Rosario Francisco-Velilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4468315/publications.pdf

Version: 2024-02-01

26 papers

724 citations

623734 14 h-index 25 g-index

29 all docs 29 docs citations

times ranked

29

804 citing authors

#	Article	IF	CITATIONS
1	Autosomal Recessive Cerebellar Atrophy and Spastic Ataxia in Patients With Pathogenic Biallelic Variants in GEMIN5. Frontiers in Cell and Developmental Biology, 2022, 10, 783762.	3.7	10
2	Picornavirus translation strategies. FEBS Open Bio, 2022, 12, 1125-1141.	2.3	21
3	Functional and structural deficiencies of Gemin5 variants associated with neurological disorders. Life Science Alliance, 2022, 5, e202201403.	2.8	7
4	Identification of RNA-Binding Proteins Associated to RNA Structural Elements. Methods in Molecular Biology, 2021, 2323, 109-119.	0.9	1
5	RNA-Binding Proteins at the Host-Pathogen Interface Targeting Viral Regulatory Elements. Viruses, 2021, 13, 952.	3.3	15
6	The RBS1 domain of Gemin5 is intrinsically unstructured and interacts with RNA through conserved Arg and aromatic residues. RNA Biology, 2021, 18, 496-506.	3.1	7
7	Structural basis for the dimerization of Gemin5 and its role in protein recruitment and translation control. Nucleic Acids Research, 2020, 48, 788-801.	14.5	19
8	RNA-protein coevolution study of Gemin5 uncovers the role of the PXSS motif of RBS1 domain for RNA binding. RNA Biology, 2020, 17, 1331-1341.	3.1	10
9	Emerging Roles of Gemin5: From snRNPs Assembly to Translation Control. International Journal of Molecular Sciences, 2020, 21, 3868.	4.1	24
10	Impact of RNA–Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5. BioEssays, 2019, 41, e1800241.	2.5	20
11	Rab1b and ARF5 are novel RNA-binding proteins involved in FMDV IRES–driven RNA localization. Life Science Alliance, 2019, 2, e201800131.	2.8	14
12	Ribosome-dependent conformational flexibility changes and RNA dynamics of IRES domains revealed by differential SHAPE. Scientific Reports, 2018, 8, 5545.	3 . 3	18
13	Deconstructing internal ribosome entry site elements: an update of structural motifs and functional divergences. Open Biology, 2018, 8, 180155.	3.6	15
14	The landscape of the non-canonical RNA-binding site of Gemin5 unveils a feedback loop counteracting the negative effect on translation. Nucleic Acids Research, 2018, 46, 7339-7353.	14.5	23
15	Missense mutations have unexpected consequences: The McArdle disease paradigm. Human Mutation, 2018, 39, 1338-1343.	2.5	13
16	Insights into Structural and Mechanistic Features of Viral IRES Elements. Frontiers in Microbiology, 2017, 8, 2629.	3.5	100
17	IRES Elements: Issues, Controversies and Evolutionary Perspectives. , 2016, , 547-564.		2
18	The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation. Nucleic Acids Research, 2016, 44, 8335-8351.	14.5	54

#	Article	IF	CITATIONS
19	Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control. Biomolecules, 2015, 5, 528-544.	4.0	38
20	Picornavirus IRES elements: RNA structure and host protein interactions. Virus Research, 2015, 206, 62-73.	2.2	110
21	RNA–protein interaction methods to study viral IRES elements. Methods, 2015, 91, 3-12.	3.8	24
22	Identification of novel non-canonical RNA-binding sites in Gemin5 involved in internal initiation of translation. Nucleic Acids Research, 2014, 42, 5742-5754.	14.5	47
23	RNA-Binding Proteins Impacting on Internal Initiation of Translation. International Journal of Molecular Sciences, 2013, 14, 21705-21726.	4.1	50
24	Carboxy terminal modifications of the PO protein reveal alternative mechanisms of nuclear ribosomal stalk assembly. Nucleic Acids Research, 2013, 41, 8628-8636.	14.5	11
25	<i>In vivo</i> formation of a stable pentameric (P2α/P1β)–P0–(P1α/P2β) ribosomal stalk complex in <i>Saccharomyces cerevisiae</i> . Yeast, 2010, 27, 693-704.	1.7	6
26	Role and dynamics of the ribosomal protein PO and its related trans -acting factor Mrt4 during ribosome assembly in Saccharomyces cerevisiae. Nucleic Acids Research, 2009, 37, 7519-7532.	14.5	64