
Giampietro G Schiavo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4464002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature, 1992, 359, 832-835.	27.8	1,750
2	Neurotoxins Affecting Neuroexocytosis. Physiological Reviews, 2000, 80, 717-766.	28.8	1,141
3	Mutations in Dynein Link Motor Neuron Degeneration to Defects in Retrograde Transport. Science, 2003, 300, 808-812.	12.6	652
4	Mechanism of action of tetanus and botulinum neurotoxins. Molecular Microbiology, 1994, 13, 1-8.	2.5	537
5	Structure and function of tetanus and botulinum neurotoxins. Quarterly Reviews of Biophysics, 1995, 28, 423-472.	5.7	427
6	Rab5 and Rab7 Control Endocytic Sorting along the Axonal Retrograde Transport Pathway. Neuron, 2006, 52, 293-305.	8.1	413
7	Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Letters, 1993, 335, 99-103.	2.8	401
8	Activation of MDA5 Requires Higher-Order RNA Structures Generated during Virus Infection. Journal of Virology, 2009, 83, 10761-10769.	3.4	377
9	Deficits in axonal transport precede ALS symptoms in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20523-20528.	7.1	351
10	Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy. Molecular Cell, 2019, 74, 347-362.e6.	9.7	314
11	Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 997-1001.	7.1	288
12	Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13327-13332.	7.1	284
13	Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4 <i>P</i> and PtdIns(4,5) <i>P</i> 2. Biochemical Journal, 2009, 422, 23-35.	3.7	265
14	Botulinum Neurotoxin Type C Cleaves a Single Lys-Ala Bond within the Carboxyl-terminal Region of Syntaxins. Journal of Biological Chemistry, 1995, 270, 10566-10570.	3.4	255
15	Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 259-268.	4.0	252
16	Tetanus and botulism neurotoxins: a new group of zinc proteases. Trends in Biochemical Sciences, 1993, 18, 324-327.	7.5	241
17	Purification and Characterization of the Human Elongator Complex. Journal of Biological Chemistry, 2002, 277, 3047-3052.	3.4	230
18	A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. Journal of Cell Biology, 2005, 169, 561-567.	5.2	223

#	Article	IF	CITATIONS
19	ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E559-68.	7.1	221
20	The Subcellular Distribution of GABARAP and Its Ability to Interact with NSF Suggest a Role for This Protein in the Intracellular Transport of GABAA Receptors. Molecular and Cellular Neurosciences, 2001, 18, 13-25.	2.2	217
21	Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Letters, 1994, 346, 92-98.	2.8	211
22	The journey of tetanus and botulinum neurotoxins in neurons. Trends in Microbiology, 2003, 11, 431-437.	7.7	206
23	Axonal transport and neurological disease. Nature Reviews Neurology, 2019, 15, 691-703.	10.1	201
24	SNARE motif and neurotoxins. Nature, 1994, 372, 415-416.	27.8	196
25	Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. Journal of Cell Science, 2001, 114, 2501-2511.	2.0	195
26	Common and distinct fusion proteins in axonal growth and transmitter release. , 1996, 367, 222-234.		192
27	Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. Journal of Physiology (Paris), 2002, 96, 105-113.	2.1	190
28	TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature, 2022, 603, 131-137.	27.8	188
29	Direct Interaction of the Rab3 Effector RIM with Ca2+Channels, SNAP-25, and Synaptotagmin. Journal of Biological Chemistry, 2001, 276, 32756-32762.	3.4	184
30	Equivalent Effects of Snake PLA2 Neurotoxins and Lysophospholipid-Fatty Acid Mixtures. Science, 2005, 310, 1678-1680.	12.6	180
31	A possible docking and fusion particle for synaptic transmission. Nature, 1995, 378, 733-736.	27.8	176
32	Interaction of tau protein with the dynactin complex. EMBO Journal, 2007, 26, 4546-4554.	7.8	171
33	Botulinum Neurotoxins A and E Undergo Retrograde Axonal Transport in Primary Motor Neurons. PLoS Pathogens, 2012, 8, e1003087.	4.7	164
34	SNARE complexes and neuroexocytosis: how many, how close?. Trends in Biochemical Sciences, 2005, 30, 367-372.	7.5	161
35	Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR. Journal of Cell Biology, 2002, 156, 233-240.	5.2	160
36	Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon, 2001, 39, 27-41.	1.6	158

