
Teresa Iglesias Vacas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4467362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insulin regulates neurovascular coupling through astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
2	Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation. Molecular Psychiatry, 2021, 26, 6411-6426.	7.9	13
3	CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington's disease. Science Translational Medicine, 2021, 13, eabe7104.	12.4	14
4	CDCA7 finely tunes cytoskeleton dynamics to promote lymphoma migration and invasion. Haematologica, 2020, 105, 730-740.	3.5	18
5	Differential regulation of Kidins220 isoforms in Huntington's disease. Brain Pathology, 2020, 30, 120-136.	4.1	9
6	Excitotoxic targeting of Kidins220 to the Golgi apparatus precedes calpain cleavage of Rap1-activation complexes. Cell Death and Disease, 2019, 10, 535.	6.3	11
7	Effects of Thioflavin T and GSK-3 Inhibition on Lifespan and Motility in a Caenorhabditis elegans Model of Tauopathy. Journal of Alzheimer's Disease Reports, 2019, 3, 47-57.	2.2	9
8	CDCA7 is a critical mediator of lymphomagenesis that selectively regulates anchorage-independent growth. Haematologica, 2018, 103, 1669-1678.	3.5	20
9	MAZ induces MYB expression during the exit from quiescence via the E2F site in the MYB promoter. Nucleic Acids Research, 2017, 45, 9960-9975.	14.5	13
10	Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I. Diabetes, 2017, 66, 64-74.	0.6	68
11	Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1. Nature Communications, 2017, 8, 2275.	12.8	21
12	Kidins220 Correlates with Tau inÂAlzheimer's Disease Brain andÂCerebrospinal Fluid. Journal of Alzheimer's Disease, 2016, 55, 1327-1333.	2.6	7
13	Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development. PLoS ONE, 2015, 10, e0129944.	2.5	11
14	Shoc2/Sur8 Protein Regulates Neurite Outgrowth. PLoS ONE, 2014, 9, e114837.	2.5	1
15	Protein kinase D activity controls endothelial nitric oxide synthesis. Journal of Cell Science, 2014, 127, 3360-72.	2.0	11
16	Protein Kinase D Interacts with Neuronal Nitric Oxide Synthase and Phosphorylates the Activatory Residue Serine1412. PLoS ONE, 2014, 9, e95191.	2.5	17
17	Kidins220 accumulates with tau in human Alzheimer's disease and related models: modulation of its calpain-processing by GSK3β/PP1 imbalance. Human Molecular Genetics, 2013, 22, 466-482.	2.9	32
18	The neuronal protein Kidins220/ARMS associates with ICAMâ€3 and other uropod components and regulates Tâ€cell motility. European Journal of Immunology, 2011, 41, 1035-1046.	2.9	16

