John H Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4463774/publications.pdf

Version: 2024-02-01

729 papers

33,631 citations

4383 86 h-index 132 g-index

756 all docs

756 docs citations

756 times ranked

22818 citing authors

#	Article	IF	CITATIONS
1	Mechanisms of Early Brain Injury after Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1341-1353.	2.4	536
2	A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. Journal of Neuroscience Methods, 2008, 167, 327-334.	1.3	500
3	The importance of early brain injury after subarachnoid hemorrhage. Progress in Neurobiology, 2012, 97, 14-37.	2.8	475
4	Early Brain Injury, an Evolving Frontier in Subarachnoid Hemorrhage Research. Translational Stroke Research, 2013, 4, 432-446.	2.3	409
5	Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurological Research, 2009, 31, 151-158.	0.6	384
6	Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nature Clinical Practice Neurology, 2007, 3, 256-263.	2.7	337
7	Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood–Brain Barrier Integrity. Journal of Neuroscience, 2018, 38, 32-50.	1.7	306
8	Controversies and evolving new mechanisms in subarachnoid hemorrhage. Progress in Neurobiology, 2014, 115, 64-91.	2.8	304
9	Glial Cells: Role of the Immune Response in Ischemic Stroke. Frontiers in Immunology, 2020, 11, 294.	2.2	301
10	Signaling Pathways for Early Brain Injury after Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 916-925.	2.4	280
11	Novel insight into circular RNA <i>HECTD1</i> in astrocyte activation via autophagy by targeting <i>MIR142</i> -TIPARP: implications for cerebral ischemic stroke. Autophagy, 2018, 14, 1164-1184.	4.3	276
12	Neurovascular Protection Reduces Early Brain Injury After Subarachnoid Hemorrhage. Stroke, 2004, 35, 2412-2417.	1.0	264
13	Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurological Research, 2006, 28, 399-414.	0.6	253
14	Metamorphosis of Subarachnoid Hemorrhage Research: from Delayed Vasospasm to Early Brain Injury. Molecular Neurobiology, 2011, 43, 27-40.	1.9	252
15	RIGOR Guidelines: Escalating STAIR and STEPS for Effective Translational Research. Translational Stroke Research, 2013, 4, 279-285.	2.3	240
16	Activation of Sphingosine 1-Phosphate Receptor-1 by FTY720 Is Neuroprotective After Ischemic Stroke in Rats. Stroke, 2010, 41, 368-374.	1.0	234
17	Subarachnoid Hemorrhage. Stroke, 2009, 40, S86-7.	1.0	213
18	Response of the cerebral vasculature following traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2320-2339.	2.4	211

#	Article	lF	Citations
19	Neuroprotective effects of hydrogen saline in neonatal hypoxia–ischemia rat model. Brain Research, 2009, 1256, 129-137.	1.1	210
20	Hydrogen therapy reduces apoptosis in neonatal hypoxia–ischemia rat model. Neuroscience Letters, 2008, 441, 167-172.	1.0	203
21	An Update on Inflammation in the Acute Phase of Intracerebral Hemorrhage. Translational Stroke Research, 2015, 6, 4-8.	2.3	201
22	Extracellular Vesicle–Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models. Circulation, 2020, 142, 556-574.	1.6	198
23	Comparison Evans Blue injection routes: Intravenous versus intraperitoneal, for measurement of blood–brain barrier in a mice hemorrhage model. Journal of Neuroscience Methods, 2011, 195, 206-210.	1.3	193
24	Mechanisms of Hyperbaric Oxygen-Induced Neuroprotection in a Rat Model of Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 554-571.	2.4	191
25	Neonatal Hypoxia/Ischemia Is Associated With Decreased Inflammatory Mediators After Erythropoietin Administration. Stroke, 2005, 36, 1672-1678.	1.0	188
26	The vascular neural network—a new paradigm in stroke pathophysiology. Nature Reviews Neurology, 2012, 8, 711-716.	4.9	178
27	Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer's disease by reduction of oxidative stress. Brain Research, 2010, 1328, 152-161.	1.1	175
28	Role of Interleukin- $\hat{l^2}$ in Early Brain Injury After Subarachnoid Hemorrhage in Mice. Stroke, 2009, 40, 2519-2525.	1.0	174
29	Cerebral Small Vessel Disease. Cell Transplantation, 2018, 27, 1711-1722.	1.2	169
30	MMP-9 Deficiency Enhances Collagenase-Induced Intracerebral Hemorrhage and Brain Injury in Mutant Mice. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1133-1145.	2.4	168
31	Circular RNA <i>TLK1</i> Aggravates Neuronal Injury and Neurological Deficits after Ischemic Stroke via miR-335-3p/TIPARP. Journal of Neuroscience, 2019, 39, 7369-7393.	1.7	164
32	Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Experimental Neurology, 2013, 241, 45-55.	2.0	159
33	Inhibition of Apoptosis by Hyperbaric Oxygen in a Rat Focal Cerebral Ischemic Model. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 855-864.	2.4	158
34	TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. Journal of Neuroinflammation, 2020, 17, 168.	3.1	156
35	Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radical Research, 2009, 43, 478-484.	1.5	148
36	Hydrogen-Rich Saline Protects Myocardium Against Ischemia/Reperfusion Injury in Rats. Experimental Biology and Medicine, 2009, 234, 1212-1219.	1.1	143

#	Article	IF	CITATIONS
37	Mechanisms of Osteopontin-Induced Stabilization of Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Rats. Stroke, 2010, 41, 1783-1790.	1.0	143
38	Platelet–Leukocyte–Endothelial Cell Interactions after Middle Cerebral Artery Occlusion and Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 907-915.	2.4	142
39	Caspase Inhibitors Prevent Endothelial Apoptosis and Cerebral Vasospasm in Dog Model of Experimental Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 419-431.	2.4	139
40	Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. Journal of Neurochemistry, 2012, 123, 12-21.	2.1	137
41	Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy. International Journal of Molecular Sciences, 2015, 16, 22368-22401.	1.8	135
42	P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiology of Disease, 2013, 58, 296-307.	2.1	133
43	Protein Kinase C and Cerebral Vasospasm. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 887-906.	2.4	131
44	IRE1α inhibition decreased TXNIP/NLRP3 inflammasome activation through miR-17-5p after neonatal hypoxic–ischemic brain injury in rats. Journal of Neuroinflammation, 2018, 15, 32.	3.1	131
45	Sulforaphane protects brains against hypoxic–ischemic injury through induction of Nrf2-dependent phase 2 enzyme. Brain Research, 2010, 1343, 178-185.	1.1	130
46	Advances in stroke pharmacology. , 2018, 191, 23-42.		128
46		1.0	128
	Advances in stroke pharmacology. , 2018, 191, 23-42. Activation of Dopamine D2 Receptor Suppresses Neuroinflammation Through αB-Crystalline by	1.0	
47	Advances in stroke pharmacology., 2018, 191, 23-42. Activation of Dopamine D2 Receptor Suppresses Neuroinflammation Through αB-Crystalline by Inhibition of NF-ΰB Nuclear Translocation in Experimental ICH Mice Model. Stroke, 2015, 46, 2637-2646. Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. American		126
47	Advances in stroke pharmacology., 2018, 191, 23-42. Activation of Dopamine D2 Receptor Suppresses Neuroinflammation Through αB-Crystalline by Inhibition of NF-ΰB Nuclear Translocation in Experimental ICH Mice Model. Stroke, 2015, 46, 2637-2646. Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2442-H2451. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. Journal of	1.5	126 124
48	Advances in stroke pharmacology., 2018, 191, 23-42. Activation of Dopamine D2 Receptor Suppresses Neuroinflammation Through î±B-Crystalline by Inhibition of NF-I®B Nuclear Translocation in Experimental ICH Mice Model. Stroke, 2015, 46, 2637-2646. Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2442-H2451. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. Journal of Neuroscience Research, 2007, 85, 1436-1448. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-I®B activation in	1.5	126 124 122
47 48 49 50	Advances in stroke pharmacology., 2018, 191, 23-42. Activation of Dopamine D2 Receptor Suppresses Neuroinflammation Through αB-Crystalline by Inhibition of NF-I®B Nuclear Translocation in Experimental ICH Mice Model. Stroke, 2015, 46, 2637-2646. Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2442-H2451. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. Journal of Neuroscience Research, 2007, 85, 1436-1448. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-I®B activation in a rat model of amyloid-beta-induced Alzheimer's disease. Neuroscience Letters, 2011, 491, 127-132. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after	1.5 1.3 1.0	124 122 122
47 48 49 50	Advances in stroke pharmacology., 2018, 191, 23-42. Activation of Dopamine D2 Receptor Suppresses Neuroinflammation Through αB-Crystalline by Inhibition of NF-IPB Nuclear Translocation in Experimental ICH Mice Model. Stroke, 2015, 46, 2637-2646. Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2442-H2451. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. Journal of Neuroscience Research, 2007, 85, 1436-1448. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-IPB activation in a rat model of amyloid-beta-induced Alzheimer's disease. Neuroscience Letters, 2011, 491, 127-132. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biology, 2019, 20, 75-86.	1.5 1.3 1.0	124 122 122 121

#	Article	IF	CITATIONS
55	Hyperbaric oxygen preconditioning induces tolerance against brain ischemia–reperfusion injury by upregulation of antioxidant enzymes in rats. Brain Research, 2008, 1210, 223-229.	1.1	117
56	Mitophagy Reduces Oxidative Stress Via Keap1 (Kelch-Like Epichlorohydrin-Associated Protein 1)/Nrf2 (Nuclear Factor-E2-Related Factor 2)/PHB2 (Prohibitin 2) Pathway After Subarachnoid Hemorrhage in Rats. Stroke, 2019, 50, 978-988.	1.0	117
57	A Novel Neuroprotectant Granulocyte-Colony Stimulating Factor. Stroke, 2006, 37, 1123-1128.	1.0	116
58	HIF-1α inhibition ameliorates neonatal brain injury in a rat pup hypoxic–ischemic model. Neurobiology of Disease, 2008, 31, 433-441.	2.1	116
59	Down regulation of COX-2 is involved in hyperbaric oxygen treatment in a rat transient focal cerebral ischemia model. Brain Research, 2002, 926, 165-171.	1.1	115
60	Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. Journal of Neurochemistry, 2005, 94, 1342-1350.	2.1	114
61	Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF- \hat{l}^2 B pathway after subarachnoid hemorrhage in rats. Journal of Neuroinflammation, 2018, 15, 178.	3.1	111
62	Isoflurane Attenuates Blood–Brain Barrier Disruption in Ipsilateral Hemisphere After Subarachnoid Hemorrhage in Mice. Stroke, 2012, 43, 2513-2516.	1.0	110
63	Pathophysiology of an hypoxic–ischemic insult during the perinatal period. Neurological Research, 2005, 27, 246-260.	0.6	109
64	Early inhibition of HIF-1α with small interfering RNA reduces ischemic–reperfused brain injury in rats. Neurobiology of Disease, 2009, 33, 509-517.	2.1	109
65	Comparison of three rat models of cerebral vasospasm. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2551-H2559.	1.5	108
66	Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation. Frontiers in Bioscience - Landmark, 2004, 9, 1339.	3.0	108
67	PDGFRâ€Î± inhibition preserves bloodâ€brain barrier after intracerebral hemorrhage. Annals of Neurology, 2011, 70, 920-931.	2.8	107
68	The Great Chinese Famine Leads to Shorter and Overweight Females in Chongqing Chinese Population After 50 Years. Obesity, 2010, 18, 588-592.	1.5	106
69	Mechanisms of Erythropoietin-induced Brain Protection in Neonatal Hypoxia-Ischemia Rat Model. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 259-270.	2.4	105
70	Cerebral vasospasm: looking beyond vasoconstriction. Trends in Pharmacological Sciences, 2007, 28, 252-256.	4.0	105
71	Remote Limb Ischemic Postconditioning Protects Against Neonatal Hypoxic–Ischemic Brain Injury in Rat Pups by the Opioid Receptor/Akt Pathway. Stroke, 2011, 42, 439-444.	1.0	105
72	Cerebral Microvascular Responses to Hypercholesterolemia. Circulation Research, 2004, 94, 239-244.	2.0	103