GIAMPIETRO G SCHIAVO

#	Article	IF	CITATIONS
37	Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons. Molecular Biology of the Cell, 2001, 12, 2947-2960.	2.1	154
38	A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins. Nature Reviews Microbiology, 2010, 8, 645-655.	28.6	153
39	The bacterial toxin toolkit. Nature Reviews Molecular Cell Biology, 2001, 2, 530-537.	37.0	152
40	Presynaptic receptor arrays for clostridial neurotoxins. Trends in Microbiology, 2004, 12, 442-446.	7.7	147
41	Identification and Cloning of Kidins220, a Novel Neuronal Substrate of Protein Kinase D. Journal of Biological Chemistry, 2000, 275, 40048-40056.	3.4	141
42	Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. Journal of Cell Science, 2003, 116, 4965-4975.	2.0	139
43	Tetanus and Botulinum Neurotoxins Are Zinc Proteases Specific for Components of the Neuroexocytosis Apparatus. Annals of the New York Academy of Sciences, 1994, 710, 65-75.	3.8	137
44	Activation of the p75 Neurotrophin Receptor through Conformational Rearrangement of Disulphide-Linked Receptor Dimers. Neuron, 2009, 62, 72-83.	8.1	134
45	Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13310-13315.	7.1	126
46	Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. Journal of Cell Biology, 2006, 174, 459-471.	5.2	118
47	Cytoplasmic dynein heavy chain: the servant of many masters. Trends in Neurosciences, 2013, 36, 641-651.	8.6	111
48	Synaptotagmins: More Isoforms Than Functions?. Biochemical and Biophysical Research Communications, 1998, 248, 1-8.	2.1	108
49	Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. Journal of Cell Biology, 2008, 183, 499-511.	5.2	107
50	Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron, 2017, 96, 667-679.	8.1	107
51	Phosphatidylinositol 3-Kinase C2α Is Essential for ATP-dependent Priming of Neurosecretory Granule Exocytosis. Molecular Biology of the Cell, 2005, 16, 4841-4851.	2.1	106
52	A simple, step-by-step dissection protocol for the rapid isolation of mouse dorsal root ganglia. BMC Research Notes, 2016, 9, 82.	1.4	106
53	CAR-Associated Vesicular Transport of an Adenovirus in Motor Neuron Axons. PLoS Pathogens, 2009, 5, e1000442.	4.7	105
54	Regulation of Axonal Transport by Protein Kinases. Trends in Biochemical Sciences, 2015, 40, 597-610.	7.5	104

#	Article	IF	CITATIONS
55	Central effects of tetanus and botulinum neurotoxins. Toxicon, 2009, 54, 593-599.	1.6	101
56	The Dystonia-associated Protein TorsinA Modulates Synaptic Vesicle Recycling. Journal of Biological Chemistry, 2008, 283, 7568-7579.	3.4	100
57	Targeting protein homeostasis in sporadic inclusion body myositis. Science Translational Medicine, 2016, 8, 331ra41.	12.4	99
58	Clostridial neurotoxins as tools to investigate the molecular events of neurotransmitter release. Seminars in Cell Biology, 1994, 5, 221-229.	3.4	97
59	A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models. Nature Communications, 2017, 8, 1164.	12.8	97
60	The Dynamic Localization of Cytoplasmic Dynein in Neurons Is Driven by Kinesin-1. Neuron, 2016, 90, 1000-1015.	8.1	95
61	Calcium-dependent Oligomerization of Synaptotagmins I and II. Journal of Biological Chemistry, 1999, 274, 59-66.	3.4	94
62	Phosphorylation of VAMP/Synaptobrevin in Synaptic Vesicles by Endogenous Protein Kinases. Journal of Neurochemistry, 1995, 65, 1712-1720.	3.9	90
63	Spatially Distinct Binding of Cdc42 to PAK1 and N-WASP in Breast Carcinoma Cells. Molecular and Cellular Biology, 2005, 25, 1680-1695.	2.3	90
64	Tetanus Toxin Is Transported in a Novel Neuronal Compartment Characterized by a Specialized pH Regulation*. Journal of Biological Chemistry, 2005, 280, 42336-42344.	3.4	85
65	Molecular mechanisms of action of bacterial protein toxins. Molecular Aspects of Medicine, 1994, 15, 79-193.	6.4	84
66	Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS. Cell Death and Disease, 2018, 9, 596.	6.3	84
67	Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Current Opinion in Neurobiology, 2008, 18, 504-515.	4.2	82
68	Evidence-based review and assessment of botulinum neurotoxin for the treatment of secretory disorders. Toxicon, 2013, 67, 141-152.	1.6	82
69	Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons. Journal of Cell Science, 2003, 116, 4639-4650.	2.0	80
70	Botulinum neurotoxins: Mechanism of action. Toxicon, 2013, 67, 87-93.	1.6	80
71	Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. Journal of Cell Biology, 2019, 218, 1871-1890.	5.2	80
72	Molecular landmarks along the axonal route: axonal transport in health and disease. Current Opinion in Cell Biology, 2008, 20, 445-453.	5.4	78

