Yuesong Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4467456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic removal of NO and dioxins over W-Zr-Ox/Ti-Ce-Mn-Ox from flue gas: Performance and mechanism study. Catalysis Today, 2022, 388-389, 372-382.	4.4	13
2	High-temperature selective catalytic reduction of NO with NH3: Optimization of ZrO2 and WO3 complex oxides. Fuel, 2022, 310, 122261.	6.4	8
3	Simultaneous catalytic removal of NO, mercury and chlorobenzene over WCeMnOx/TiO2–ZrO2: Performance study of microscopic morphology and phase composition. Chemosphere, 2022, 295, 133794.	8.2	18
4	NaCl induced active hcp Co nanosheet for hydrogen production and formaldehyde abatement by formaldehyde steam reforming. Chemical Engineering Journal, 2022, 433, 134600.	12.7	9
5	Recyclable regeneration of NiO/NaF catalyst: Hydrogen evolution via steam reforming of oxygen-containing volatile organic compounds. Energy Conversion and Management, 2022, 258, 115456.	9.2	12
6	High-efficiency steam reforming of methanol on the surface of a recyclable NiO/NaF catalyst for hydrogen production. Composites Part B: Engineering, 2022, 243, 110113.	12.0	19
7	Universal strategy using environment-friendly inorganic compounds for the preparation of porous carbon nitride for efficient photocatalytic hydrogen production and environmental remediation. New Journal of Chemistry, 2021, 45, 4303-4310.	2.8	1
8	An Interface Optimization Strategy for g-C ₃ N ₄ -Based S-Scheme Heterojunction Photocatalysts. Langmuir, 2021, 37, 7254-7263.	3.5	15
9	Mesoporous Feâ€N x Subâ€Microspheres for Highly Efficient Electrocatalytic Oxygen Reduction Reaction. ChemCatChem, 2021, 13, 4047-4054.	3.7	5
10	Catalytic removal of NO and chlorobenzene over Ce-Mn-W-Zr-Ox/TiO2: Performance study of hollow spheres effect. Fuel, 2021, 305, 121534.	6.4	11
11	Cobalt and nitrogen co-doped mesoporous carbon for electrochemical hydrogen peroxide sensing: the effect of graphitization. Analyst, The, 2021, 146, 2313-2320.	3.5	7
12	Layered-Template Synthesis of Graphene-like Fe-N-C Nanosheets for Highly Efficient Oxygen Reduction Reaction. Energy & Fuels, 2021, 35, 20349-20357.	5.1	5
13	Resource utilization of waste deNOx catalyst for continuous-flow catalysis by supported metal reactors. Molecular Catalysis, 2020, 480, 110634.	2.0	7
14	Resource utilization of waste V2O5-based deNOx catalysts for hydrogen production from formaldehyde and water via steam reforming. Journal of Hazardous Materials, 2020, 381, 120934.	12.4	34
15	Novel W Zr Ox/TiO2 catalyst for selective catalytic reduction of NO by NH3 at high temperature. Catalysis Today, 2020, 358, 254-262.	4.4	24
16	Novel porous ceramic sheet supported metal reactors for continuous-flow catalysis. Catalysis Today, 2020, 358, 324-332.	4.4	13
17	Hydrogen production from formaldehyde steam reforming using recyclable NiO/NaCl catalyst. Applied Surface Science, 2020, 532, 147376.	6.1	12
18	Hydrogen production from formaldehyde steam reforming using recyclable NiO/NaF catalyst. International Journal of Hydrogen Energy, 2020, 45, 28752-28763.	7.1	14

#	Article	IF	CITATIONS
19	Steam reforming of formaldehyde for generating hydrogen and coproducing carbon nanotubes for enhanced photosynthesis. Catalysis Science and Technology, 2020, 10, 4436-4447.	4.1	6