#	Article	IF	CITATIONS
73	Matrix metalloproteinases inhibition provides neuroprotection against hypoxiaâ€ischemia in the developing brain. Journal of Neurochemistry, 2009, 111, 726-736.	2.1	103
74	Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats*. Critical Care Medicine, 2010, 38, 612-618.	0.4	100
75	Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor- $1\hat{l}\pm$ and erythropoietin in rats. Journal of Applied Physiology, 2008, 104, 1185-1191.	1.2	99
76	Mechanism of Endothelin-1–Induced Contraction in Rabbit Basilar Artery. Stroke, 2000, 31, 526-533.	1.0	97
77	Vasospasm and p53-Induced Apoptosis in an Experimental Model of Subarachnoid Hemorrhage. Stroke, 2006, 37, 1868-1874.	1.0	97
78	Activation of melanocortin receptor 4 with RO27-3225 attenuates neuroinflammation through AMPK/JNK/p38 MAPK pathway after intracerebral hemorrhage in mice. Journal of Neuroinflammation, 2018, 15, 106.	3.1	97
79	Hyperbaric oxygenation prevented brain injury induced by hypoxia–ischemia in a neonatal rat model. Brain Research, 2002, 951, 1-8.	1.1	96
80	Norrin Protected Blood–Brain Barrier Via Frizzled-4/β-Catenin Pathway After Subarachnoid Hemorrhage in Rats. Stroke, 2015, 46, 529-536.	1.0	96
81	Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. , 2020, 216, 107695.		96
82	Mechanisms of hyperbaric oxygen and neuroprotection in stroke. Pathophysiology, 2005, 12, 63-77.	1.0	95
83	Lecithinized Superoxide Dismutase Improves Outcomes and Attenuates Focal Cerebral Ischemic Injury via Antiapoptotic Mechanisms in Rats. Stroke, 2007, 38, 1057-1062.	1.0	95
84	α7 Nicotinic Acetylcholine Receptor Agonism Confers Neuroprotection Through GSK-3β Inhibition in a Mouse Model of Intracerebral Hemorrhage. Stroke, 2012, 43, 844-850.	1.0	95
85	Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Experimental Neurology, 2012, 236, 69-78.	2.0	93
86	The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance. Medical Gas Research, 2013, 3, 10.	1.2	92
87	LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biology, 2019, 21, 101121.	3.9	92
88	Ezetimibe Attenuates Oxidative Stress and Neuroinflammation via the AMPK/Nrf2/TXNIP Pathway after MCAO in Rats. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	1.9	92
89	Cathepsin and Calpain Inhibitor E64d Attenuates Matrix Metalloproteinase-9 Activity After Focal Cerebral Ischemia in Rats. Stroke, 2006, 37, 1888-1894.	1.0	91
90	Protective Effect of Melatonin upon Neuropathology, Striatal Function, and Memory Ability after Intracerebral Hemorrhage in Rats. Journal of Neurotrauma, 2010, 27, 627-637.	1.7	90

#	Article	IF	Citations
91	Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurological Research, 2009, 31, 114-121.	0.6	89
92	Lipoxin A4 Reduces Inflammation Through Formyl Peptide Receptor 2/p38 MAPK Signaling Pathway in Subarachnoid Hemorrhage Rats. Stroke, 2016, 47, 490-497.	1.0	89
93	The High Cost of Stroke and Stroke Cytoprotection Research. Translational Stroke Research, 2017, 8, 307-317.	2.3	89
94	Effect of hyperbaric oxygen on striatal metabolites: a microdialysis study in awake freely moving rats after MCA occlusion. Brain Research, 2001, 916, 85-90.	1.1	88
95	Etiology of Stroke and Choice of Models. International Journal of Stroke, 2012, 7, 398-406.	2.9	88
96	Role of p53 and Apoptosis in Cerebral Vasospasm after Experimental Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 572-582.	2.4	86
97	Multiple effects of hyperbaric oxygen on the expression of HIF-1α and apoptotic genes in a global ischemia–hypotension rat model. Experimental Neurology, 2005, 191, 198-210.	2.0	86
98	Simvastatin attenuation of cerebral vasospasm after subarachnoid hemorrhage in rats via increased phosphorylation of Akt and endothelial nitric oxide synthase. Journal of Neuroscience Research, 2008, 86, 3635-3643.	1.3	85
99	Assessing functional outcomes following intracerebral hemorrhage in rats. Brain Research, 2009, 1280, 148-157.	1.1	85
100	Apoptotic Mechanisms for Neuronal Cells in Early Brain Injury After Subarachnoid Hemorrhage. , 2011, 110, 43-48.		85
101	Vascular Adhesion Protein-1 Inhibition Provides Antiinflammatory Protection after an Intracerebral Hemorrhagic Stroke in Mice. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 881-893.	2.4	85
102	$\hat{l}\pm7$ Nicotinic Acetylcholine Receptor Agonist PNU-282987 Attenuates Early Brain Injury in a Perforation Model of Subarachnoid Hemorrhage in Rats. Stroke, 2011, 42, 3530-3536.	1.0	85
103	Cyclooxygenase-2 Mediates Hyperbaric Oxygen Preconditioning in the Rat Model of Transient Global Cerebral Ischemia. Stroke, 2011, 42, 484-490.	1.0	85
104	Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke. Experimental Neurology, 2015, 272, 26-40.	2.0	85
105	Role of Glibenclamide in Brain Injury After Intracerebral Hemorrhage. Translational Stroke Research, 2017, 8, 183-193.	2.3	84
106	Hyperbaric oxygen and cerebral physiology. Neurological Research, 2007, 29, 132-141.	0.6	83
107	Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents. Brain Research, 2008, 1215, 218-224.	1.1	83
108	Neuroprotective effect of volatile anesthetic agents: molecular mechanisms. Neurological Research, 2009, 31, 128-134.	0.6	83

#	Article	IF	Citations
109	Therapeutic application of gene silencing MMP-9 in a middle cerebral artery occlusion-induced focal ischemia rat model. Experimental Neurology, 2009, 216, 35-46.	2.0	83
110	Axl activation attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-κB pathway after MCAO in rats. Neurobiology of Disease, 2018, 110, 59-67.	2.1	83
111	Sodium butyrate attenuated neuronal apoptosis via GPR41/GÎ 2 Î 3 /PI3K/Akt pathway after MCAO in rats. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 267-281.	2.4	82
112	Intracerebral Hematoma Contributes to Hydrocephalus After Intraventricular Hemorrhage via Aggravating Iron Accumulation. Stroke, 2015, 46, 2902-2908.	1.0	80
113	Traumatic subarachnoid hemorrhage: our current understanding and its evolution over the past half century. Neurological Research, 2006, 28, 445-452.	0.6	79
114	Nasal Administration of Recombinant Osteopontin Attenuates Early Brain Injury After Subarachnoid Hemorrhage. Stroke, 2013, 44, 3189-3194.	1.0	79
115	Ghrelin attenuates oxidative stress and neuronal apoptosis via GHSR-1α/AMPK/Sirt1/PGC-1α/UCP2 pathway in a rat model of neonatal HIE. Free Radical Biology and Medicine, 2019, 141, 322-337.	1.3	79
116	INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain, Behavior, and Immunity, 2021, 91, 587-600.	2.0	79
117	Fibroblast growth factors preserve blood–brain barrier integrity through RhoA inhibition after intracerebral hemorrhage in mice. Neurobiology of Disease, 2012, 46, 204-214.	2.1	77
118	P2X7 Receptor Antagonism Inhibits p38 Mitogen-Activated Protein Kinase Activation and Ameliorates Neuronal Apoptosis After Subarachnoid Hemorrhage in Rats. Critical Care Medicine, 2013, 41, e466-e474.	0.4	77
119	G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the Pl3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Experimental Neurology, 2015, 272, 135-144.	2.0	77
120	Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke, 2018, 49, 175-183.	1.0	77
121	Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology, 2018, 128, 142-151.	2.0	77
122	Osteopontin Reduced Hypoxia–Ischemia Neonatal Brain Injury by Suppression of Apoptosis in a Rat Pup Model. Stroke, 2011, 42, 764-769.	1.0	76
123	Effect of hyperbaric oxygen on apoptosis in neonatal hypoxia-ischemia rat model. Journal of Applied Physiology, 2003, 95, 2072-2080.	1.2	7 5
124	The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia. Neurobiology of Disease, 2008, 29, 1-13.	2.1	75
125	Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Annals of Neurology, 2010, 68, 650-660.	2.8	7 5
126	Curcumin inhibits microglia inflammation and confers neuroprotection in intracerebral hemorrhage. Immunology Letters, 2014, 160, 89-95.	1.1	75

#	Article	IF	Citations
127	Delayed Hyperbaric Oxygen Therapy Promotes Neurogenesis Through Reactive Oxygen Species/Hypoxia-Inducible Factor- $11\pm\hat{l}^2$ -Catenin Pathway in Middle Cerebral Artery Occlusion Rats. Stroke, 2014, 45, 1807-1814.	1.0	7 5
128	MATRIX METALLOPROTEINASE INHIBITION ATTENUATES BRAIN EDEMA IN AN IN VIVO MODEL OF SURGICALLY-INDUCED BRAIN INJURY. Neurosurgery, 2007, 61, 1067-1076.	0.6	74
129	Hydrogen-Rich Saline Protects Against Spinal Cord Injury in Rats. Neurochemical Research, 2010, 35, 1111-1118.	1.6	74
130	Mechanism of RhoA/Rho kinase activation in endothelin-1- induced contraction in rabbit basilar artery. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H983-H989.	1.5	73
131	Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1α and its downstream target genes. Journal of Applied Physiology, 2006, 101, 853-865.	1.2	7 3
132	Prodeath or prosurvival: Two facets of hypoxia inducible factor-1 in perinatal brain injury. Experimental Neurology, 2009, 216, 7-15.	2.0	73
133	HBO suppresses Nogo-A, Ng-R, or RhoA expression in the cerebral cortex after global ischemia. Biochemical and Biophysical Research Communications, 2003, 309, 368-376.	1.0	72
134	Up-regulated HIF- \hat{l} ± is involved in the hypoxic tolerance induced by hyperbaric oxygen preconditioning. Brain Research, 2008, 1212, 71-78.	1.1	72
135	Dimethyl fumarate confers neuroprotection by casein kinase 2 phosphorylation of Nrf2 in murine intracerebral hemorrhage. Neurobiology of Disease, 2015, 82, 349-358.	2.1	72
136	P2X7 Receptor Suppression Preserves Blood-Brain Barrier through Inhibiting RhoA Activation after Experimental Intracerebral Hemorrhage in Rats. Scientific Reports, 2016, 6, 23286.	1.6	72
137	Cyclooxygenase-2 inhibition provides lasting protection against neonatal hypoxic-ischemic brain injury*. Critical Care Medicine, 2010, 38, 572-578.	0.4	71
138	Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke. Cell Transplantation, 2018, 27, 1825-1834.	1.2	71
139	Activation of dopamine D1 receptor decreased NLRP3-mediated inflammation in intracerebral hemorrhage mice. Journal of Neuroinflammation, 2018, 15, 2.	3.1	71
140	Hypoxia Induces Autophagic Cell Death through Hypoxia-Inducible Factor $1\hat{l}\pm$ in Microglia. PLoS ONE, 2014, 9, e96509.	1.1	71
141	Apoptosis of endothelial cells in vessels affected by cerebral vasospasm. World Neurosurgery, 2000, 53, 260-266.	1.3	70
142	Inhibition of Integrin $\hat{l}_{\pm}v\hat{l}^2$ 3 Ameliorates Focal Cerebral Ischemic Damage in the Rat Middle Cerebral Artery Occlusion Model. Stroke, 2006, 37, 1902-1909.	1.0	70
143	Precision Stroke Animal Models: the Permanent MCAO Model Should Be the Primary Model, Not Transient MCAO. Translational Stroke Research, 2017, 8, 397-404.	2.3	70
144	Hyperbaric Oxygen Suppresses NADPH Oxidase in a Rat Subarachnoid Hemorrhage Model. Stroke, 2006, 37, 1314-1318.	1.0	69

#	Article	IF	CITATIONS
145	Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurological Research, 2009, 31, 568-581.	0.6	69
146	Preservation of Tropomyosin-Related Kinase B (TrkB) Signaling by Sodium Orthovanadate Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats. Stroke, 2011, 42, 477-483.	1.0	69
147	Macrophage-Inducible C-Type Lectin/Spleen Tyrosine Kinase Signaling Pathway Contributes to Neuroinflammation After Subarachnoid Hemorrhage in Rats. Stroke, 2015, 46, 2277-2286.	1.0	69
148	PPARÎ ³ -induced upregulation of CD36 enhances hematoma resolution and attenuates long-term neurological deficits after germinal matrix hemorrhage in neonatal rats. Neurobiology of Disease, 2016, 87, 124-133.	2.1	69
149	Programmed Cell Deaths and Potential Crosstalk With Blood–Brain Barrier Dysfunction After Hemorrhagic Stroke. Frontiers in Cellular Neuroscience, 2020, 14, 68.	1.8	69
150	Neuroprotective Effect of Granulocyte-Colony Stimulating Factor. Frontiers in Bioscience - Landmark, 2007, 12, 712.	3.0	69
151	Oxyhemoglobin induces caspase-mediated cell death in cerebral endothelial cells. Journal of Neurochemistry, 2001, 77, 1128-1135.	2.1	68
152	Hyperbaric Oxygen Preconditioning Attenuates Early Apoptosis after Spinal Cord Ischemia in Rats. Journal of Neurotrauma, 2009, 26, 55-66.	1.7	68
153	Hyperbaric Oxygen Reduces Infarction Volume and Hemorrhagic Transformation Through ATP/NAD ⁺ /Sirt1 Pathway in Hyperglycemic Middle Cerebral Artery Occlusion Rats. Stroke, 2017, 48, 1655-1664.	1.0	68
154	Granulocyte-colony stimulating factor inhibits apoptotic neuron loss after neonatal hypoxia–ischemia in rats. Brain Research, 2007, 1145, 227-238.	1.1	67
155	Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurological Research, 2009, 31, 167-172.	0.6	67
156	Isoflurane delays the development of early brain injury after subarachnoid hemorrhage through sphingosine-related pathway activation in mice*. Critical Care Medicine, 2012, 40, 1908-1913.	0.4	67
157	Apolipoprotein E Exerts a Whole-Brain Protective Property by Promoting M1? Microglia Quiescence After Experimental Subarachnoid Hemorrhage in Mice. Translational Stroke Research, 2018, 9, 654-668.	2.3	67
158	Minocycline Improves Functional Outcomes, Memory Deficits, and Histopathology after Endovascular Perforation-Induced Subarachnoid Hemorrhage in Rats. Journal of Neurotrauma, 2011, 28, 2503-2512.	1.7	66
159	Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats. Critical Care Medicine, 2012, 40, 1291-1296.	0.4	66
160	Adiponectin attenuates neuronal apoptosis induced by hypoxia-ischemia via the activation of AdipoR1/APPL1/LKB1/AMPK pathway in neonatal rats. Neuropharmacology, 2018, 133, 415-428.	2.0	66
161	Upregulation of rho A and rho kinase messenger RNAs in the basilar artery of a rat model of subarachnoid hemorrhage. Journal of Neurosurgery, 2000, 93, 471-476.	0.9	64
162	Cytotoxicity of cytokines in cerebral microvascular endothelial cell. Brain Research, 2003, 990, 148-156.	1.1	64