#	Article	IF	CITATIONS
73	Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease. Proceedings of the United States of America, 2014, 111, 14454-14459.	7.1	78
74	[39] Tetanus and botulism neurotoxins: Isolation and assay. Methods in Enzymology, 1995, 248, 643-652.	1.0	77
75	C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochemical Journal, 2000, 347, 199-204.	3.7	77
76	Tetanus Toxin Fragment C Binds to a Protein Present in Neuronal Cell Lines and Motoneurons. Journal of Neurochemistry, 2000, 74, 1941-1950.	3.9	76
77	Signalling endosomes in axonal transport: Travel updates on the molecular highway. Seminars in Cell and Developmental Biology, 2014, 27, 32-43.	5.0	76
78	Botulinum neurotoxins: mechanism of action and therapeutic applications. Trends in Molecular Medicine, 1996, 2, 418-424.	2.6	74
79	Neurotrophins Redirect p75 ^{NTR} from a Clathrinâ€Independent to a Clathrinâ€Dependent Endocytic Pathway Coupled to Axonal Transport. Traffic, 2007, 8, 1736-1749.	2.7	71
80	Spastin and microtubules: Functions in health and disease. Journal of Neuroscience Research, 2007, 85, 2778-2782.	2.9	70
81	FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Research, 2020, 48, 6889-6905.	14.5	70
82	Lipid interaction of diphtheria toxin and mutants with altered fragment B. 2. Hydrophobic photolabelling and cell intoxication. FEBS Journal, 1987, 169, 637-644.	0.2	68
83	Analysis of mutants of tetanus toxin HC fragment: ganglioside binding, cell binding and retrograde axonal transport properties. Molecular Microbiology, 2000, 37, 1041-1051.	2.5	67
84	Alternative fates of newly formed PrPSc upon prion conversion on the plasma membrane. Journal of Cell Science, 2013, 126, 3552-62.	2.0	67
85	Phosphoinositides as Key Regulators of Synaptic Function. Neuron, 2001, 32, 9-12.	8.1	66
86	The travel diaries of tetanus and botulinum neurotoxins. Toxicon, 2018, 147, 58-67.	1.6	64
87	Snake presynaptic neurotoxins with phospholipase A2 activity induce punctate swellings of neurites and exocytosis of synaptic vesicles. Journal of Cell Science, 2004, 117, 3561-3570.	2.0	63
88	Modification of Superoxide Dismutase 1 (SOD1) Properties by a GFP Tag – Implications for Research into Amyotrophic Lateral Sclerosis (ALS). PLoS ONE, 2010, 5, e9541.	2.5	63
89	Kidins220/ARMS mediates the integration of the neurotrophin and VEGF pathways in the vascular and nervous systems. Cell Death and Differentiation, 2012, 19, 194-208.	11.2	62
90	Nidogens are therapeutic targets for the prevention of tetanus. Science, 2014, 346, 1118-1123.	12.6	62