20	Smart paper transformer: new insight for enhanced catalytic efficiency and reusability of noble metal nanocatalysts. Chemical Science, 2020, 11, 2915-2925.	7.4	25
21	Component synergistic catalysis of Ce-Sn-W-Ba-Ox/TiO2 in selective catalytic reduction of NO with ammonia. Applied Surface Science, 2020, 512, 145757.	6.1	15
22	Strong interaction between Au nanoparticles and porous polyurethane sponge enables efficient environmental catalysis with high reusability. Catalysis Today, 2020, 358, 246-253.	4.4	17
23	Resource utilization of waste CeO2-based deNOx composite catalysts for hydrogen production via steam reforming. Composites Part B: Engineering, 2019, 178, 107483.	12.0	11
24	Simultaneous catalytic oxidation of CO and Hg0 over Au/TiO2 catalysts: Structure and mechanism study. Molecular Catalysis, 2019, 479, 110633.	2.0	4
25	NaCl-induced nickel–cobalt inverse spinel structure for boosting hydrogen evolution from ethyl acetate and water. Journal of Materials Chemistry A, 2019, 7, 1700-1710.	10.3	19
26	Novel TiO2 catalyst carriers with high thermostability for selective catalytic reduction of NO by NH3. Catalysis Today, 2019, 327, 279-287.	4.4	38
27	Promoting effects of lanthanum oxide on the NiO/CeO2 catalyst for hydrogen production by autothermal reforming of ethanol. Catalysis Communications, 2018, 108, 12-16.	3.3	16
28	Pyridinic N: A special group for enhancing direct decomposition reaction of NO over N-doped porous carbon. Microporous and Mesoporous Materials, 2018, 265, 98-103.	4.4	21
29	Novel CeMo _x O _y -clay hybrid catalysts with layered structure for selective catalytic reduction of NO _x by NH ₃ . RSC Advances, 2018, 8, 2586-2592.	3.6	10
30	Controllable synthesis of carbon nanotubes via autothermal reforming of ethyl acetate. Materials and Design, 2018, 141, 150-158.	7.0	9
31	Synergistic catalytic removals of NO, CO and HC over CeO 2 modified Mn-Mo-W-O x /TiO 2 -SiO 2 catalyst. Journal of Rare Earths, 2018, 36, 148-155.	4.8	14
32	Heteroatom-Doped Graphene for Efficient NO Decomposition by Metal-Free Catalysis. ACS Applied Materials & Interfaces, 2018, 10, 36202-36210.	8.0	19
33	Promotional effect of Ba additives on MnCeO _{<i>x</i>} /TiO ₂ catalysts for NH ₃ -SCR of NO at low temperature. Journal of Materials Research, 2018, 33, 2414-2422.	2.6	17
34	Key Role of Lanthanum Oxychloride: Promotional Effects of Lanthanum in NiLaO <i>_y</i> /NaCl for Hydrogen Production from Ethyl Acetate and Water. Small, 2018, 14, e1800927.	10.0	12
35	Rare earth ions (La, Nd, Sm, Gd, and Tm) regulate the catalytic performance of CeO ₂ /Al ₂ O ₃ for NH ₃ -SCR of NO. Journal of Materials Research, 2017, 32, 2438-2445.	2.6	16
36	Effect of fluorine additive on CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3. Journal of Colloid and Interface Science, 2017, 487, 401-409.	9.4	46

#	Article	IF	CITATIONS
37	Autothermal reforming of ethyl acetate for hydrogen production over Ni 3 La 7 O y /Al 2 O 3 catalyst. Energy Conversion and Management, 2017, 146, 34-42.	9.2	16
38	N-doped graphene as a potential catalyst for the direct catalytic decomposition of NO. Catalysis Communications, 2017, 94, 29-32.	3.3	19
39	The influence factors on CeSn 0.8 W 0.6 O x /TiO 2 for catalytic removals of NO, CO and C 3 H 8. Journal of Industrial and Engineering Chemistry, 2017, 51, 229-236.	5.8	12
