Christopher Boothman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4464620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 2004, 430, 68-71.	13.7	1,071
2	Reactive azo dye reduction byShewanella strain J18 143. Biotechnology and Bioengineering, 2006, 95, 692-703.	1.7	114
3	Biogenic methane in shale gas and coal bed methane: A review of current knowledge and gaps. International Journal of Coal Geology, 2016, 165, 106-120.	1.9	105
4	Effects of Progressive Anoxia on the Solubility of Technetium in Sediments. Environmental Science & Technology, 2005, 39, 4109-4116.	4.6	100
5	Reoxidation Behavior of Technetium, Iron, and Sulfur in Estuarine Sediments. Environmental Science & Technology, 2006, 40, 3529-3535.	4.6	95
6	Geomicrobiological Redox Cycling of the Transuranic Element Neptunium. Environmental Science & Technology, 2010, 44, 8924-8929.	4.6	80
7	Functional diversity of bacteria in a ferruginous hydrothermal sediment. ISME Journal, 2010, 4, 1193-1205.	4.4	71
8	Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments. Chemical Geology, 2011, 281, 41-51.	1.4	67
9	Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Archives of Microbiology, 2007, 187, 171-183.	1.0	65
10	Characterisation of organic matter and microbial communities in contrasting arsenic-rich Holocene and arsenic-poor Pleistocene aquifers, Red River Delta, Vietnam. Applied Geochemistry, 2012, 27, 315-325.	1.4	57
11	Microbial Reduction of Fe(III) under Alkaline Conditions Relevant to Geological Disposal. Applied and Environmental Microbiology, 2013, 79, 3320-3326.	1.4	52
12	Probing the Biogeochemical Behavior of Technetium Using a Novel Nuclear Imaging Approach. Environmental Science & Technology, 2010, 44, 156-162.	4.6	48
13	Role of Nitrate in Conditioning Aquifer Sediments for Technetium Bioreduction. Environmental Science & Technology, 2010, 44, 150-155.	4.6	46
14	Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh. MBio, 2017, 8, .	1.8	46
15	Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium. Applied and Environmental Microbiology, 2015, 81, 5511-5518.	1.4	37
16	The interactions of strontium and technetium with Fe(II) bearing biominerals: Implications for bioremediation of radioactively contaminated land. Applied Geochemistry, 2014, 40, 135-143.	1.4	29
17	Seasonal Changes In Mineralogy, Geochemistry and Microbial Community of Bacteriogenic Iron Oxides (BIOS) Deposited in a Circumneutral Wetland. Geomicrobiology Journal, 2012, 29, 161-172.	1.0	27
18	A Novel Adaptation Mechanism Underpinning Algal Colonization of a Nuclear Fuel Storage Pond. MBio. 2018. 9	1.8	25

#	Article	IF	CITATIONS
19	The Synergistic Effects of High Nitrate Concentrations on Sediment Bioreduction. Geomicrobiology Journal, 2012, 29, 484-493.	1.0	24
20	Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field site. Science of the Total Environment, 2018, 628-629, 1027-1036.	3.9	24
21	Microbial bloom formation in a high pH spent nuclear fuel pond. Science of the Total Environment, 2020, 720, 137515.	3.9	24
22	The Impact of Gamma Radiation on Sediment Microbial Processes. Applied and Environmental Microbiology, 2015, 81, 4014-4025.	1.4	22
23	Manganese and cobalt redox cycling in laterites; Biogeochemical and bioprocessing implications. Chemical Geology, 2020, 531, 119330.	1.4	22
24	Microbial degradation of isosaccharinic acid under conditions representative for the far field of radioactive waste disposal facilities. Mineralogical Magazine, 2015, 79, 1443-1454.	0.6	21
25	Impacts of Repeated Redox Cycling on Technetium Mobility in the Environment. Environmental Science & Technology, 2017, 51, 14301-14310.	4.6	21
26	The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities. Journal of Hazardous Materials, 2019, 364, 134-142.	6.5	21
27	Biogeochemical Controls on the Corrosion of Depleted Uranium Alloy in Subsurface Soils. Environmental Science & Technology, 2009, 43, 6177-6182.	4.6	20
28	Alkaline Fe(III) reduction by a novel alkali-tolerant Serratia sp. isolated from surface sediments close to Sellafield nuclear facility, UK. FEMS Microbiology Letters, 2012, 327, 87-92.	0.7	19
29	Identification and characterization of a novel acidotolerant Fe(III)-reducing bacterium from a 3000-year-old acidic rock drainage site. FEMS Microbiology Letters, 2007, 268, 151-157.	0.7	16
30	Corrosion and Fate of Depleted Uranium Penetrators under Progressively Anaerobic Conditions in Estuarine Sediment. Environmental Science & Technology, 2009, 43, 350-355.	4.6	16
31	The biogeochemical fate of nickel during microbial ISA degradation; implications for nuclear waste disposal. Scientific Reports, 2018, 8, 8753.	1.6	15
32	Identification of Persistent Sulfidogenic Bacteria in Shale Gas Produced Waters. Frontiers in Microbiology, 2020, 11, 286.	1.5	15
33	Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction. Frontiers in Microbiology, 2017, 8, 679.	1.5	14
34	Metaschoepite Dissolution in Sediment Column Systems—Implications for Uranium Speciation and Transport. Environmental Science & Technology, 2019, 53, 9915-9925.	4.6	14
35	Microbially mediated reduction of Np(V) by a consortium of alkaline tolerant Fe(III)-reducing bacteria. Mineralogical Magazine, 2015, 79, 1287-1295.	0.6	13
36	Radiation Tolerance of Pseudanabaena catenata, a Cyanobacterium Relevant to the First Generation Magnox Storage Pond. Frontiers in Microbiology, 2020, 11, 515.	1.5	13