#	Article	IF	CITATIONS
91	Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells. Journal of Cell Science, 2006, 119, 2084-2094.	2.0	61
92	Calcium Influx and Mitochondrial Alterations at Synapses Exposed to Snake Neurotoxins or Their Phospholipid Hydrolysis Products. Journal of Biological Chemistry, 2007, 282, 11238-11245.	3.4	61
93	Trk receptor signaling and sensory neuron fate are perturbed in human neuropathy caused by <i>Gars</i> mutations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3324-E3333.	7.1	61
94	Kidins220/ARMS regulates Rac1-dependent neurite outgrowth by direct interaction with the RhoGEF Trio. Journal of Cell Science, 2010, 123, 2111-2123.	2.0	60
95	An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion. Nature Cell Biology, 1999, 1, 335-340.	10.3	58
96	TorsinA and dystonia: from nuclear envelope to synapse. Journal of Neurochemistry, 2009, 109, 1596-1609.	3.9	58
97	Zinc content of theBacillus anthracislethal factor. FEMS Microbiology Letters, 1994, 124, 343-348.	1.8	57
98	Analysis of lectin binding to glycolipid complexes using combinatorial glycoarrays. Glycobiology, 2009, 19, 789-796.	2.5	57
99	Tetanus toxin is labeled with photoactivatable phospholipids at low pH. Biochemistry, 1986, 25, 919-924.	2.5	55
100	Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways. Journal of Cell Science, 2012, 125, 1845-54.	2.0	55
101	A Motor-Driven Mechanism for Cell-Length Sensing. Cell Reports, 2012, 1, 608-616.	6.4	55
102	Molecular structure of tetanus neurotoxin as revealed by Fourier transform infrared and circular dichroic spectroscopy. Biophysical Chemistry, 1990, 36, 155-166.	2.8	54
103	ADP-ribosylation factor and phosphatidic acid levels in Golgi membranes during budding of coatomer-coated vesicles. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13676-13680.	7.1	54
104	Human spastin has multiple microtubule-related functions. Journal of Neurochemistry, 2005, 95, 1411-1420.	3.9	54
105	Ligand-independent signaling by disulfide-crosslinked dimers of the p75 neurotrophin receptor. Journal of Cell Science, 2009, 122, 3351-3357.	2.0	54
106	Glycerotoxin from Glycera convoluta stimulates neurosecretion by up-regulating N-type Ca2+ channel activity. EMBO Journal, 2002, 21, 6733-6743.	7.8	51
107	Kidins220/ARMS Is Transported by a Kinesin-1–based Mechanism Likely to be Involved in Neuronal Differentiation. Molecular Biology of the Cell, 2007, 18, 142-152.	2.1	51
108	Mice Carrying ALS Mutant TDP-43, but Not Mutant FUS, Display InÂVivo Defects in Axonal Transport of Signaling Endosomes. Cell Reports, 2020, 30, 3655-3662.e2.	6.4	51

