Hui Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4466686/publications.pdf

Version: 2024-02-01

394421 276875 2,371 42 19 41 h-index citations g-index papers 43 43 43 3992 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	The deubiquitinase OTUD1 inhibits colonic inflammation by suppressing RIPK1-mediated NF-κB signaling. Cellular and Molecular Immunology, 2022, 19, 276-289.	10.5	31
2	LATS1 is a central signal transmitter for achieving full type-I interferon activity. Science Advances, 2022, 8, eabj3887.	10.3	7
3	Targeting PARP11 to avert immunosuppression and improve CAR T therapy in solid tumors. Nature Cancer, 2022, 3, 808-820.	13.2	21
4	<scp>E3</scp> ubiquitin ligase <scp>MID1</scp> ubiquitinates and degrades <scp>typeâ€I</scp> interferon receptor 2. Immunology, 2022, 167, 398-412.	4.4	2
5	Depression compromises antiviral innate immunity via the AVP-AHI1-Tyk2 axis. Cell Research, 2022, 32, 897-913.	12.0	19
6	BRCC36 functions noncatalytically to promote antiviral response by maintaining STAT1 protein stability. European Journal of Immunology, 2021, 51, 296-310.	2.9	4
7	MicroRNA-185-5p inhibits hepatic gluconeogenesis and reduces fasting blood glucose levels by suppressing G6Pase. Theranostics, 2021, 11, 7829-7843.	10.0	17
8	Ubiquitin E3 ligase MID1 inhibits the innate immune response by ubiquitinating IRF3. Immunology, 2021, 163, 278-292.	4.4	12
9	OTUD1 Regulates Antifungal Innate Immunity through Deubiquitination of CARD9. Journal of Immunology, 2021, 206, 1832-1843.	0.8	16
10	Association of Glycated Albumin/Glycosylated Hemoglobin Ratio with Blood Glucose Fluctuation and Long-Term Blood Glucose Control in Patients with Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 1809-1815.	2.4	11
11	HSV-1-encoded ICPO degrades the host deubiquitinase BRCC36 to antagonize interferon antiviral response. Molecular Immunology, 2021, 135, 28-35.	2.2	4
12	InÂvitro and in vivo evaluation of virus-induced innate immunity in mouse. STAR Protocols, 2021, 2, 100708.	1.2	0
13	High salt activates p97 to reduce host antiviral immunity by restricting Viperin induction. EMBO Reports, 2021, , e53466.	4.5	7
14	Smallâ€molecule inhibitors of ubiquitinâ€specific protease 7 enhance typeâ€l interferon antiviral efficacy by destabilizing SOCS1. Immunology, 2020, 159, 309-321.	4.4	8
15	Targeting UBE4A Revives Viperin Protein in Epithelium to Enhance Host Antiviral Defense. Molecular Cell, 2020, 77, 734-747.e7.	9.7	46
16	Ubiquitin specific protease 5 negatively regulates the IFNs-mediated antiviral activity via targeting SMURF1. International Immunopharmacology, 2020, 87, 106763.	3.8	9
17	Ubiquitin E3 Ligase c-Cbl Is a Host Negative Regulator of Nef Protein of HIV-1. Frontiers in Microbiology, 2020, 11, 597972.	3 . 5	3
18	USP39 Serves as a Deubiquitinase to Stabilize STAT1 and Sustains Type I IFN–Induced Antiviral Immunity. Journal of Immunology, 2020, 205, 3167-3178.	0.8	16

