological Sciences, 2019, 62, 1277-1296.	4.0	14
139	An in situ system for simultaneous stress measurement and optical observation of silicon thin film electrodes. Journal of Power Sources, 2019, 444, 227227.	7.8	14
140	A highly conductive self-assembled multilayer graphene nanosheet film for electronic tattoos in the applications of human electrophysiology and strain sensing. Nanoscale, 2021, 13, 10798-10806.	5.6	14
141	Mechano-electrochemical perspectives on flexible lithium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1019-1036.	4.9	14
142	Surface Evolution of Aluminum Electrodes in Non-Aqueous Aluminum Batteries. Journal of the Electrochemical Society, 2020, 167, 130530.	2.9	13
143	Thick electrodes upon biomass-derivative carbon current collectors: High-areal capacity positive electrodes for aluminum-ion batteries. Electrochimica Acta, 2019, 323, 134805.	5.2	12
144	Role of the binder in the mechanical integrity of micro-sized crystalline silicon anodes for Li-Ion batteries. Journal of Power Sources, 2020, 465, 228290.	7.8	12

#	Article	IF	CITATIONS
145	Stable Interface between a NaCl–AlCl ₃ Melt and a Liquid Ga Negative Electrode for a Long-Life Stationary Al-Ion Energy Storage Battery. ACS Applied Materials & Interfaces, 2020, 12, 15063-15070.	8.0	12
146	Tailoring the Electrochemical Behaviors of Bismuth Ferrite Using Ca Ion Doping. Frontiers in Materials, 2020, 7, .	2.4	12
147	Effects of concentration of chloride anion on the morphology and microstructure of precipitates from lead nitrate solutions. CrystEngComm, 2010, 12, 1790.	2.6	11
148	Double carbon decorated lithium titanate as anode material with high rate performance for lithium-ion batteries. Progress in Natural Science: Materials International, 2016, 26, 283-288.	4.4	11
149	Hexagon-Twist Frequency Reconfigurable Antennas via Multi-Material Printed Thermo-Responsive Origami Structures. Frontiers in Materials, 2020, 7, .	2.4	11
150	A 4D x-ray computer microtomography for high-temperature electrochemistry. Science Advances, 2022, 8, eabm5678.	10.3	11
151	In-situ thermography revealing the evolution of internal short circuit of lithium-ion batteries. Journal of Power Sources, 2022, 540, 231602.	7.8	11
152	Quantificational 4D Visualization of Industrial Electrodeposition. Advanced Science, 2021, 8, e2101373.	11.2	9
153	An all-dielectric 3D Luneburg lens constructed by common-vertex coaxial circular cones. Journal Physics D: Applied Physics, 2020, 53, 015110.	2.8	7
154	Reconfigurable force–displacement profiles of the square-twist origami. International Journal of Solids and Structures, 2022, 241, 111471.	2.7	7
155	Depolarization Behavior of Ti Deposition at Liquid Metal Cathodes in a NaCl-KCl-KF Melt. Journal of the Electrochemical Society, 2019, 166, E401-E406.	2.9	6
156	Batteries: Prestoring Lithium into Stable 3D Nickel Foam Host as Dendriteâ€Free Lithium Metal Anode (Adv. Funct. Mater. 24/2017). Advanced Functional Materials, 2017, 27, .	14.9	5
157	Strain Engineering in Electrochemical Activity and Stability of BiFeO ₃ Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 4104-4111.	4.6	5
158	Metallic origami metastructures for high-temperature low electromagnetic reflectivity. Journal of Materials Science, 2019, 54, 6425-6433.	3.7	4
159	Inâ€situ heat generation measurement of the anode and cathode in a singleâ€layer lithium ion battery cell. International Journal of Energy Research, 2020, 44, 9141-9148.	4.5	4
160	Understanding Enhanced Ionic Conductivity in Composite Solid‧tate Electrolyte in a Wide Frequency Range of 10 ^{–2} –10 ¹⁰ ÂHz. Advanced Science, 2022, , 2200213.	11.2	4
161	Temperature field evolution of cylindrical battery: In-situ visualizing experiments and high fidelity internal morphology simulations. Journal of Power Sources, 2021, 499, 229910.	7.8	3
162	Highly efficient achromatic subdiffraction focusing lens in the near field with large numerical aperture. Photonics Research, 2021, 9, 2088.	7.0	3

#	Article	IF	CITATIONS
163	Electrocatalysis for Continuous Multiâ€Step Reactions in Quasiâ€Solidâ€State Electrolytes Towards Highâ€Energy and Longâ€Life Aluminum–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	2.0	3
164	Towards nanostructured boron nitride films. Journal of Materials Science: Materials in Electronics, 2017, 28, 9048-9055.	2.2	2
165	Insight into Macroscopic Metal-Assisted Chemical Etching for Silicon Nanowires. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 1019-1028.	4.9	2
166	Electrochemically manipulating BiFeO 3 particles via Bi 3+ ion extraction. Journal of the American Ceramic Society, 2021, 104, 3354-3364.	3.8	1
167	An ultrahigh efficiency electrochemical actuator. Extreme Mechanics Letters, 2022, 53, 101691.	4.1	1
168	A brief review on mechanical designs for 4D printing. , 2022, 01, .		1