#	Article	IF	Citations
163	Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. Journal of Neuroscience Methods, 2006, 156, 161-165.	1.3	64
164	P53 MAY PLAY AN ORCHESTRATING ROLE IN APOPTOTIC CELL DEATH AFTER EXPERIMENTAL SUBARACHNOID HEMORRHAGE. Neurosurgery, 2007, 60, 531-545.	0.6	64
165	Neuroprotection against surgically induced brain injury. World Neurosurgery, 2007, 67, 15-20.	1.3	64
166	Acute Splenic Irradiation Reduces Brain Injury in the Rat Focal Ischemic Stroke Model. Translational Stroke Research, 2012, 3, 473-481.	2.3	64
167	What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. International Journal of Molecular Sciences, 2015, 16, 11903-11965.	1.8	64
168	Sestrin2, as a negative feedback regulator of mTOR, provides neuroprotection by activation AMPK phosphorylation in neonatal hypoxic-ischemic encephalopathy in rat pups. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1447-1460.	2.4	64
169	Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. Brain, Behavior, and Immunity, 2018, 70, 179-193.	2.0	64
170	Activation of TGR5 with INT-777 attenuates oxidative stress and neuronal apoptosis via cAMP/PKC $\hat{l}\mu$ /ALDH2 pathway after subarachnoid hemorrhage in rats. Free Radical Biology and Medicine, 2019, 143, 441-453.	1.3	64
171	Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism <i>via</i> AMPK/SIRT1/PGC-1α pathway in rats. Theranostics, 2021, 11, 522-539.	4.6	64
172	CHOP Silencing Reduces Acute Brain Injury in the Rat Model of Subarachnoid Hemorrhage. Stroke, 2012, 43, 484-490.	1.0	63
173	Activation of retinoid X receptor by bexarotene attenuates neuroinflammation via PPARÎ 3 /SIRT6/FoxO3a pathway after subarachnoid hemorrhage in rats. Journal of Neuroinflammation, 2019, 16, 47.	3.1	63
174	The Harmful Effects of Subarachnoid Hemorrhage on Extracerebral Organs. BioMed Research International, 2014, 2014, 1-12.	0.9	62
175	FTY720 is Neuroprotective and Improves Functional Outcomes After Intracerebral Hemorrhage in Mice. Acta Neurochirurgica Supplementum, 2011, 111, 213-217.	0.5	62
176	Receptor for Advanced Glycation End-Product Antagonist Reduces Blood–Brain Barrier Damage After Intracerebral Hemorrhage. Stroke, 2015, 46, 1328-1336.	1.0	61
177	Recombinant Osteopontin Stabilizes Smooth Muscle Cell Phenotype via Integrin Receptor/Integrin-Linked Kinase/Rac-1 Pathway After Subarachnoid Hemorrhage in Rats. Stroke, 2016, 47, 1319-1327.	1.0	61
178	Role of c-Jun N-Terminal Kinase in Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage. Stroke, 2005, 36, 1538-1543.	1.0	60
179	Papaverine-sensitive Vasospasm and Arterial Contractility and Compliance after Subarachnoid Hemorrhage in Dogs. Neurosurgery, 1995, 37, 962-968.	0.6	59
180	Thrombin Inhibition by Argatroban Ameliorates Early Brain Injury and Improves Neurological Outcomes After Experimental Subarachnoid Hemorrhage in Rats. Stroke, 2009, 40, 1530-1532.	1.0	59

#	Article	IF	CITATIONS
181	Hydrogen-rich saline reduces delayed neurologic sequelae in experimental carbon monoxide toxicity. Critical Care Medicine, 2011, 39, 765-769.	0.4	59
182	Male and Female Mice Exhibit Divergent Responses of the Cortical Vasculature to Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1646-1658.	1.7	59
183	Comparison of Different Preclinical Models of Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 9-14.	0.5	59
184	Inhibition of Rho kinase by hydroxyfasudil attenuates brain edema after subarachnoid hemorrhage in rats. Neurochemistry International, 2012, 60, 327-333.	1.9	58
185	Splenic Immune Cells in Experimental Neonatal Hypoxia–Ischemia. Translational Stroke Research, 2013, 4, 208-219.	2.3	58
186	PHA-543613 Preserves Blood–Brain Barrier Integrity After Intracerebral Hemorrhage in Mice. Stroke, 2013, 44, 1743-1747.	1.0	58
187	Isoflurane on brain inflammation. Neurobiology of Disease, 2014, 62, 365-371.	2.1	58
188	Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: Established mechanisms and proposed pathways. Journal of Neuroscience Research, 2020, 98, 105-120.	1.3	58
189	Follistatin-Like 1 Attenuates Apoptosis via Disco-Interacting Protein 2 Homolog A/Akt Pathway After Middle Cerebral Artery Occlusion in Rats. Stroke, 2014, 45, 3048-3054.	1.0	57
190	Oxyhemoglobin-induced apoptosis in cultured endothelial cells. Journal of Neurosurgery, 1999, 91, 459-465.	0.9	56
191	Ras Protein Contributes to Cerebral Vasospasm in a Canine Double-Hemorrhage Model. Stroke, 2004, 35, 1750-1755.	1.0	56
192	NADPH oxidase inhibition improves neurological outcomes in surgically-induced brain injury. Neuroscience Letters, 2007, 414, 228-232.	1.0	56
193	Caspase-1 Inhibitor Prevents Neurogenic Pulmonary Edema After Subarachnoid Hemorrhage in Mice. Stroke, 2009, 40, 3872-3875.	1.0	56
194	Lentivirus-mediated transfer of MMP-9 shRNA provides neuroprotection following focal ischemic brain injury in rats. Brain Research, 2011, 1367, 347-359.	1.1	56
195	Hydrogen Inhalation Ameliorated Mast Cell–Mediated Brain Injury After Intracerebral Hemorrhage in Mice. Critical Care Medicine, 2013, 41, 1266-1275.	0.4	56
196	Correlation between subacute sensorimotor deficits and brain edema in two mouse models of intracerebral hemorrhage. Behavioural Brain Research, 2014, 264, 151-160.	1.2	56
197	$17\hat{l}^2$ -Estradiol Attenuates Hematoma Expansion Through Estrogen Receptor $\hat{l}\pm/S$ ilent Information Regulator $1/N$ uclear Factor-kappa B Pathway in Hyperglycemic Intracerebral Hemorrhage Mice. Stroke, 2015, 46, 485-491.	1.0	56
198	Ezetimibe, a NPC1L1 inhibitor, attenuates neuronal apoptosis through AMPK dependent autophagy activation after MCAO in rats. Experimental Neurology, 2018, 307, 12-23.	2.0	56

#	Article	IF	CITATIONS
199	Recombinant CTRP9 administration attenuates neuroinflammation via activating adiponectin receptor 1 after intracerebral hemorrhage in mice. Journal of Neuroinflammation, 2018, 15, 215.	3.1	56
200	cGAS/STING Pathway Activation Contributes to Delayed Neurodegeneration in Neonatal Hypoxia-Ischemia Rat Model: Possible Involvement of LINE-1. Molecular Neurobiology, 2020, 57, 2600-2619.	1.9	56
201	A Clinical Review of Cerebral Vasospasm and Delayed Ischaemia Following Aneurysm Rupture. , 2011, 110, 5-6.		55
202	Correcting for Brain Swelling's Effects on Infarct Volume Calculation After Middle Cerebral Artery Occlusion in Rats. Translational Stroke Research, 2015, 6, 323-338.	2.3	55
203	Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPARγ/NFΰB signaling pathway after subarachnoid hemorrhage in rats. Brain, Behavior, and Immunity, 2018, 69, 190-202.	2.0	55
204	Docosahexaenoic Acid Alleviates Oxidative Stress-Based Apoptosis Via Improving Mitochondrial Dynamics in Early Brain Injury After Subarachnoid Hemorrhage. Cellular and Molecular Neurobiology, 2018, 38, 1413-1423.	1.7	55
205	MFGE8/Integrin \hat{I}^2 3 pathway alleviates apoptosis and inflammation in early brain injury after subarachnoid hemorrhage in rats. Experimental Neurology, 2015, 272, 120-127.	2.0	54
206	The MC ₄ receptor agonist RO27â€3225 inhibits NLRP1â€dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. British Journal of Pharmacology, 2019, 176, 1341-1356.	2.7	54
207	Improved rat model for cerebral vasospasm studies. Neurological Research, 2001, 23, 761-766.	0.6	53
208	Blood–brain barrier disruption following subarchnoid hemorrhage may be faciliated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Experimental Neurology, 2011, 230, 240-247.	2.0	53
209	Traumatic brain injury results in acute rarefication of the vascular network. Scientific Reports, 2017, 7, 239.	1.6	53
210	Matrix metalloproteinase-9 potentiates early brain injury after subarachnoid hemorrhage. Neurological Research, 2010, 32, 715-720.	0.6	52
211	Arginine-vasopressin V1a receptor inhibition improves neurologic outcomes following an intracerebral hemorrhagic brain injury. Neurochemistry International, 2011, 58, 542-548.	1.9	52
212	Isoflurane Enhanced Hemorrhagic Transformation by Impairing Antioxidant Enzymes in Hyperglycemic Rats With Middle Cerebral Artery Occlusion. Stroke, 2011, 42, 1750-1756.	1.0	52
213	Granulocyte-colony Stimulating Factor in Combination with Stem Cell Factor Confers Greater Neuroprotection after Hypoxic–Ischemic Brain Damage in the Neonatal Rats than a Solitary Treatment. Translational Stroke Research, 2013, 4, 171-178.	2.3	52
214	Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats. Neurobiology of Disease, 2016, 95, 111-121.	2.1	52
215	Mdivi-1 Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats, Possibly via Inhibition of Drp1-Activated Mitochondrial Fission and Oxidative Stress. Neurochemical Research, 2017, 42, 1449-1458.	1.6	52
216	Hydrogen gas is ineffective in moderate and severe neonatal hypoxia–ischemia rat models. Brain Research, 2009, 1259, 90-97.	1.1	51