Christopher Boothman

#	Article	IF	CITATIONS
37	Microbial Degradation of Citric Acid in Low Level Radioactive Waste Disposal: Impact on Biomineralization Reactions. Frontiers in Microbiology, 2021, 12, 565855.	1.5	12
38	Microbial reduction of Fe(III) coupled to the biodegradation of isosaccharinic acid (ISA). Applied Geochemistry, 2019, 109, 104399.	1.4	11
39	In situ pilot application of nZVI embedded in activated carbon for remediation of chlorinated ethene-contaminated groundwater: effect on microbial communities. Environmental Sciences Europe, 2020, 32, .	2.6	11
40	Biogeochemistry of U, Ni, and As in two meromictic pit lakes at the Cluff Lake uranium mine, northern Saskatchewan. Canadian Journal of Earth Sciences, 2018, 55, 463-474.	0.6	10
41	Neptunium and manganese biocycling in nuclear legacy sediment systems. Applied Geochemistry, 2015, 63, 303-309.	1.4	8
42	Microbial impacts on 99mTc migration through sandstone under highly alkaline conditions relevant to radioactive waste disposal. Science of the Total Environment, 2017, 575, 485-495.	3.9	7
43	Positron emission tomography to visualise in-situ microbial metabolism in natural sediments. Applied Radiation and Isotopes, 2019, 144, 104-110.	0.7	7
44	Geochemical and Microbial Controls of the Decomposition of Depleted Uranium in the Environment: Experimental Studies using Soil Microorganisms. Geomicrobiology Journal, 2011, 28, 457-470.	1.0	5
45	Generation of Alkalinity by Stimulation of Microbial Iron Reduction in Acid Rock Drainage Systems: Impact of Natural Organic Matter Types. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	4
46	A Novel "Microbial Bait―Technique for Capturing Fe(III)-Reducing Bacteria. Frontiers in Microbiology, 2020, 11, 330.	1.5	4
47	Biogenic Sulfidation of U(VI) and Ferrihydrite Mediated by Sulfate-Reducing Bacteria at Elevated pH. ACS Earth and Space Chemistry, 2021, 5, 3075-3086.	1.2	4
48	Do mature hydrocarbons have an influence on acid rock drainage generation?. Applied Geochemistry, 2016, 67, 93-100.	1.4	3
49	Airborne Bacterial and Eukaryotic Community Structure across the United Kingdom Revealed by High-Throughput Sequencing. Atmosphere, 2020, 11, 802.	1.0	3
50	Retention of immobile Se(0) in flow-through aquifer column systems during bioreduction and oxic-remobilization. Science of the Total Environment, 2022, 834, 155332.	3.9	3
51	Biogeochemical Cycling of 99Tc in Alkaline Sediments. Environmental Science & Technology, 2021, 55, 15862-15872.	4.6	ο