40	Digital phase diagram and thermophysical properties of KNO 3 -NaNO 3 -Ca(NO 3) 2 ternary system for solar energy storage. Vacuum, 2017, 145, 225-233.	3.5	13
41	Ultrastrong composite film of Chitosan and silica-coated graphene oxide sheets. International Journal of Biological Macromolecules, 2017, 104, 936-943.	7.5	15
42	Effect of praseodymium additive on CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3. Journal of Rare Earths, 2016, 34, 1111-1120.	4.8	22
43	Praseodymium Oxide Modified CeO ₂ /Al ₂ O ₃ Catalyst for Selective Catalytic Reduction of NO by NH ₃ . Chinese Journal of Chemistry, 2016, 34, 1283-1290.	4.9	18
44	Promotional effects of Er incorporation in CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3. Chinese Journal of Catalysis, 2016, 37, 1521-1528.	14.0	28
45	Promotional effect of phosphorylation on CeSn0.8W0.6Ox/TiAl0.2Si0.1Oy for NH3-SCR of NO from marine diesel exhaust. Journal of Rare Earths, 2016, 34, 1010-1016.	4.8	11
46	Synergetic catalytic removal of HgO and NO over CeO2(ZrO2)/TiO2. Catalysis Communications, 2016, 82, 55-60.	3.3	28
47	Synergistic catalytic removals of NO, CO and C3H8 over CeSn0.8W0.6O /TiAl0.2Si0.1O. Fuel, 2016, 180, 727-736.	6.4	24
48	Promotional Effect of Molybdenum Additives on Catalytic Performance of CeO2/Al2O3 for Selective Catalytic Reduction of NOx. Catalysis Letters, 2016, 146, 1221-1230.	2.6	15
49	Transition metal ions regulate the catalytic performance of Ti _{0.8} M _{0.2} Ce _{0.2} O _{2+x} for the NH ₃ -SCR of NO: the acidic mechanism. RSC Advances, 2015, 5, 7597-7603.	3.6	19
50	Promotional effects of Ce4+, La3+ and Nd3+ incorporations on catalytic performance of Cu–Fe–O for decomposition of N2O. Journal of Industrial and Engineering Chemistry, 2015, 30, 98-105.	5.8	9
51	Calcination conditions and stability of supported Ni4La oxide for catalytic decomposition of N2O. RSC Advances, 2015, 5, 13212-13219.	3.6	5
52	Supported Ni–La–O _x for catalytic decomposition of N ₂ O I: component optimization and synergy. RSC Advances, 2014, 4, 29107.	3.6	29
53	Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells: A review. Applied Energy, 2013, 108, 202-217.	10.1	115
54	Regeneration of the deactivated TiO2-ZrO2-CeO2/ATS catalyst for NH3-SCR of NO in glass furnace. Journal of Rare Earths, 2013, 31, 130-136.	4.8	29

#	Article	IF	CITATIONS
55	Promotional effect of zirconium additives on Ti0.8Ce0.2O2for selective catalytic reduction of NO. Catalysis Science and Technology, 2012, 2, 589-599.	4.1	57
56	Synergetic catalysis of ceria and titania for selective reduction of NO. Journal of Rare Earths, 2012, 30, 431-436.	4.8	24
57	Deactivation mechanism of potassium additives on Ti0.8Zr0.2Ce0.2O2.4 for NH3-SCR of NO. Catalysis Science and Technology, 2012, 2, 1806.	4.1	37
58	A new hypothesis of micro-region acid sites regarding the surface acidity of binary oxides. RSC Advances, 2012, 2, 5957.	3.6	12
59	Selective adsorption for removing sulfur: a potential ultra-deep desulfurization approach of jet fuels. RSC Advances, 2012, 2, 1700-1711.	3.6	65
60	A novel catalyst of silicon cerium complex oxides for selective catalytic reduction of NO by NH3. Journal of Rare Earths, 2010, 28, 721-726.	4.8	20
61	A novel catalyst of CeO2/Al2O3 for selective catalytic reduction of NO by NH3. Catalysis Communications, 2009, 11, 20-23.	3.3	149