#	Article	IF	CITATIONS
217	Role of SCH79797 in Maintaining Vascular Integrity in Rat Model of Subarachnoid Hemorrhage. Stroke, 2013, 44, 1410-1417.	1.0	51
218	Venous system in acute brain injury: Mechanisms of pathophysiological change and function. Experimental Neurology, 2015, 272, 4-10.	2.0	51
219	Intranasal administration of vitamin D attenuates blood–brain barrier disruption through endogenous upregulation of osteopontin and activation of CD44/P-gp glycosylation signaling after subarachnoid hemorrhage in rats. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2555-2566.	2.4	51
220	Neurovascular Events After Subarachnoid Hemorrhage: Focusing on Subcellular Organelles. Acta Neurochirurgica Supplementum, 2015, 120, 39-46.	0.5	51
221	Suppression of hypoxiaâ€inducible factorâ€1α and its downstream genes reduces acute hyperglycemiaâ€enhanced hemorrhagic transformation in a rat model of cerebral ischemia. Journal of Neuroscience Research, 2010, 88, 2046-2055.	1.3	50
222	Isoflurane Provides Neuroprotection in Neonatal Hypoxic Ischemic Brain Injury. Journal of Investigative Medicine, 2013, 61, 1078-1083.	0.7	50
223	Inhibition of Transforming Growth Factor- \hat{l}^2 Attenuates Brain Injury and Neurological Deficits in a Rat Model of Germinal Matrix Hemorrhage. Stroke, 2014, 45, 828-834.	1.0	50
224	Artesunate Protected Blood–Brain Barrier via Sphingosine 1 Phosphate Receptor 1/Phosphatidylinositol 3 Kinase Pathway After Subarachnoid Hemorrhage in Rats. Molecular Neurobiology, 2017, 54, 1213-1228.	1.9	50
225	Cerebral venous collaterals: A new fort for fighting ischemic stroke?. Progress in Neurobiology, 2018, 163-164, 172-193.	2.8	50
226	The Role of Apolipoprotein E in the Pathological Events Following Subarachnoid Hemorrhage: A Review., 2011, 110, 5-7.		50
227	Melatonin decreases mortality following severe subarachnoid hemorrhage. Journal of Pineal Research, 2008, 44, 197-204.	3.4	49
228	Cyclo-Oxygenase-2 Mediates Hyperbaric Oxygen Preconditioning-Induced Neuroprotection in the Mouse Model of Surgical Brain Injury. Stroke, 2009, 40, 3139-3142.	1.0	49
229	Characterization of the brain injury, neurobehavioral profiles, and histopathology in a rat model of cerebellar hemorrhage. Experimental Neurology, 2011, 227, 96-103.	2.0	49
230	Modulating the Immune Response Towards a Neuroregenerative Peri-injury Milieu After Cerebral Hemorrhage. Journal of NeuroImmune Pharmacology, 2015, 10, 576-586.	2.1	49
231	Role of PDGF-D and PDGFR-β in neuroinflammation in experimental ICH mice model. Experimental Neurology, 2016, 283, 157-164.	2.0	49
232	Decorin alleviated chronic hydrocephalus via inhibiting TGF- \hat{l}^21/S mad/CTGF pathway after subarachnoid hemorrhage in rats. Brain Research, 2016, 1630, 241-253.	1.1	49
233	Recombinant Gas6 augments Axl and facilitates immune restoration in an intracerebral hemorrhage mouse model. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1971-1981.	2.4	49
234	FGF-2 Attenuates Neuronal Apoptosis via FGFR3/PI3k/Akt Signaling Pathway After Subarachnoid Hemorrhage. Molecular Neurobiology, 2019, 56, 8203-8219.	1.9	49

#	Article	IF	CITATIONS
235	Hyperbaric oxygen preconditioning attenuates hyperglycemia-enhanced hemorrhagic transformation by inhibiting matrix metalloproteinases in focal cerebral ischemia in rats. Experimental Neurology, 2013, 247, 737-743.	2.0	48
236	Role of PPAR- $\hat{l}^2/\hat{l}'/miR-17/TXNIP$ pathway in neuronal apoptosis after neonatal hypoxic-ischemic injury in rats. Neuropharmacology, 2018, 140, 150-161.	2.0	48
237	Caspase Inhibitors Attenuate Oxyhemoglobin-Induced Apoptosis in Endothelial Cells. Stroke, 2001, 32, 561-566.	1.0	47
238	Glibenclamide improves neurological function in neonatal hypoxia–ischemia in rats. Brain Research, 2009, 1270, 131-139.	1.1	47
239	Liraglutide, a Long-Acting GLP-1 Mimetic, and its Metabolite Attenuate Inflammation after Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 2201-2210.	2.4	47
240	Role of the Sphingosine Metabolism Pathway on Neurons Against Experimental Cerebral Ischemia in Rats. Translational Stroke Research, 2013, 4, 524-532.	2.3	47
241	XENON in medical area: emphasis on neuroprotection in hypoxia and anesthesia. Medical Gas Research, 2013, 3, 4.	1.2	47
242	Cannabinoid receptor type 2 agonist attenuates apoptosis by activation of phosphorylated CREB–Bcl-2 pathway after subarachnoid hemorrhage in rats. Experimental Neurology, 2014, 261, 396-403.	2.0	47
243	Phosphoinositide 3-Kinase Gamma Contributes to Neuroinflammation in a Rat Model of Surgical Brain Injury. Journal of Neuroscience, 2015, 35, 10390-10401.	1.7	46
244	Osteopontin attenuates inflammation via JAK2/STAT1 pathway in hyperglycemic rats after intracerebral hemorrhage. Neuropharmacology, 2018, 138, 160-169.	2.0	46
245	CCR1 Activation Promotes Neuroinflammation Through CCR1/TPR1/ERK1/2 Signaling Pathway After Intracerebral Hemorrhage in Mice. Neurotherapeutics, 2020, 17, 1170-1183.	2.1	46
246	CCR5 Activation Promotes NLRP1-Dependent Neuronal Pyroptosis via CCR5/PKA/CREB Pathway After Intracerebral Hemorrhage. Stroke, 2021, 52, 4021-4032.	1.0	46
247	Age-related RhoA expression in blood vessels of rats. Mechanisms of Ageing and Development, 2001, 122, 1757-1770.	2.2	45
248	The effect of granulocyte-colony stimulating factor in global cerebral ischemia in rats. Brain Research, 2007, 1136, 200-207.	1.1	45
249	Long-term evaluation of granulocyte-colony stimulating factor on hypoxic-ischemic brain damage in infant rats. Intensive Care Medicine, 2010, 36, 1602-1608.	3.9	45
250	Intranasal administration of recombinant Netrin-1 attenuates neuronal apoptosis by activating DCC/APPL-1/AKT signaling pathway after subarachnoid hemorrhage in rats. Neuropharmacology, 2017, 119, 123-133.	2.0	45
251	Up-regulation of Wnt/ \hat{I}^2 -catenin expression is accompanied with vascular repair after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 274-289.	2.4	45
252	Intranasal wnt3a Attenuates Neuronal Apoptosis through Frz1/PIWIL1a/FOXM1 Pathway in MCAO Rats. Journal of Neuroscience, 2018, 38, 6787-6801.	1.7	45

#	Article	IF	CITATIONS
253	Delayed recanalization after MCAO ameliorates ischemic stroke by inhibiting apoptosis via HGF/c-Met/STAT3/Bcl-2 pathway in rats. Experimental Neurology, 2020, 330, 113359.	2.0	45
254	Posttraumatic Cerebral Vasospasm: Clinical and Morphological Presentations. Journal of Neurotrauma, 1999, 16, 763-770.	1.7	44
255	Delayed and Multiple Hyperbaric Oxygen Treatments Expand Therapeutic Window in Rat Focal Cerebral Ischemic Model. Neurocritical Care, 2005, 2, 206-211.	1.2	44
256	Inhibition of Src tyrosine kinase and effect on outcomes in a new in vivo model of surgically induced brain injury. Journal of Neurosurgery, 2007, 106, 680-686.	0.9	44
257	Nanoerythropoietin Is 10-Times More Effective Than Regular Erythropoietin in Neuroprotection in a Neonatal Rat Model of Hypoxia and Ischemia. Stroke, 2012, 43, 884-887.	1.0	44
258	The Involvement of Programmed Cell Death 5 (PDCD5) in the Regulation of Apoptosis in Cerebral Ischemia/Reperfusion Injury. CNS Neuroscience and Therapeutics, 2013, 19, 566-576.	1.9	44
259	Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic–ischemic encephalopathy. Cell Death and Disease, 2019, 10, 97.	2.7	44
260	Annexin A1 attenuates neuroinflammation through FPR2/p38/COXâ€2 pathway after intracerebral hemorrhage in male mice. Journal of Neuroscience Research, 2020, 98, 168-178.	1.3	43
261	Mitoquinone attenuates blood-brain barrier disruption through Nrf2/PHB2/OPA1 pathway after subarachnoid hemorrhage in rats. Experimental Neurology, 2019, 317, 1-9.	2.0	43
262	Inhibition of EZH2 (Enhancer of Zeste Homolog 2) Attenuates Neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-1ºB (Trimethylation of Histone 3 Lysine 27/Suppressor of Cytokine Signaling) Tj ETO Hemorrhage. Stroke, 2020, 51, 3320-3331.	2qQ <u>.8</u> 0 r{	gBT/Qverlock
263	Heat shock protein 70 upregulation by geldanamycin reduces brain injury in a mouse model of intracerebral hemorrhage. Neurochemistry International, 2010, 57, 844-850.	1.9	42
264	Prolonged Exposure to Isoflurane Ameliorates Infarction Severity in the Rat Pup Model of Neonatal Hypoxia-Ischemia. Translational Stroke Research, 2011, 2, 382-390.	2.3	42
265	Delayed hyperbaric oxygen therapy induces cell proliferation through stabilization of cAMP responsive element binding protein in the rat model of MCAo-induced ischemic brain injury. Neurobiology of Disease, 2013, 51, 133-143.	2.1	42
266	Recombinant Milk Fat Globule–EGF Factor-8 Reduces Oxidative Stress via Integrin β3/Nuclear Factor Erythroid 2–Related Factor 2/Heme Oxygenase Pathway in Subarachnoid Hemorrhage Rats. Stroke, 2014, 45, 3691-3697.	1.0	42
267	Pathophysiology and the Monitoring Methods for Cardiac Arrest Associated Brain Injury. International Journal of Molecular Sciences, 2017, 18, 129.	1.8	42
268	Neonatal Brain Hemorrhage (NBH) of Prematurity: Translational Mechanisms of the Vascular-Neural Network. Current Medicinal Chemistry, 2015, 22, 1214-1238.	1.2	42
269	Effects of MAPK inhibitors on cerebral vasospasm in a dog double hemorrhage model. Journal of Neurosurgery, 2000, 93, 1041-1047.	0.9	41
270	Inhibitory Effect With Antisense Mitogen-Activated Protein Kinase Oligodeoxynucleotide Against Cerebral Vasospasm in Rats. Stroke, 2002, 33, 775-781.	1.0	41

#	Article	IF	CITATIONS
271	Modeling Intracerebral Hemorrhage in Mice: Injection of Autologous Blood or Bacterial Collagenase. Journal of Visualized Experiments, 2012, , e4289.	0.2	41
272	Cannabinoid type 2 receptor stimulation attenuates brain edema by reducing cerebral leukocyte infiltration following subarachnoid hemorrhage in rats. Journal of the Neurological Sciences, 2014, 342, 101-106.	0.3	41
273	Efficacy and Safety of Cilostazol Therapy in Ischemic Stroke: A Meta-analysis. Journal of Stroke and Cerebrovascular Diseases, 2015, 24, 930-938.	0.7	41
274	Astrogliosis inhibition attenuates hydrocephalus by increasing cerebrospinal fluid reabsorption through the glymphatic system after germinal matrix hemorrhage. Experimental Neurology, 2019, 320, 113003.	2.0	41
275	PDGFR-Î ² modulates vascular smooth muscle cell phenotype via IRF-9/SIRT-1/NF-Î ^e B pathway in subarachnoid hemorrhage rats. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1369-1380.	2.4	41
276	The Dual Role of Microglia in Blood-Brain Barrier Dysfunction after Stroke. Current Neuropharmacology, 2020, 18, 1237-1249.	1.4	41
277	Connecting the early brain injury of aneurysmal subarachnoid hemorrhage to clinical practice. Turkish Neurosurgery, 2009, 20, 159-66.	0.1	41
278	Mitogen-activated protein kinase mediation of hemolysate-induced contraction in rabbit basilar artery. Journal of Neurosurgery, 1999, 90, 1091-1097.	0.9	40
279	Absent Filling of Ipsilateral Superficial Middle Cerebral Vein Is Associated With Poor Outcome After Reperfusion Therapy. Stroke, 2017, 48, 907-914.	1.0	40
280	Netrinâ€1 Preserves Bloodâ€Brain Barrier Integrity Through Deleted in Colorectal Cancer/Focal Adhesion Kinase/RhoA Signaling Pathway Following Subarachnoid Hemorrhage in Rats. Journal of the American Heart Association, 2017, 6, .	1.6	40
281	Targeting Oxidative Stress and Inflammatory Response for Blood–Brain Barrier Protection in Intracerebral Hemorrhage. Antioxidants and Redox Signaling, 2022, 37, 115-134.	2.5	40
282	Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats. Journal of Neuroscience Research, 2006, 84, 832-840.	1.3	39
283	The effect of 2-methoxyestradiol, a HIF-1 <i>α</i> inhibitor, in global cerebral ischemia in rats. Neurological Research, 2008, 30, 268-271.	0.6	39
284	Imatinib preserves blood–brain barrier integrity following experimental subarachnoid hemorrhage in rats. Journal of Neuroscience Research, 2015, 93, 94-103.	1.3	39
285	Epothilone B Benefits Nigrostriatal Pathway Recovery by Promoting Microtubule Stabilization After Intracerebral Hemorrhage. Journal of the American Heart Association, 2018, 7, .	1.6	39
286	Vascular Neural Network in Subarachnoid Hemorrhage. Translational Stroke Research, 2014, 5, 423-428.	2.3	38
287	HIF-1 alpha inhibition ameliorates neonatal brain damage after hypoxic-ischemic injury. Acta Neurochirurgica Supplementum, 2008, 102, 395-399.	0.5	38
288	The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Current Neuropharmacology, 2020, 18, 1187-1212.	1.4	38