#	Article	IF	CITATIONS
109	The Mechanism of Action of Tetanus and Botulinum Neurotoxins. Archives of Toxicology Supplement, 1996, 18, 342-354.	0.7	51
110	Neurotransmission and secretion. Nature, 1993, 364, 581-582.	27.8	50
111	Kidins220/ARMS is an essential modulator of cardiovascular and nervous system development. Cell Death and Disease, 2011, 2, e226-e226.	6.3	50
112	Receptor-Dependent and -Independent Axonal Retrograde Transport of Poliovirus in Motor Neurons. Journal of Virology, 2009, 83, 4995-5004.	3.4	49
113	Mutant torsinA, which causes early-onset primary torsion dystonia, is redistributed to membranous structures enriched in vesicular monoamine transporter in cultured human SH-SY5Y cells. Movement Disorders, 2005, 20, 432-440.	3.9	48
114	Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. Human Molecular Genetics, 2011, 20, 1776-1786.	2.9	48
115	Charcot–Marie–Tooth type 2B disease-causing RAB7A mutant proteins show altered interaction with the neuronal intermediate filament peripherin. Acta Neuropathologica, 2013, 125, 257-272.	7.7	47
116	In vivo imaging of axonal transport in murine motor and sensory neurons. Journal of Neuroscience Methods, 2016, 257, 26-33.	2.5	47
117	Tetanus toxin receptor Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC 12 cells. FEBS Letters, 1991, 290, 227-230.	2.8	46
118	Potential human transmission of amyloid \hat{l}^2 pathology: surveillance and risks. Lancet Neurology, The, 2020, 19, 872-878.	10.2	46
119	C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochemical Journal, 2000, 347, 199.	3.7	45
120	Antibodies Against Rat Brain Vesicle-Associated Membrane Protein (Synaptobrevin) Prevent Inhibition of Acetylcholine Release by Tetanus Toxin or Botulinum Neurotoxin Type B. Journal of Neurochemistry, 1993, 61, 1175-1178.	3.9	44
121	Modeling Human Neural Functionality <i>In Vitro</i> : Three-Dimensional Culture for Dopaminergic Differentiation. Tissue Engineering - Part A, 2015, 21, 654-668.	3.1	44
122	Mitochondrial deficits and abnormal mitochondrial retrograde axonal transport play a role in the pathogenesis of mutant Hsp27-induced Charcot Marie Tooth Disease. Human Molecular Genetics, 2017, 26, 3313-3326.	2.9	43
123	The phagocytic capacity of neurones. European Journal of Neuroscience, 2007, 25, 2947-2955.	2.6	41
124	Disruption of the Coxsackievirus and Adenovirus Receptor-Homodimeric Interaction Triggers Lipid Microdomain- and Dynamin-dependent Endocytosis and Lysosomal Targeting. Journal of Biological Chemistry, 2014, 289, 680-695.	3.4	40
125	Novel targets and catalytic activities of bacterial protein toxins. Trends in Microbiology, 1993, 1, 170-174.	7.7	39
126	CSN complex controls the stability of selected synaptic proteins via a torsinA-dependent process. EMBO Journal, 2011, 30, 181-193.	7.8	39

#	Article	IF	CITATIONS
127	Mon1-Ccz1 activates Rab7 only on late endosome and dissociates from lysosome in mammalian cells. Journal of Cell Science, 2015, 129, 329-40.	2.0	39
128	The many disguises of the signalling endosome. FEBS Letters, 2018, 592, 3615-3632.	2.8	37
129	FUS-ALS mutants alter FMRP phase separation equilibrium and impair protein translation. Science Advances, 2021, 7, .	10.3	36
130	The Effects of pH on the Interaction of Anthrax Toxin Lethal and Edema Factors with Phospholipid Vesicles. Biochemistry, 1994, 33, 2604-2609.	2.5	34
131	Bicaudalâ€ <scp>D</scp> 1 regulates the intracellular sorting and signalling of neurotrophin receptors. EMBO Journal, 2014, 33, 1582-1598.	7.8	34
132	Diphtheria toxin and its mutantcrm197 differ in their interaction with lipids. FEBS Letters, 1987, 215, 73-78.	2.8	33
133	Functional Recycling of C2 Domains Throughout Evolution: A Comparative Study of Synaptotagmin, Protein Kinase C and Phospholipase C by Sequence, Structural and Modelling Approaches. Journal of Molecular Biology, 2003, 333, 621-639.	4.2	33
134	The Elusive Compass of Clostridial Neurotoxins: Deciding When and Where to Go?. Current Topics in Microbiology and Immunology, 2012, 364, 91-113.	1.1	33
135	Methodological advances in imaging intravital axonal transport. F1000Research, 2017, 6, 200.	1.6	33
136	On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers. FEBS Journal, 1991, 199, 705-711.	0.2	32
137	Large-scale pathways-based association study in amyotrophic lateral sclerosis. Brain, 2007, 130, 2292-2301.	7.6	32
138	Cytochrome c oxidase from the slime mold Dictyostelium discoideum: purification and characterization. Biochemistry, 1985, 24, 7845-7852.	2.5	31
139	Re-Assembled Botulinum Neurotoxin Inhibits CNS Functions without Systemic Toxicity. Toxins, 2011, 3, 345-355.	3.4	31
140	Synthetic Self-Assembling Clostridial Chimera for Modulation of Sensory Functions. Bioconjugate Chemistry, 2013, 24, 1750-1759.	3.6	31
141	Bacterial toxins with intracellular protease activity. Clinica Chimica Acta, 2000, 291, 189-199.	1.1	30
142	Evidence-based review and assessment of botulinum neurotoxin for the treatment of urologic conditions. Toxicon, 2013, 67, 129-140.	1.6	30
143	Analysis of Signaling Endosome Composition and Dynamics Using SILAC in Embryonic Stem Cell-Derived Neurons. Molecular and Cellular Proteomics, 2016, 15, 542-557.	3.8	30
144	Rabies Virus Envelope Glycoprotein Targets Lentiviral Vectors to the Axonal Retrograde Pathway in Motor Neurons. Journal of Biological Chemistry, 2014, 289, 16148-16163.	3.4	29