#	Article	IF	Citations
19	Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling. Nature Communications, 2020, 11, 1146.	12.8	66
20	ADP-ribosyltransferase PARP11 modulates the interferon antiviral response by mono-ADP-ribosylating the ubiquitin E3 ligase \hat{l}^2 -TrCP. Nature Microbiology, 2019, 4, 1872-1884.	13.3	65
21	PARP11 regulates total levels of type-I interferon receptor IFNAR1. Nature Microbiology, 2019, 4, 1771-1773.	13.3	1
22	Smurf1 restricts the antiviral function mediated by USP25 through promoting its ubiquitination and degradation. Biochemical and Biophysical Research Communications, 2018, 498, 537-543.	2.1	13
23	MCPIP1 is a positive regulator of type I interferons antiviral activity. Biochemical and Biophysical Research Communications, 2018, 498, 891-897.	2.1	16
24	β-TrCP Restricts Lipopolysaccharide (LPS)-Induced Activation of TRAF6-IKK Pathway Upstream of IκBα Signaling. Frontiers in Immunology, 2018, 9, 2930.	4.8	15
25	ATXN3 Positively Regulates Type I IFN Antiviral Response by Deubiquitinating and Stabilizing HDAC3. Journal of Immunology, 2018, 201, 675-687.	0.8	31
26	Induction of OTUD1 by RNA viruses potently inhibits innate immune responses by promoting degradation of the MAVS/TRAF3/TRAF6 signalosome. PLoS Pathogens, 2018, 14, e1007067.	4.7	75
27	Ubiquitin C-terminal hydrolase-L3 promotes interferon antiviral activity by stabilizing type I-interferon receptor. Antiviral Research, 2017, 144, 120-129.	4.1	9
28	JOSD1 Negatively Regulates Type-I Interferon Antiviral Activity by Deubiquitinating and Stabilizing SOCS1. Viral Immunology, 2017, 30, 342-349.	1.3	21
29	Deubiquitinase USP2a Sustains Interferons Antiviral Activity by Restricting Ubiquitination of Activated STAT1 in the Nucleus. PLoS Pathogens, 2016, 12, e1005764.	4.7	37
30	Smurf1 represses TNF- \hat{l}_{\pm} production through ubiquitination and destabilization of USP5. Biochemical and Biophysical Research Communications, 2016, 474, 491-496.	2.1	11
31	Ubiquitin-dependent Turnover of Adenosine Deaminase Acting on RNA 1 (ADAR1) Is Required for Efficient Antiviral Activity of Type I Interferon. Journal of Biological Chemistry, 2016, 291, 24974-24985.	3.4	40
32	The Cerebral Cavernous Malformation Pathway Controls Cardiac Development via Regulation of Endocardial MEKK3 Signaling and KLF Expression. Developmental Cell, 2015, 32, 168-180.	7.0	137
33	DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function. Cell Reports, 2015, 11, 785-797.	6.4	200
34	Cell Adhesion Mediated by VCAM–ITGα9 Interactions Enables Lymphatic Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1179-1189.	2.4	13
35	Triggering ubiquitination of <scp>IFNAR</scp> 1 protects tissues from inflammatory injury. EMBO Molecular Medicine, 2014, 6, 384-397.	6.9	52
36	A BRISC-SHMT Complex Deubiquitinates IFNAR1 and Regulates Interferon Responses. Cell Reports, 2013, 5, 180-193.	6.4	80

Hui Zheng

#	Article	IF	CITATION
37	Bcr-abl signals to desensitize chronic myeloid leukemia cells to IFNÎ \pm via accelerating the degradation of its receptor. Blood, 2011, 118, 4179-4187.	1.4	31
38	Vascular endothelial growth factor–induced elimination of the type 1 interferon receptor is required for efficient angiogenesis. Blood, 2011, 118, 4003-4006.	1.4	60
39	MAVS Forms Functional Prion-like Aggregates to Activate and Propagate Antiviral Innate Immune Response. Cell, 2011, 146, 448-461.	28.9	1,018
40	Ligand-Stimulated Downregulation of the Alpha Interferon Receptor: Role of Protein Kinase D2. Molecular and Cellular Biology, 2011, 31, 710-720.	2.3	71
41	Tyrosine Phosphorylation of Protein Kinase D2 Mediates Ligand-inducible Elimination of the Type 1 Interferon Receptor. Journal of Biological Chemistry, 2011, 286, 35733-35741.	3.4	33
42	Pathogen Recognition Receptor Signaling Accelerates Phosphorylation-Dependent Degradation of IFNAR1. PLoS Pathogens, 2011, 7, e1002065.	4.7	42