#	Article	IF	CITATIONS
289	Contribution of Src tyrosine kinase to cerebral vasospasm after subarachnoid hemorrhage. Journal of Neurosurgery, 2003, 99, 383-390.	0.9	37
290	Hyperbaric oxygen preconditioning promotes angiogenesis in rat liver after partial hepatectomy. Life Sciences, 2008, 83, 236-241.	2.0	37
291	Hyperbaric oxygen therapy improves early posttransplant islet function. Pediatric Diabetes, 2010, 11, 471-478.	1.2	37
292	Isoflurane Posttreatment Reduces Brain Injury After an Intracerebral Hemorrhagic Stroke in Mice. Anesthesia and Analgesia, 2011, 113, 343-348.	1.1	37
293	Hyperbaric oxygen therapy for traumatic brain injury: bench-to-bedside. Medical Gas Research, 2016, 6, 102.	1.2	37
294	Adropin preserves the bloodâ€brain barrier through a Notch1/Hes1 pathway after intracerebral hemorrhage in mice. Journal of Neurochemistry, 2017, 143, 750-760.	2.1	37
295	Inhibition of stress fiber formation preserves blood–brain barrier after intracerebral hemorrhage in mice. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 87-102.	2.4	37
296	One-Stage Anterior Approach for Four-Vessel Occlusion in Rat. Stroke, 2005, 36, 2212-2214.	1.0	36
297	Inhibition of integrin αvβ3 reduces blood–brain barrier breakdown in focal ischemia in rats. Journal of Neuroscience Research, 2006, 84, 1837-1847.	1.3	36
298	Application of medical gases in the field of neurobiology. Medical Gas Research, 2011, 1, 13.	1.2	36
299	Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model. Medical Gas Research, 2011, 1, 15.	1.2	36
300	Recombinant Slit2 attenuates neuroinflammation after surgical brain injury by inhibiting peripheral immune cell infiltration via Robo1-srGAP1 pathway in a rat model. Neurobiology of Disease, 2016, 85, 164-173.	2.1	36
301	Traumatic Brain Injury and Stem Cell: Pathophysiology and Update on Recent Treatment Modalities. Stem Cells International, 2017, 2017, 1-13.	1.2	36
302	Limited Role of Inducible Nitric Oxide Synthase in Blood–Brain Barrier Function after Experimental Subarachnoid Hemorrhage. Journal of Neurotrauma, 2006, 23, 1874-1882.	1.7	35
303	Tissue inhibitor of matrix metalloproteinase-1 mediates erythropoietin-induced neuroprotection in hypoxia ischemia. Neurobiology of Disease, 2011, 44, 28-37.	2.1	35
304	Acute and Delayed Deferoxamine Treatment Attenuates Long-Term Sequelae After Germinal Matrix Hemorrhage in Neonatal Rats. Stroke, 2014, 45, 2475-2479.	1.0	35
305	Administration of a PTEN inhibitor BPV(pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats. Neuroscience Letters, 2015, 588, 131-136.	1.0	35
306	Hemoglobin induced NO/cGMP suppression Deteriorate Microcirculation via Pericyte Phenotype Transformation after Subarachnoid Hemorrhage in Rats. Scientific Reports, 2016, 6, 22070.	1.6	35

#	Article	IF	Citations
307	Cooperation of Genomic and Rapid Nongenomic Actions of Estrogens in Synaptic Plasticity. Molecular Neurobiology, 2017, 54, 4113-4126.	1.9	35
308	The Role of Thromboinflammation in Delayed Cerebral Ischemia after Subarachnoid Hemorrhage. Frontiers in Neurology, 2017, 8, 555.	1.1	35
309	Resveratrol Treatment in Different Time-Attenuated Neuronal Apoptosis After Oxygen and Glucose Deprivation/Reoxygenation via Enhancing the Activation of Nrf-2 Signaling Pathway In Vitro. Cell Transplantation, 2018, 27, 1789-1797.	1.2	35
310	IRE1 $\hat{1}$ ± inhibition attenuates neuronal pyroptosis via miR-125/NLRP1 pathway in a neonatal hypoxic-ischemic encephalopathy rat model. Journal of Neuroinflammation, 2020, 17, 152.	3.1	35
311	Apoptosis, blood-brain barrier, and subarachnoid hemorrhage. , 2003, 86, 483-487.		35
312	Surgical brain injury: prevention is better than cure. Frontiers in Bioscience - Landmark, 2008, Volume, 3793.	3.0	34
313	Capsaicin Pre-treatment Provides Neurovascular Protection Against Neonatal Hypoxic-Ischemic Brain Injury in Rats. Acta Neurochirurgica Supplementum, 2011, 111, 225-230.	0.5	34
314	Hyperbaric oxygen preconditioning attenuates hyperglycemia enhanced hemorrhagic transformation after transient MCAO in rats. Medical Gas Research, 2012, 2, 9.	1.2	34
315	Activation of Melanocortin 1 Receptor Attenuates Early Brain Injury in a Rat Model of Subarachnoid Hemorrhage viathe Suppression of Neuroinflammation through AMPK/TBK1/NF-κB Pathway in Rats. Neurotherapeutics, 2020, 17, 294-308.	2.1	34
316	Posttreatment with adenovirus-mediated gene transfer of calcitonin geneâ€"related peptide to reverse cerebral vasospasm in dogs. Journal of Neurosurgery, 2002, 97, 136-142.	0.9	33
317	Effect of Hyperbaric Oxygen Therapy on the Tubed Pedicle Flap Survival in a Rat Model. Annals of Plastic Surgery, 2003, 50, 51-56.	0.5	33
318	Mechanism of hyperbaric oxygen preconditioning in neonatal hypoxia–ischemia rat model. Brain Research, 2008, 1196, 151-156.	1.1	33
319	G-CSF ameliorates neuronal apoptosis through GSK-3β inhibition in neonatal hypoxia–ischemia in rats. Experimental Neurology, 2015, 263, 141-149.	2.0	33
320	$\langle i \rangle \hat{l} \pm \langle j \rangle 7$ Nicotinic Acetylcholine Receptor Stimulation Attenuates Neuroinflammation through JAK2-STAT3 Activation in Murine Models of Intracerebral Hemorrhage. BioMed Research International, 2017, 2017, 1-13.	0.9	33
321	Phase I and Phase II Therapies for Acute Ischemic Stroke: An Update on Currently Studied Drugs in Clinical Research. BioMed Research International, 2017, 2017, 1-14.	0.9	33
322	Milk Fat Globule-Epidermal Growth Factor-8 Pretreatment Attenuates Apoptosis and Inflammation via the Integrin-Î ² 3 Pathway after Surgical Brain Injury in Rats. Frontiers in Neurology, 2018, 9, 96.	1.1	33
323	Rh-IFN-α attenuates neuroinflammation and improves neurological function by inhibiting NF-κB through JAK1-STAT1/TRAF3 pathway in an experimental GMH rat model. Brain, Behavior, and Immunity, 2019, 79, 174-185.	2.0	33
324	Pituitary Adenylate Cyclase-Activating Polypeptide Attenuates Brain Edema by Protecting Blood–Brain Barrier and Glymphatic System After Subarachnoid Hemorrhage in Rats. Neurotherapeutics, 2020, 17, 1954-1972.	2.1	33

#	Article	IF	CITATIONS
325	Effect of P2-purinoceptor Antagonists on Hemolysate-induced and Adenosine 5'-Triphosphate-induced Contractions of Dog Basilar Artery in Vitro. Neurosurgery, 1996, 39, 815-821.	0.6	32
326	Delayed Remote Ischemic Postconditioning Improves Long Term Sensory Motor Deficits in a Neonatal Hypoxic Ischemic Rat Model. PLoS ONE, 2014, 9, e90258.	1.1	32
327	Insights into major facilitator superfamily domainâ€containing proteinâ€2a (Mfsd2a) in physiology and pathophysiology. What do we know so far?. Journal of Neuroscience Research, 2020, 98, 29-41.	1.3	32
328	The Neuroprotective Effects of Cyclooxygenase-2 Inhibition in a Mouse Model of Aneurysmal Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 145-149.	0.5	32
329	Oxidative Stress after Subarachnoid Hemorrhage in <i>gp91^{phox}</i> Knockout Mice. Canadian Journal of Neurological Sciences, 2007, 34, 356-361.	0.3	31
330	Evaluation of the hematoma consequences, neurobehavioral profiles, and histopathology in a rat model of pontine hemorrhage. Journal of Neurosurgery, 2013, 118, 465-477.	0.9	31
331	Neuroprotective role of an N-acetyl serotonin derivative via activation of tropomyosin-related kinase receptor B after subarachnoid hemorrhage in a rat model. Neurobiology of Disease, 2015, 78, 126-133.	2.1	31
332	Delayed recanalization at 3 days after permanent MCAO attenuates neuronal apoptosis through FGF21/FGFR1/PI3K/Caspase-3 pathway in rats. Experimental Neurology, 2019, 320, 113007.	2.0	31
333	The Role of Oxidative Stress in Common Risk Factors and Mechanisms of Cardio-Cerebrovascular Ischemia and Depression. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	1.9	31
334	Immunoreactive Cells After Cerebral Ischemia. Frontiers in Immunology, 2019, 10, 2781.	2.2	31
335	Cyclophilin a signaling induces pericyte-associated blood-brain barrier disruption after subarachnoid hemorrhage. Journal of Neuroinflammation, 2020, 17, 16.	3.1	31
336	Recombinant CCL17-dependent CCR4 activation alleviates neuroinflammation and neuronal apoptosis through the PI3K/AKT/Foxo1 signaling pathway after ICH in mice. Journal of Neuroinflammation, 2021, 18, 62.	3.1	31
337	Sirtuin 5-Mediated Lysine Desuccinylation Protects Mitochondrial Metabolism Following Subarachnoid Hemorrhage in Mice. Stroke, 2021, 52, 4043-4053.	1.0	31
338	Therapeutic effect of caspase inhibitors in the prevention of apoptosis and reversal of chronic cerebral vasospasm. Journal of Clinical Neuroscience, 2002, 9, 672-677.	0.8	30
339	Surgically induced brain injury in rats: The effect of erythropoietin. Journal of Neuroscience Methods, 2006, 158, 234-241.	1.3	30
340	EFFECTS OF APOCYNIN AND ETHANOL ON INTRACEREBRAL HAEMORRHAGE-INDUCED BRAIN INJURY IN RATS. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 845-850.	0.9	30
341	Therapeutic effects of hyperbaric oxygen in a rat model of endothelin-1-induced focal cerebral ischemia. Brain Research, 2007, 1153, 204-213.	1.1	30
342	PAR-1 antagonist SCH79797 ameliorates apoptosis following surgical brain injury through inhibition of ASK1-JNK in rats. Neurobiology of Disease, 2013, 50, 13-20.	2.1	30

#	Article	IF	CITATIONS
343	Low-density lipoprotein receptor-related protein-1 facilitates heme scavenging after intracerebral hemorrhage in mice. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1299-1310.	2.4	30
344	Osteopontin attenuates early brain injury through regulating autophagyâ€apoptosis interaction after subarachnoid hemorrhage in rats. CNS Neuroscience and Therapeutics, 2019, 25, 1162-1172.	1.9	30
345	Estrogen receptor $\hat{l}\pm$ promotes Cav1.2 ubiquitination and degradation in neuronal cells and in APP/PS1 mice. Aging Cell, 2019, 18, e12961.	3.0	30
346	White Matter Injury in Early Brain Injury after Subarachnoid Hemorrhage. Cell Transplantation, 2019, 28, 26-35.	1.2	30
347	Autonomic Disturbances in Acute Cerebrovascular Disease. Neuroscience Bulletin, 2019, 35, 133-144.	1.5	30
348	Recombinant CCL17 Enhances Hematoma Resolution and Activation of CCR4/ERK/Nrf2/CD163 Signaling Pathway After Intracerebral Hemorrhage in Mice. Neurotherapeutics, 2020, 17, 1940-1953.	2.1	30
349	Relaxant Effect of U0126 in Hemolysate-, Oxyhemoglobin-, and Bloody Cerebrospinal Fluid–Induced Contraction in Rabbit Basilar Artery. Stroke, 2001, 32, 154-161.	1.0	29
350	Recombinant Osteopontin Attenuates Brain Injury after Intracerebral Hemorrhage in Mice. Neurocritical Care, 2011, 14, 109-117.	1.2	29
351	Hydrogen is neuroprotective against surgically induced brain injury. Medical Gas Research, 2011, 1, 7.	1.2	29
352	CRMP-2 Is Involved in Axon Growth Inhibition Induced by RGMa In Vitro and In Vivo. Molecular Neurobiology, 2013, 47, 903-913.	1.9	29
353	A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (Part I –) Tj ETQq1	1.0.7843 1.2	 14 rgBT 0\ 29
354	Hyperbaric oxygen preconditioning attenuates hemorrhagic transformation through increasing PPARÎ ³ in hyperglycemic MCAO rats. Experimental Neurology, 2015, 265, 22-29.	2.0	29
355	Overexpression of Mfsd2a attenuates blood brain barrier dysfunction via Cav-1/Keap-1/Nrf-2/HO-1 pathway in a rat model of surgical brain injury. Experimental Neurology, 2020, 326, 113203.	2.0	29
356	Stroke: Anatomy of a catastrophic event. , 1998, 253, 58-63.		28
357	Morphological changes of cerebral penetrating arteries in a canine double hemorrhage model. World Neurosurgery, 2000, 54, 212-220.	1.3	28
358	Evaluation of the microvasculature and cerebral ischemia after experimental subarachnoid hemorrhage in dogs. Journal of Neurosurgery, 2002, 97, 896-904.	0.9	28
359	Signal transduction pathways in cerebral vasospasm. Pathophysiology, 2003, 9, 47-61.	1.0	28
360	Increased RhoA translocation in renal cortex of diabetic rats. Life Sciences, 2003, 72, 2943-2952.	2.0	28