GIAMPIETRO G SCHIAVO

#	Article	IF	CITATIONS
145	Coxsackievirus Adenovirus Receptor Loss Impairs Adult Neurogenesis, Synapse Content, and Hippocampus Plasticity. Journal of Neuroscience, 2016, 36, 9558-9571.	3.6	29
146	UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy. Brain, 2018, 141, 2878-2894.	7.6	29
147	VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes. FEBS Letters, 2003, 542, 132-136.	2.8	28
148	Hydrophobic photolabelling of pertussis toxin subunits interacting with lipids. FEBS Letters, 1986, 194, 301-304.	2.8	26
149	Loss of BICD2 in muscle drives motor neuron loss in a developmental form of spinal muscular atrophy. Acta Neuropathologica Communications, 2020, 8, 34.	5.2	26
150	Sustained synaptic-vesicle recycling by bulk endocytosis contributes to the maintenance of high-rate neurotransmitter release stimulated by glycerotoxin. Journal of Cell Science, 2010, 123, 1131-1140.	2.0	25
151	Neuropilin 1 sequestration by neuropathogenic mutant glycyl-tRNA synthetase is permissive to vascular homeostasis. Scientific Reports, 2017, 7, 9216.	3.3	25
152	Morphological variability is greater at developing than mature mouse neuromuscular junctions. Journal of Anatomy, 2020, 237, 603-617.	1.5	25
153	Retrograde transport of Akt by a neuronal Rab5-APPL1 endosome. Scientific Reports, 2019, 9, 2433.	3.3	24
154	Endocytosis and retrograde axonal traffic in motor neurons Biochemical Society Symposia, 2005, 72, 139-150.	2.7	24
155	In Vivo Imaging of Anterograde and Retrograde Axonal Transport in Rodent Peripheral Nerves. Methods in Molecular Biology, 2020, 2143, 271-292.	0.9	23
156	Metal substitution of tetanus neurotoxin. Biochemical Journal, 1997, 322, 507-510.	3.7	22
157	Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins. International Journal of Medical Microbiology, 2001, 291, 447-453.	3.6	22
158	Histidine-21 is involved in diphtheria toxin NAD+ binding. Toxicon, 1990, 28, 631-635.	1.6	21
159	DYNC1H1 mutation alters transport kinetics and ERK1/2-cFos signalling in a mouse model of distal spinal muscular atrophy. Brain, 2014, 137, 1883-1893.	7.6	21
160	<scp>IGF</scp> 1R regulates retrograde axonal transport of signalling endosomes in motor neurons. EMBO Reports, 2020, 21, e49129.	4.5	21
161	Structural Studies on the Zinc-endopeptidase Light Chain of Tetanus Neurotoxin. FEBS Journal, 1995, 229, 61-69.	0.2	21
162	Ion channel and membrane translocation of diphtheria toxin. FEMS Microbiology Letters, 1992, 105, 101-111.	1.8	20