TERESA IGLESIAS VACAS

#	Article	IF	CITATIONS
19	Mechanisms of protein kinase D activation in response to P2Y ₂ and P2X7 receptors in primary astrocytes. Glia, 2010, 58, 984-995.	4.9	32
20	Kidins220/ARMS Modulates the Activity of Microtubule-regulating Proteins and Controls Neuronal Polarity and Development. Journal of Biological Chemistry, 2010, 285, 1343-1357.	3.4	55
21	Kidins220/ARMS downregulation by excitotoxic activation of NMDARs reveals its involvement in neuronal survival and death pathways. Journal of Cell Science, 2009, 122, 3554-3565.	2.0	57
22	Role of atypical protein kinase C isozymes and NF-κB in IL-1β-induced expression of cyclooxygenase-2 in human myometrial smooth muscle cells. Journal of Cellular Physiology, 2007, 210, 637-643.	4.1	24
23	Protein Kinase D Intracellular Localization and Activity Control Kinase D-interacting Substrate of 220-kDa Traffic through a Postsynaptic Density-95/Discs Large/Zonula Occludens-1-binding Motif. Journal of Biological Chemistry, 2006, 281, 18888-18900.	3.4	70
24	Depolarization of Neural Cells Induces Transcription of the Down Syndrome Critical Region 1 Isoform 4 via a Calcineurin/Nuclear Factor of Activated T Cells-dependent Pathway. Journal of Biological Chemistry, 2005, 280, 29435-29443.	3.4	60
25	Unliganded thyroid hormone receptor β1 inhibits proliferation of murine fibroblasts by delaying the onset of the G1 cell-cycle signals. Oncogene, 2004, 23, 8756-8765.	5.9	13
26	Lipid Raft Disruption Triggers Protein Kinase C and Src-dependent Protein Kinase D Activation and Kidins220 Phosphorylation in Neuronal Cells. Journal of Biological Chemistry, 2004, 279, 28592-28602.	3.4	57
27	The neuronal protein Kidins220 localizes in a raft compartment at the leading edge of motile immature dendritic cells. European Journal of Immunology, 2004, 34, 108-118.	2.9	23
28	Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Molecular and Cellular Neurosciences, 2004, 26, 470-480.	2.2	84
29	Activation Loop Ser744 and Ser748 in Protein Kinase D Are Transphosphorylated in Vivo. Journal of Biological Chemistry, 2001, 276, 32606-32615.	3.4	142
30	Identification and Cloning of Kidins220, a Novel Neuronal Substrate of Protein Kinase D. Journal of Biological Chemistry, 2000, 275, 40048-40056.	3.4	141
31	Transcriptional Repression of Neurotrophin Receptor trkBby Thyroid Hormone in the Developing Rat Brain. Journal of Biological Chemistry, 2000, 275, 37510-37517.	3.4	21
32	The Pleckstrin Homology Domain of Protein Kinase D Interacts Preferentially with the η Isoform of Protein Kinase C. Journal of Biological Chemistry, 1999, 274, 9224-9230.	3.4	105
33	Phosphorylation-dependent protein kinase Dactivation. Electrophoresis, 1999, 20, 382-390.	2.4	60
34	Protein kinase D activation by deletion of its cysteine-rich motifs. FEBS Letters, 1999, 454, 53-56.	2.8	44
35	Dynamic re-distribution of protein kinase D (PKD) as revealed by a GFP-PKD fusion protein: dissociation from PKD activation. FEBS Letters, 1999, 457, 515-521.	2.8	66
36	Dissimilar phorbol ester binding properties of the individual cysteine-rich motifs of protein kinase D. FEBS Letters, 1998, 437, 19-23.	2.8	57

3

TERESA IGLESIAS VACAS

#	Article	IF	CITATION
37	Identification of in Vivo Phosphorylation Sites Required for Protein Kinase D Activation. Journal of Biological Chemistry, 1998, 273, 27662-27667.	3.4	160
38	Protein Kinase D Activation by Mutations within Its Pleckstrin Homology Domain. Journal of Biological Chemistry, 1998, 273, 410-416.	3.4	131
39	Post-transcriptional induction of β1-adrenergic receptor by retinoic acid, but not triiodothyronine, in C6 glioma cells expressing thyroid hormone receptors. European Journal of Endocrinology, 1996, 135, 709-715.	3.7	5
40	Expression of neurotrophins and the trk family of neurotrophin receptors in normal and hypothyroid rat brain. Molecular Brain Research, 1994, 27, 249-257.	2.3	101
41	Stress-induced hypertension: Effects of adrenalectomy and corticosterone replacement. Life Sciences, 1991, 49, 979-986.	4.3	4
42	Time- and region-dependent effect of adrenalectomy on neuropeptide gene expression in rat hippocampus and striatum. Molecular and Cellular Neurosciences, 1991, 2, 485-490.	2.2	4
43	Stereoselectivity and subtype of the opiate receptor involved in stress-induced hypertension. European Journal of Pharmacology, 1990, 182, 155-160.	3.5	15