#	Article	IF	Citations
361	Hyperbaric Oxygen Preconditioning Alleviates Myocardial Ischemic Injury in Rats. Experimental Biology and Medicine, 2008, 233, 1448-1453.	1.1	28
362	Normoxic induction of cerebral HIF-1 \hat{l} ± by acetazolamide in rats: Role of acidosis. Neuroscience Letters, 2009, 451, 274-278.	1.0	28
363	Vascular Neural Network: the Importance of Vein Drainage in Stroke. Translational Stroke Research, 2014, 5, 163-166.	2.3	28
364	Hyperbaric Oxygen Preconditioning Attenuates Hemorrhagic Transformation Through Reactive Oxygen Species/Thioredoxin-Interacting Protein/Nod-Like Receptor Protein 3 Pathway in Hyperglycemic Middle Cerebral Artery Occlusion Rats. Critical Care Medicine, 2016, 44, e403-e411.	0.4	28
365	TLR7 (Toll-Like Receptor 7) Facilitates Heme Scavenging Through the BTK (Bruton Tyrosine Kinase)–CRT (Calreticulin)–LRP1 (Low-Density Lipoprotein Receptor–Related Protein-1)–Hx (Hemopexin) Pathway in Murine Intracerebral Hemorrhage. Stroke, 2018, 49, 3020-3029.	1.0	28
366	Consciousness: New Concepts and Neural Networks. Frontiers in Cellular Neuroscience, 2019, 13, 302.	1.8	28
367	MicroRNA-101a Regulates Autophagy Phenomenon via the MAPK Pathway to Modulate Alzheimer's-Associated Pathogenesis. Cell Transplantation, 2019, 28, 1076-1084.	1.2	28
368	Neuroprotection by Melatonin after Germinal Matrix Hemorrhage in Neonatal Rats. Acta Neurochirurgica Supplementum, 2011, 111, 201-206.	0.5	28
369	Erythropoietin in Stroke Therapy: Friend or Foe. Current Medicinal Chemistry, 2015, 22, 1205-1213.	1.2	28
370	Hematoma Expansion Following Intracerebral Hemorrhage: Mechanisms Targeting the Coagulation Cascade and Platelet Activation. Current Drug Targets, 2017, 18, 1329-1344.	1.0	28
371	Role of calcium channels in oxyhemoglobin-induced apoptosis in endothelial cells. Journal of Neurosurgery, 2000, 93, 640-646.	0.9	27
372	Reduced brain injury in CD18â€deficient mice after experimental intracerebral hemorrhage. Journal of Neuroscience Research, 2008, 86, 3240-3245.	1.3	27
373	The evolving roles of pericyte in early brain injury after subarachnoid hemorrhage. Brain Research, 2015, 1623, 110-122.	1.1	27
374	DKK3 attenuates JNK and AP-1 induced inflammation via Kremen-1 and DVL-1 in mice following intracerebral hemorrhage. Journal of Neuroinflammation, 2020, 17, 130.	3.1	27
375	Adhesion Molecules in CNS Disorders: Biomarker and Therapeutic Targets. CNS and Neurological Disorders - Drug Targets, 2013, 12, 392-404.	0.8	27
376	New lumbar method for monitoring cerebrospinal fluid pressure in rats. Journal of Neuroscience Methods, 2004, 135, 121-127.	1.3	26
377	DLK silencing attenuated neuron apoptosis through JIP3/MA2K7/JNK pathway in early brain injury after SAH in rats. Neurobiology of Disease, 2017, 103, 133-143.	2.1	26
378	ErbB4 protects against neuronal apoptosis via activation of YAP/PIK3CB signaling pathway in a rat model of subarachnoid hemorrhage. Experimental Neurology, 2017, 297, 92-100.	2.0	26

#	Article	IF	CITATIONS
379	NT-4 attenuates neuroinflammation via TrkB/PI3K/FoxO1 pathway after germinal matrix hemorrhage in neonatal rats. Journal of Neuroinflammation, 2020, 17, 158.	3.1	26
380	Activation of TGR5 protects blood brain barrier via the BRCA1/Sirt1 pathway after middle cerebral artery occlusion in rats. Journal of Biomedical Science, 2020, 27, 61.	2.6	26
381	Advances in Experimental Subarachnoid Hemorrhage. , 2011, 110, 15-21.		26
382	Altered Expression of P2Receptor mRNAs in the Basilar Artery in a Rat Double Hemorrhage Model. Stroke, 2001, 32, 516-522.	1.0	25
383	Morphological changes of cerebral arteries in a canine double hemorrhage model. Neuroscience Letters, 2002, 326, 137-141.	1.0	25
384	Repetitive hyperbaric oxygen exposures enhance sensitivity to convulsion by upregulation of eNOS and nNOS. Brain Research, 2008, 1201, 128-134.	1.1	25
385	Role of HCN Channels in Neuronal Hyperexcitability after Subarachnoid Hemorrhage in Rats. Journal of Neuroscience, 2012, 32, 3164-3175.	1.7	25
386	Effect of Dexmedetomidine on Brain Edema and Neurological Outcomes in Surgical Brain Injury in Rats. Anesthesia and Analgesia, 2012, 115, 154-159.	1.1	25
387	A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part) Tj ETQq1	1 0.784314 r 1.2	gBT_/Overloc
388	Hyperbaric oxygen therapy for post concussion symptoms: issues may affect the results. Medical Gas Research, 2015, 5, 10.	1.2	25
389	LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF- \hat{l}^21 signaling activity following subarachnoid hemorrhage in rats. Experimental and Therapeutic Medicine, 2016, 12, 2537-2543.	0.8	25
390	HMGCS2 promotes autophagic degradation of the amyloid- \hat{l}^2 precursor protein through ketone body-mediated mechanisms. Biochemical and Biophysical Research Communications, 2017, 486, 492-498.	1.0	25
391	Bosutinib Attenuates Inflammation via Inhibiting Salt-Inducible Kinases in Experimental Model of Intracerebral Hemorrhage on Mice. Stroke, 2017, 48, 3108-3116.	1.0	25
392	Critical role of EphA4 in early brain injury after subarachnoid hemorrhage in rat. Experimental Neurology, 2017, 296, 41-48.	2.0	25
393	A Look into Stem Cell Therapy: Exploring the Options for Treatment of Ischemic Stroke. Stem Cells International, 2017, 2017, 1-14.	1.2	25
394	Delayed Recanalization Promotes Functional Recovery in Rats Following Permanent Middle Cerebral Artery Occlusion. Translational Stroke Research, 2018, 9, 185-198.	2.3	25
395	Activation of GPR30 with G1 attenuates neuronal apoptosis via $src/EGFR/stat3$ signaling pathway after subarachnoid hemorrhage in male rats. Experimental Neurology, 2019, 320, 113008.	2.0	25
396	Targeting mast cell as a neuroprotective strategy. Brain Injury, 2019, 33, 723-733.	0.6	25

#	Article	IF	CITATIONS
397	GW0742 activates miRâ€17â€5p and inhibits TXNIP/NLRP3â€mediated inflammation after hypoxicâ€ischaemic in rats and in PC12 cells. Journal of Cellular and Molecular Medicine, 2020, 24, 12318-12330.	ijΨĶ	25
398	Orexin A alleviates neuroinflammation via OXR2/CaMKK \hat{I}^2 /AMPK signaling pathway after ICH in mice. Journal of Neuroinflammation, 2020, 17, 187.	3.1	25
399	Adenosine Triphosphate Causes Vasospasm of the Rat Femoral Artery. Neurosurgery, 1998, 42, 825-832.	0.6	24
400	Factors influencing outcome in intracerebral hematoma: a simple, reliable, and accurate method to grade intracerebral hemorrhage. World Neurosurgery, 2005, 63, 343-348.	1.3	24
401	Magnetic Resonance Imaging Detects and Predicts Early Brain Injury after Subarachnoid Hemorrhage in a Canine Experimental Model. Journal of Neurotrauma, 2008, 25, 1099-1106.	1.7	24
402	Protective effects of Ephedra sinica extract on blood–brain barrier integrity and neurological function correlate with complement C3 reduction after subarachnoid hemorrhage in rats. Neuroscience Letters, 2015, 609, 216-222.	1.0	24
403	Intranasal Administration of Interferon Beta Attenuates Neuronal Apoptosis via the JAK1/STAT3/BCL-2 Pathway in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. ASN Neuro, 2016, 8, 175909141667049.	1.5	24
404	Emerging mechanisms and novel applications of hydrogen gas therapy. Medical Gas Research, 2018, 8, 98.	1.2	24
405	Osteopontin as a candidate of therapeutic application for the acute brain injury. Journal of Cellular and Molecular Medicine, 2020, 24, 8918-8929.	1.6	24
406	Reduced Matrix Metalloproteinase-9 Activity and Cell Death After Global Ischemia in the Brain Preconditioned with Hyperbaric Oxygen. Acta Neurochirurgica Supplementum, 2010, 106, 47-49.	0.5	24
407	Hydrogen Inhalation is Neuroprotective and Improves Functional Outcomes in Mice After Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 179-183.	0.5	24
408	Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiology of Disease, 2022, 170, 105750.	2.1	24
409	Insulin-like growth factor-I decreased etoposide-induced apoptosis in glioma cells by increasing bcl-2 expression and decreasing CPP32 activity. Neurological Research, 2005, 27, 27-35.	0.6	23
410	Adenosine A3 receptor agonist reduces early brain injury in subarachnoid haemorrhage. NeuroReport, 2010, 21, 892-896.	0.6	23
411	Hyperbaric Oxygen Preconditioning Reduces Postoperative Brain Edema and Improves Neurological Outcomes After Surgical Brain Injury. Acta Neurochirurgica Supplementum, 2010, 106, 217-220.	0.5	23
412	Sampling of CSF via the Cisterna Magna and Blood Collection via the Heart Affects Brain Water Content in a Rat SAH Model. Translational Stroke Research, 2011, 2, 232-237.	2.3	23
413	Anti-neutrophil antibody enhances the neuroprotective effects of G-CSF by decreasing number of neutrophils in hypoxic ischemic neonatal rat model. Neurobiology of Disease, 2014, 69, 192-199.	2.1	23
414	Tozasertib attenuates neuronal apoptosis via DLK/JIP3/MA2K7/JNK pathway in early brain injury after SAH in rats. Neuropharmacology, 2016, 108, 316-323.	2.0	23

#	Article	IF	CITATIONS
415	Targeting Germinal Matrix Hemorrhage–Induced Overexpression of Sodium oupled Bicarbonate Exchanger Reduces Posthemorrhagic Hydrocephalus Formation in Neonatal Rats. Journal of the American Heart Association, 2018, 7, .	1.6	23
416	Osteopontin-Enhanced Autophagy Attenuates Early Brain Injury via FAK–ERK Pathway and Improves Long-Term Outcome after Subarachnoid Hemorrhage in Rats. Cells, 2019, 8, 980.	1.8	23
417	TREM (Triggering Receptor Expressed on Myeloid Cells)-1 Inhibition Attenuates Neuroinflammation via PKC (Protein Kinase C) Î'/CARD9 (Caspase Recruitment Domain Family Member 9) Signaling Pathway After Intracerebral Hemorrhage in Mice. Stroke, 2021, 52, 2162-2173.	1.0	23
418	Hyperbaric oxygen therapy as adjunctive strategy in treatment of glioblastoma multiforme. Medical Gas Research, 2018, 8, 24.	1.2	23
419	Transient exposure of rat pups to hyperoxia at normobaric and hyperbaric pressures does not cause retinopathy of prematurity. Experimental Neurology, 2004, 189, 150-161.	2.0	22
420	Oxygen treatment restores energy status following experimental neonatal hypoxia-ischemia. Pediatric Critical Care Medicine, 2007, 8, 165-173.	0.2	22
421	Hyperbaric Oxygen for Cerebral Vasospasm and Brain Injury Following Subarachnoid Hemorrhage. Translational Stroke Research, 2011, 2, 316-327.	2.3	22
422	Targeting C/EBP homologous protein with siRNA attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Experimental Neurology, 2012, 238, 218-224.	2.0	22
423	Recombinant Slit2 Reduces Surgical Brain Injury Induced Blood Brain Barrier Disruption via Robo4 Dependent Rac1 Activation in a Rodent Model. Scientific Reports, 2017, 7, 746.	1.6	22
424	IVIG activates FcγRIIB-SHIP1-PIP3 Pathway to stabilize mast cells and suppress inflammation after ICH in mice. Scientific Reports, 2017, 7, 15583.	1.6	22
425	CpG-ODN exerts a neuroprotective effect via the TLR9/pAMPK signaling pathway by activation of autophagy in a neonatal HIE rat model. Experimental Neurology, 2018, 301, 70-80.	2.0	22
426	Anti-inflammation conferred by stimulation of CD200R1 via Dok1 pathway in rat microglia after germinal matrix hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 97-107.	2.4	22
427	Rhodopsin: A Potential Biomarker for Neurodegenerative Diseases. Frontiers in Neuroscience, 2020, 14, 326.	1.4	22
428	Activation of MC1R with BMS-470539 attenuates neuroinflammation via cAMP/PKA/Nurr1 pathway after neonatal hypoxic-ischemic brain injury in rats. Journal of Neuroinflammation, 2021, 18, 26.	3.1	22
429	A Novel Preclinical Model of Germinal Matrix Hemorrhage Using Neonatal Rats. Acta Neurochirurgica Supplementum, 2011, 111, 55-60.	0.5	22
430	Inhibition of caspase-1-mediated inflammasome activation reduced blood coagulation in cerebrospinal fluid after subarachnoid haemorrhage. EBioMedicine, 2022, 76, 103843.	2.7	22
431	Progranulin Reduced Neuronal Cell Death by Activation of Sortilin 1 Signaling Pathways After Subarachnoid Hemorrhage in Rats. Critical Care Medicine, 2015, 43, e304-e311.	0.4	21
432	Cyclosporine A alleviated matrix metalloproteinase 9 associated blood-brain barrier disruption after subarachnoid hemorrhage in mice. Neuroscience Letters, 2017, 649, 7-13.	1.0	21