#	Article	IF	CITATIONS
163	X-ray Absorption Spectroscopy Study of Zinc Coordination in Tetanus Neurotoxin, Astacin, Alkaline Protease and Thermolysin. FEBS Journal, 1996, 235, 606-612.	0.2	19
164	The SOD1 transgene in the G93A mouse model of amyotrophic lateral sclerosis lies on distal mouse chromosome 12. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2005, 6, 111-114.	2.1	19
165	The evolution of the axonal transport toolkit. Traffic, 2020, 21, 13-33.	2.7	18
166	Walking the line: mechanisms underlying directional mRNA transport and localisation in neurons and beyond. Cellular and Molecular Life Sciences, 2021, 78, 2665-2681.	5.4	18
167	Lipid interaction of Tetanus neurotoxin A calorimetric and fluorescence spectroscopy study. FEBS Letters, 1992, 309, 107-110.	2.8	17
168	Bacterial protein toxins and cell vesicle trafficking. Experientia, 1996, 52, 1026-1032.	1.2	17
169	TorsinA and DYT1 dystonia: a synaptopathy?. Biochemical Society Transactions, 2010, 38, 452-456.	3.4	17
170	Comparative analyses of glycerotoxin expression unveil a novel structural organization of the bloodworm venom system. BMC Evolutionary Biology, 2017, 17, 64.	3.2	17
171	TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Reports, 2019, 29, 1130-1146.e8.	6.4	17
172	Developmental demands contribute to early neuromuscular degeneration in CMT2D mice. Cell Death and Disease, 2020, 11, 564.	6.3	17
173	Lipid interaction of diphtheria toxin and mutants. A study with phospholipid and protein monolayers. FEBS Journal, 1991, 197, 481-486.	0.2	16
174	Glycerotoxin stimulates neurotransmitter release from N-type Ca2+ channel expressing neurons. Journal of Neurochemistry, 2006, 98, 894-904.	3.9	16
175	siRNA screen of ES cell-derived motor neurons identifies novel regulators of tetanus toxin and neurotrophin receptor trafficking. Frontiers in Cellular Neuroscience, 2014, 8, 140.	3.7	16
176	DYNLRB1 is essential for dynein mediated transport and neuronal survival. Neurobiology of Disease, 2020, 140, 104816.	4.4	15
177	Dangerous liaisons on neurons. Nature, 2006, 444, 1019-1020.	27.8	14
178	Polyphosphoinositol lipids: Under-PPInning synaptic function in health and disease. Developmental Neurobiology, 2007, 67, 1232-1247.	3.0	14
179	The more, the better: the BICD family gets bigger. EMBO Journal, 2010, 29, 1625-1626.	7.8	14
180	Kidins220/ARMS Is a Novel Modulator of Short-Term Synaptic Plasticity in Hippocampal GABAergic Neurons. PLoS ONE, 2012, 7, e35785.	2.5	14

#	Article	IF	CITATIONS
181	Activated leukocyte cell adhesion molecule modulates neurotrophin signaling. Journal of Neurochemistry, 2012, 121, 575-586.	3.9	14
182	Knockin' on heaven's door: Molecular mechanisms of neuronal tau uptake. Journal of Neurochemistry, 2021, 156, 563-588.	3.9	14
183	Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation. Molecular Psychiatry, 2021, 26, 6411-6426.	7.9	13
184	Molecular analysis of neurotransmitter release. Essays in Biochemistry, 1998, 33, 29-41.	4.7	13
185	Older but not slower: aging does not alter axonal transport dynamics of signalling endosomes in vivo . Matters, 0, , .	1.0	13
186	Coupling axonal mRNA transport and local translation to organelle maintenance and function. Current Opinion in Cell Biology, 2022, 74, 97-103.	5.4	13
187	The two oxygen-regulated subunits of cytochromecoxidase inDictyostelium discoideumderive from a common ancestor. FEBS Letters, 1990, 261, 158-160.	2.8	12
188	A handle on NSF. Nature Cell Biology, 1999, 1, E127-E128.	10.3	12
189	Gene expression profile of quinacrine-cured prion-infected mouse neuronal cells. Journal of Neurochemistry, 2008, 105, 239-250.	3.9	12
190	Travelling Together: A Unifying Pathomechanism forÂALS. Trends in Neurosciences, 2020, 43, 1-2.	8.6	12
191	A video protocol for rapid dissection of mouse dorsal root ganglia from defined spinal levels. BMC Research Notes, 2020, 13, 302.	1.4	12
192	NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease. Scientific Reports, 2021, 11, 12251.	3.3	12
193	Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development. PLoS ONE, 2015, 10, e0129944.	2.5	11
194	Uptake and transport of Clostridium neurotoxins. , 2006, , 390-408.		9
195	Differential regulation of Kidins220 isoforms in Huntington's disease. Brain Pathology, 2020, 30, 120-136.	4.1	9
196	Altered Sensory Neuron Development in CMT2D Mice Is Site-Specific and Linked to Increased GlyRS Levels. Frontiers in Cellular Neuroscience, 2020, 14, 232.	3.7	9
197	Bimodal regulation of axonal transport by the GDNF-RET signalling axis in healthy and diseased motor neurons. Cell Death and Disease, 2022, 13, .	6.3	9