#	Article	IF	CITATIONS
433	Neurotrophin-3 provides neuroprotection via TrkC receptor dependent pErk5 activation in a rat surgical brain injury model. Experimental Neurology, 2018, 307, 82-89.	2.0	21
434	Secukinumab attenuates reactive astrogliosis via ILâ€17RA/(C/EBPβ)/SIRT1 pathway in a rat model of germinal matrix hemorrhage. CNS Neuroscience and Therapeutics, 2019, 25, 1151-1161.	1.9	21
435	GCN2 reduces inflammation by p-elF2 \hat{i} ±/ATF4 pathway after intracerebral hemorrhage in mice. Experimental Neurology, 2019, 313, 16-25.	2.0	21
436	Persistent Neurovascular Unit Dysfunction: Pathophysiological Substrate and Trigger for Late-Onset Neurodegeneration After Traumatic Brain Injury. Frontiers in Neuroscience, 2020, 14, 581.	1.4	21
437	TGR5 activation attenuates neuroinflammation via Pellino3 inhibition of caspase-8/NLRP3 after middle cerebral artery occlusion in rats. Journal of Neuroinflammation, 2021, 18, 40.	3.1	21
438	Acute Hyperglycemia Is Associated with Immediate Brain Swelling and Hemorrhagic Transformation After Middle Cerebral Artery Occlusion in Rats. Acta Neurochirurgica Supplementum, 2016, 121, 237-241.	0.5	21
439	History of Preclinical Models of Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 3-8.	0.5	21
440	Intrathecal application with liposome-entrapped Fasudil for cerebral vasospasm followingsubarachnoid hemorrhage in rats. Journal of Clinical Neuroscience, 2001, 8, 557-561.	0.8	20
441	Preliminary study of the effects of caspase inhibitors on vasospasm in dog penetrating arteries. Life Sciences, 2002, 70, 3007-3018.	2.0	20
442	Role of Cl– in cerebral vascular tone and expression of Na+-K+-2Cl– co-transporter after neonatal hypoxia-ischemia. Canadian Journal of Physiology and Pharmacology, 2005, 83, 767-773.	0.7	20
443	Hyperbaric oxygen therapy promotes neurogenesis: where do we stand?. Medical Gas Research, 2011, 1, 14.	1.2	20
444	Role of the pituitary–adrenal axis in granulocyte-colony stimulating factor-induced neuroprotection against hypoxia–ischemia in neonatal rats. Neurobiology of Disease, 2012, 47, 29-37.	2.1	20
445	Statin-Induced T-Lymphocyte Modulation and Neuroprotection Following Experimental Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2013, 115, 259-266.	0.5	20
446	Does Prevention of Vasospasm in Subarachnoid Hemorrhage Improve Clinical Outcome? No. Stroke, 2013, 44, S34-S36.	1.0	20
447	Chronic Hydrocephalus after Experimental Subarachnoid Hemorrhage. PLoS ONE, 2013, 8, e69571.	1.1	20
448	Angiopoietin-like 4: A double-edged sword in atherosclerosis and ischemic stroke?. Experimental Neurology, 2015, 272, 61-66.	2.0	20
449	Predictive Value of CTA Spot Sign on Hematoma Expansion in Intracerebral Hemorrhage Patients. BioMed Research International, 2017, 2017, 1-9.	0.9	20
450	RvD1binding with FPR2 attenuates inflammation via Rac1/NOX2 pathway after neonatal hypoxic-ischemic injury in rats. Experimental Neurology, 2019, 320, 112982.	2.0	20

#	Article	IF	CITATIONS
451	Modification of kynurenine pathway via inhibition of kynurenine hydroxylase attenuates surgical brain injury complications in a male rat model. Journal of Neuroscience Research, 2020, 98, 155-167.	1.3	20
452	rhIGF-1 reduces the permeability of the blood-brain barrier following intracerebral hemorrhage in mice. Experimental Neurology, 2019, 312, 72-81.	2.0	20
453	Matrix Metalloproteinase 9 Inhibition Reduces Early Brain Injury in Cortex After Subarachnoid Hemorrhage. , 2011, 110, 81-84.		20
454	Activation of GPR39 with TC-G 1008Âattenuates neuroinflammation via SIRT1/PGC-1α/Nrf2 pathway post-neonatal hypoxic–ischemic injury in rats. Journal of Neuroinflammation, 2021, 18, 226.	3.1	20
455	Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats. Developmental Neurobiology, 2010, 70, 182-194.	1.5	19
456	Protection of Minocycline on Early Brain Injury After Subarachnoid Hemorrhage in Rats. , 2011, 110, 71-74.		19
457	Fingolimod confers neuroprotection through activation of Rac1 after experimental germinal matrix hemorrhage in rat pups. Journal of Neurochemistry, 2017, 140, 776-786.	2.1	19
458	Dabigatran ameliorates post-haemorrhagic hydrocephalus development after germinal matrix haemorrhage in neonatal rat pups. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3135-3149.	2.4	19
459	Bliverdin reductase-A improves neurological function in a germinal matrix hemorrhage rat model. Neurobiology of Disease, 2018, 110, 122-132.	2.1	19
460	Biliverdin reductase-A attenuated GMH-induced inflammatory response in the spleen by inhibiting toll-like receptor-4 through eNOS/NO pathway. Journal of Neuroinflammation, 2018, 15, 118.	3.1	19
461	A Novel Technique for Visualizing and Analyzing the Cerebral Vasculature in Rodents. Translational Stroke Research, 2019, 10, 216-230.	2.3	19
462	Adenoviral-TMBIM6 vector attenuates ER stress - induced apoptosis in a neonatal hypoxic-ischemic rat model. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	19
463	Macrophage stimulating protein preserves blood brain barrier integrity after intracerebral hemorrhage through recepteur d'origine nantais dependent GAB1/Src/βâ€catenin pathway activation in a mouse model. Journal of Neurochemistry, 2019, 148, 114-126.	2.1	19
464	Vitamin D attenuates cerebral artery remodeling through VDR/AMPK/eNOS dimer phosphorylation pathway after subarachnoid hemorrhage in rats. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 272-284.	2.4	19
465	Recombinant OX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT signaling pathway following subarachnoid hemorrhage in rats. Experimental Neurology, 2020, 326, 113179.	2.0	19
466	Increase in Blood-Brain Barrier (BBB) Permeability Is Regulated by MMP3 via the ERK Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	1.9	19
467	Mechanisms of Early Brain Injury After SAH: Matrixmetalloproteinase 9., 2011, 110, 63-65.		19
468	Hemolysate Induces Tyrosine Phosphorylation and Collagen-Lattice Compaction in Cultured Fibroblasts. Biochemical and Biophysical Research Communications, 1999, 264, 100-107.	1.0	18

#	Article	lF	Citations
469	Oxyhemoglobin produces apoptosis and necrosis in cultured smooth muscle cells. Brain Research, 2001, 889, 89-97.	1.1	18
470	Oxygen Therapy in Ischemic Stroke. Stroke, 2003, 34, e152-3; author reply e153-5.	1.0	18
471	Resolving the Negative Data Publication Dilemma in Translational Stroke Research. Translational Stroke Research, 2011, 2, 1-6.	2.3	18
472	Infratentorial Strokes for Posterior Circulation Folks: Clinical Correlations for Current Translational Therapeutics. Translational Stroke Research, 2011, 2, 144-151.	2.3	18
473	Preoperative mucosal tolerance to brain antigens and a neuroprotective immune response following surgical brain injury. Journal of Neurosurgery, 2012, 116, 246-253.	0.9	18
474	Treatment with sodium orthovanadate reduces blood–brain barrier disruption via phosphatase and tensin homolog deleted on chromosome 10 (PTEN) phosphorylation in experimental subarachnoid hemorrhage. Journal of Neuroscience Research, 2012, 90, 691-697.	1.3	18
475	From apoplexy to stroke: Historical perspectives and new research frontiers. Progress in Neurobiology, 2014, 115, 1-5.	2.8	18
476	Protease-Activated Receptor 1 and 4 Signal Inhibition Reduces Preterm Neonatal Hemorrhagic Brain Injury. Stroke, 2015, 46, 1710-1713.	1.0	18
477	Scutellarin attenuates vasospasm through the Erk5-KLF2-eNOS pathway after subarachnoid hemorrhage in rats. Journal of Clinical Neuroscience, 2016, 34, 264-270.	0.8	18
478	Platelet-Derived Growth Factor Receptor- \hat{l}^2 Regulates Vascular Smooth Muscle Cell Phenotypic Transformation and Neuroinflammation After Intracerebral Hemorrhage in Mice. Critical Care Medicine, 2016, 44, e390-e402.	0.4	18
479	The risk factors and prognosis of delayed perihematomal edema in patients with spontaneous intracerebral hemorrhage. CNS Neuroscience and Therapeutics, 2019, 25, 1189-1194.	1.9	18
480	A comprehensive review of therapeutic targets that induce microglia/macrophageâ€mediated hematoma resolution after germinal matrix hemorrhage. Journal of Neuroscience Research, 2020, 98, 121-128.	1.3	18
481	Dysfunction of the neurovascular unit in diabetes-related neurodegeneration. Biomedicine and Pharmacotherapy, 2020, 131, 110656.	2.5	18
482	Rh-CSF1 attenuates neuroinflammation via the CSF1R/PLCG2/PKCε pathway in a rat model of neonatal HIE. Journal of Neuroinflammation, 2020, 17, 182.	3.1	18
483	Cannabinoid Receptor Type 2 Agonist Attenuates Acute Neurogenic Pulmonary Edema by Preventing Neutrophil Migration after Subarachnoid Hemorrhage in Rats. Acta Neurochirurgica Supplementum, 2016, 121, 135-139.	0.5	18
484	Mitogen-Activated Protein Kinases in Cerebral Vasospasm After Subarachnoid Hemorrhage: A Review. , 2011, 110, 133-139.		18
485	Role of P2X Purinoceptor 7 in Neurogenic Pulmonary Edema after Subarachnoid Hemorrhage in Rats. PLoS ONE, 2014, 9, e89042.	1.1	18
486	Oxyhemoglobin produces necrosis, not apoptosis, in astrocytes. Brain Research, 2002, 945, 41-49.	1.1	17

#	Article	IF	CITATIONS
487	Effect of gap junction inhibition on intracerebral hemorrhage-induced brain injury in mice. Neurological Research, 2009, 31, 173-178.	0.6	17
488	Dual effects of melatonin on oxidative stress after surgical brain injury in rats. Journal of Pineal Research, 2009, 46, 43-48.	3.4	17
489	Welcome to Medical Gas Research. Medical Gas Research, 2011, 1, 1.	1.2	17
490	Administration of rCTRP9 Attenuates Neuronal Apoptosis Through AdipoR1/PI3K/Akt Signaling Pathway after ICH in Mice. Cell Transplantation, 2019, 28, 756-766.	1.2	17
491	Neurogenesis changes and the fate of progenitor cells after subarachnoid hemorrhage in rats. Experimental Neurology, 2019, 311, 274-284.	2.0	17
492	Intracerebral Hemorrhage in Mice. Methods in Molecular Biology, 2018, 1717, 83-91.	0.4	17
493	Intranasal IGF-1 Reduced Rat Pup Germinal Matrix Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 209-212.	0.5	17
494	Autophagy after Subarachnoid Hemorrhage: Can Cell Death be Good?. Current Neuropharmacology, 2018, 16, 1314-1319.	1.4	17
495	Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury. Medical Gas Research, 2016, 6, 187.	1.2	17
496	A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 543-558.	2.4	17
497	Met-RANTES preserves the blood–brain barrier through inhibiting CCR1/SRC/Rac1 pathway after intracerebral hemorrhage in mice. Fluids and Barriers of the CNS, 2022, 19, 7.	2.4	17
498	Role of histamine in brain protection in surgical brain injury in mice. Brain Research, 2008, 1205, 100-107.	1.1	16
499	Hyperoxia preconditioning: the next frontier in neurology?. Neurological Research, 2012, 34, 415-421.	0.6	16
500	Translational Stroke Research Guideline Projections: The 20/20 Standards. Translational Stroke Research, 2018, 9, 9-12.	2.3	16
501	Pathophysiology of Ganglioside GM1 in Ischemic Stroke: Ganglioside GM1: A Critical Review. Cell Transplantation, 2019, 28, 657-661.	1.2	16
502	Surgically-induced brain injury: where are we now?. Chinese Neurosurgical Journal, 2019, 5, 29.	0.3	16
503	Isoflurane versus sevoflurane for early brain injury and expression of sphingosine kinase 1 after experimental subarachnoid hemorrhage. Neuroscience Letters, 2020, 733, 135142.	1.0	16
504	The Next Step in the Treatment of Stroke. Frontiers in Neurology, 2020, 11, 582605.	1.1	16