198 The Structure and Mode of Action of Botulinum and Tetanus Toxins. , 1997, , 295-322.

GIAMPIETRO G SCHIAVO

#	Article	IF	CITATIONS
199	Exceptionally potent human monoclonal antibodies are effective for prophylaxis and treatment of tetanus in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	8
200	Expanding the Toolkit for In Vivo Imaging of Axonal Transport. Journal of Visualized Experiments, 2021, , .	0.3	8
201	Alternative energy for neuronal motors. Nature, 2013, 495, 178-179.	27.8	7
202	Dissection, in vivo imaging and analysis of the mouse epitrochleoanconeus muscle. Journal of Anatomy, 2021, , .	1.5	7
203	Neuronal retrograde transport of Borna disease virus occurs in signalling endosomes. Journal of General Virology, 2016, 97, 3215-3224.	2.9	7
204	The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Frontiers in Cellular Neuroscience, 2022, 16, 844211.	3.7	7
205	Functional imaging in microfluidic chambers reveals sensory neuron sensitivity is differentially regulated between neuronal regions. Pain, 2018, 159, 1413-1425.	4.2	6
206	Slime Mold Cytochrome c Oxidase Annals of the New York Academy of Sciences, 1988, 550, 325-336.	3.8	5
207	PTPN23 binds the dynein adaptor BICD1 and is required for endocytic sorting of neurotrophin receptors. Journal of Cell Science, 2020, 133, .	2.0	5
208	Structural Studies on the Zinc-endopeptidase Light Chain of Tetanus Neurotoxin. FEBS Journal, 1995, 229, 61-69.	0.2	4
209	Uptake and transport of clostridial neurotoxins. , 2015, , 337-360.		4
210	An Improved Protocol to Purify and Directly Mono-Biotinylate Recombinant BDNF in a Tube for Cellular Trafficking Studies in Neurons. Journal of Visualized Experiments, 2020, , .	0.3	4
211	Response from Schiavo and Montecucco. Trends in Microbiology, 1994, 2, 69.	7.7	2
212	Motors, adaptors, and receptors: Key elements of neuronal transport. Journal of Neurobiology, 2004, 58, 161-163.	3.6	1
213	TiME for TMEM106B. EMBO Journal, 2014, 33, 405-406.	7.8	1
214	ALS Mice Carrying Pathological Mutant TDP-43, But Not Mutant FUS, Display Axonal Transport Defects <i>in vivo</i> . SSRN Electronic Journal, 0, , .	0.4	1
215	Phosphorylation of VAMP/synaptobrevin in synaptic vesicles. Pharmacological Research, 1995, 31, 212.	7.1	0
216	Neuronal bullet. Trends in Microbiology, 1998, 6, 136.	7.7	0

#	Article	IF	CITATIONS
217	Analysis of mutants of tetanus toxin HC fragment: ganglioside binding, cell binding and retrograde axonal transport properties. Molecular Microbiology, 2000, 38, 916-916.	2.5	0
218	Genetic Insights into Mammalian Cytoplasmic Dynein Function Provided by Novel Mutations in the Mouse. , 2012, , 482-503.		0
219	Editorial: TOXINS 2019. Toxicon, 2018, 156, S1.	1.6	0
220	Duplication of clostridial binding domains for enhanced macromolecular delivery into neurons. Toxicon: X, 2020, 5, 100019.	2.9	0
221	Membrane Protein Labelling with Photoreactive Phospholipid Analogues. , 1989, , 43-58.		0
222	On the Cellular Mechanism of Action of Diphtheria Toxin. , 1989, , 115-124.		0
223	The Neurospecific Binding of Tetanus Toxin is Mediated by a 20 kDa Protein and by Acidic Lipids. , 1993, , 221-230.		0