#	Article	IF	Citations
505	Kisspeptin-54 attenuates oxidative stress and neuronal apoptosis in early brain injury after subarachnoid hemorrhage in rats via GPR54/ARRB2/AKT/GSK3β signaling pathway. Free Radical Biology and Medicine, 2021, 171, 99-111.	1.3	16
506	Inhibition of c-Jun N-terminal kinase pathway attenuates cerebral vasospasm after experimental subarachnoid hemorrhage through the suppression of apoptosis. Acta Neurochirurgica Supplementum, 2008, 104, 27-31.	0.5	16
507	Mechanism of ATP-Induced [Ca2+]iMobilization in Rat Basilar Smooth Muscle Cells. Stroke, 2000, 31, 1377-1385.	1.0	15
508	Increased RhoA translocation in aorta of diabetic rats1. Acta Pharmacologica Sinica, 2006, 27, 543-548.	2.8	15
509	The effect of ecdysterone on cerebral vasospasm following experimental subarachnoid hemorrhage <i>in vitro</i> and <i>in vivo</i> . Neurological Research, 2008, 30, 571-580.	0.6	15
510	Role of gap junctions in early brain injury following subarachnoid hemorrhage. Brain Research, 2010, 1315, 150-158.	1.1	15
511	Isoflurane Post-Treatment Ameliorates GMH-Induced Brain Injury in Neonatal Rats. Stroke, 2013, 44, 3587-3590.	1.0	15
512	Hydrogen-Rich Saline Attenuated Neuropathic Pain by Reducing Oxidative Stress. Canadian Journal of Neurological Sciences, 2013, 40, 857-863.	0.3	15
513	The development of hyperbaric oxygen therapy for skin rejuvenation and treatment of photoaging. Medical Gas Research, 2014, 4, 7.	1.2	15
514	Data Standardization and Quality Management. Translational Stroke Research, 2018, 9, 4-8.	2.3	15
515	Stem Cell Therapy in Brain Ischemia: The Role of Mitochondrial Transfer. Stem Cells and Development, 2020, 29, 555-561.	1.1	15
516	Protective Effect of Hydrogen Gas Therapy After Germinal Matrix Hemorrhage in Neonatal Rats. Acta Neurochirurgica Supplementum, 2011, 111, 237-241.	0.5	15
517	The finer scale of consciousness: quantum theory. Annals of Translational Medicine, 2019, 7, 585-585.	0.7	15
518	Surgical Brain Injury and Edema Prevention. Acta Neurochirurgica Supplementum, 2013, 118, 129-133.	0.5	14
519	Hyperbaric oxygen preconditioning: a reliable option for neuroprotection. Medical Gas Research, 2016, 6, 20.	1.2	14
520	Acute intranasal osteopontin treatment in male rats following TBI increases the number of activated microglia but does not alter lesion characteristics. Journal of Neuroscience Research, 2020, 98, 141-154.	1.3	14
521	Role of Clâ^' current in endothelin-1-induced contraction in rabbit basilar artery. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2159-H2167.	1.5	13
522	Protective Effects of Hydrogen on Fetal Brain Injury During Maternal Hypoxia. Acta Neurochirurgica Supplementum, 2011, 111, 307-311.	0.5	13

#	Article	IF	CITATIONS
523	Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage: Mechanism and Therapies. BioMed Research International, 2014, 2014, 1-3.	0.9	13
524	Rh-CSF1 Attenuates Oxidative Stress and Neuronal Apoptosis via the CSF1R/PLCG2/PKA/UCP2 Signaling Pathway in a Rat Model of Neonatal HIE. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	1.9	13
525	Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. Journal of Neuroinflammation, 2021, 18, 160.	3.1	13
526	Effects of Recombinant Osteopontin on Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Rats. Acta Neurochirurgica Supplementum, 2011, 111, 231-236.	0.5	13
527	Oxyhemoglobin Produces Necrosis in Cultured Smooth Muscle Cells. , 2000, 76, 507-510.		13
528	Autophagy and Apoptosis in Acute Brain Injuries: From Mechanism to Treatment. Antioxidants and Redox Signaling, 2023, 38, 234-257.	2.5	13
529	The effects of nicotinamide adenine dinucleotide on intracerebral hemorrhage-induced brain injury in mice. Neurological Research, 2009, 31, 179-182.	0.6	12
530	Hydrogen Saline Treatment Attenuates Hyperoxia-Induced Retinopathy by Inhibition of Oxidative Stress and Reduction of VEGF Expression. Ophthalmic Research, 2012, 47, 122-127.	1.0	12
531	Imatinib attenuates cerebrovascular injury and phenotypic transformation after intracerebral hemorrhage in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1093-R1104.	0.9	12
532	Pharmacological Preventions of Brain Injury Following Experimental Germinal Matrix Hemorrhage: an Up-to-Date Review. Translational Stroke Research, 2016, 7, 20-32.	2.3	12
533	The insights into molecular pathways of hypoxiaâ€inducible factor in the brain. Journal of Neuroscience Research, 2020, 98, 57-76.	1.3	12
534	Inhibition of mast cell tryptase attenuates neuroinflammation via PAR-2/p38/NFκB pathway following asphyxial cardiac arrest in rats. Journal of Neuroinflammation, 2020, 17, 144.	3.1	12
535	Delayed Recanalization—How Late Is Not Too Late?. Translational Stroke Research, 2021, 12, 382-393.	2.3	12
536	Neurokinin Receptor 1 (NK1R) Antagonist Aprepitant Enhances Hematoma Clearance by Regulating Microglial Polarization via PKC/p38MAPK/NFI°B Pathway After Experimental Intracerebral Hemorrhage in Mice. Neurotherapeutics, 2021, 18, 1922-1938.	2.1	12
537	Activation of Frizzled-7 attenuates blood–brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids and Barriers of the CNS, 2021, 18, 44.	2.4	12
538	Pituitary adenylate cyclase-activating polypeptide attenuates mitochondria-mediated oxidative stress and neuronal apoptosis after subarachnoid hemorrhage in rats. Free Radical Biology and Medicine, 2021, 174, 236-248.	1.3	12
539	Expression and Role of COMT in a Rat Subarachnoid Hemorrhage Model. , 2011, 110, 181-187.		12
540	Combined Systemic Thrombolysis with Alteplase and Early Hyperbaric Oxygen Therapy in Experimental Embolic Stroke in Rats: Relationship to Functional Outcome and Reduction of Structural Damage. Acta Neurochirurgica Supplementum, 2011, 111, 167-172.	0.5	12

#	Article	IF	CITATIONS
541	Targeting Vascular Neural Network in Intracerebral Hemorrhage. Current Pharmaceutical Design, 2017, 23, 2197-2205.	0.9	12
542	Posterior circulation stroke and animal models. Frontiers in Bioscience - Landmark, 2008, 13, 1827.	3.0	12
543	Inhalation of high concentration hydrogen gas improves short-term outcomes in a rat model of asphyxia induced-cardiac arrest. Medical Gas Research, 2018, 8, 73.	1.2	12
544	Role of Osteopontin in Early Brain Injury After Subarachnoid Hemorrhage in Rats., 2011, 110, 75-79.		12
545	Bloody cerebrospinal fluid alters contractility of cultured arteries. Neurological Research, 1999, 21, 553-558.	0.6	11
546	The Evolving Landscape of Neuroinflammation After Neonatal Hypoxia-Ischemia. Acta Neurochirurgica Supplementum, 2011, 111, 93-100.	0.5	11
547	Argon gas: a potential neuroprotectant and promising medical therapy. Medical Gas Research, 2014, 4, 3.	1.2	11
548	Recanalization, reperfusion, and recirculation in stroke. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3818-3823.	2.4	11
549	Scavenger Receptor Class B type 1 (SR-B1) and the modifiable risk factors of stroke. Chinese Neurosurgical Journal, 2019, 5, 30.	0.3	11
550	Rh-relaxin-2 attenuates degranulation of mast cells by inhibiting NF- \hat{l}° B through PI3K-AKT/TNFAIP3 pathway in an experimental germinal matrix hemorrhage rat model. Journal of Neuroinflammation, 2020, 17, 250.	3.1	11
551	The Activation of Phosphatidylserine/CD36/TGF- $\langle i \rangle$ 1 ² $\langle i \rangle$ 1 Pathway prior to Surgical Brain Injury Attenuates Neuroinflammation in Rats. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	11
552	Matrix metalloproteinase inhibition attenuates brain edema after surgical brain injury. Acta Neurochirurgica Supplementum, 2008, 102, 357-361.	0.5	11
553	An Experimental Model of Vasovagal Syncope Induces Cerebral Hypoperfusion and Fainting-Like Behavior in Awake Rats. PLoS ONE, 2016, 11, e0163280.	1.1	11
554	Hydrogen gas therapy improves survival rate and neurological deficits in subarachnoid hemorrhage rats: a pilot study. Medical Gas Research, 2019, 9, 74.	1.2	11
555	Kynurenine/Aryl Hydrocarbon Receptor Modulates Mitochondria-Mediated Oxidative Stress and Neuronal Apoptosis in Experimental Intracerebral Hemorrhage. Antioxidants and Redox Signaling, 2022, 37, 1111-1129.	2.5	11
556	Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats. Behavioural Brain Research, 2015, 290, 161-171.	1.2	10
557	A composite neurobehavioral test to evaluate acute functional deficits after cerebellar haemorrhage in rats. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 433-446.	2.4	10
558	ErbB4 Preserves Blood-Brain Barrier Integrity via the YAP/PIK3CB Pathway After Subarachnoid Hemorrhage in Rats. Frontiers in Neuroscience, 2018, 12, 492.	1.4	10

#	Article	IF	CITATIONS
559	Recombinant Slit2 attenuates neuronal apoptosis via the Robo1-srGAP1 pathway in a rat model of neonatal HIE. Neuropharmacology, 2019, 158, 107727.	2.0	10
560	The role of caveolin-1 in tumors of the brain - functional and clinical implications. Cellular Oncology (Dordrecht), 2019, 42, 423-447.	2.1	10
561	Inhibition of PAR-2 Attenuates Neuroinflammation and Improves Short-Term Neurocognitive Functions Via ERK1/2 Signaling Following Asphyxia-Induced Cardiac Arrest in Rats. Shock, 2020, 54, 539-547.	1.0	10
562	An Immunohistochemical Study of the Increase in Antioxidant Capacity of Corneal Epithelial Cells by Molecular Hydrogen, Leading to the Suppression of Alkali-Induced Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	1.9	10
563	Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation via PGE2/EP2/NOX2 signalling and improves the outcome of intracerebral haemorrhage in mice. Brain, Behavior, and Immunity, 2021, 91, 615-626.	2.0	10
564	Electrocardiographic Abnormalities in Patients with Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 353-356.	0.5	10
565	Endoscopic Surgical Treatment for Pituitary Apoplexy in Three Elderly Patients over the Age of 80. Acta Neurochirurgica Supplementum, 2011, 111, 429-433.	0.5	10
566	Inhalation of high-concentration hydrogen gas attenuates cognitive deficits in a rat model of asphyxia induced-cardiac arrest. Medical Gas Research, 2019, 9, 122.	1.2	10
567	Phosphatidylinositol 3–Kinase Inhibitor Failed to Reduce Cerebral Vasospasm in Dog Model of Experimental Subarachnoid Hemorrhage. Stroke, 2002, 33, 593-599.	1.0	9
568	Brain irradiation improves focal cerebral ischemia recovery in aged rats. Journal of the Neurological Sciences, 2011, 306, 143-153.	0.3	9
569	Hyperbaric oxygen therapy fails to reduce hydrocephalus formation following subarachnoid hemorrhage in rats. Medical Gas Research, 2014, 4, 12.	1.2	9
570	Delayed recanalization in acute ischemic stroke patients: Late is better than never?. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2536-2538.	2.4	9
571	The characteristics of the ancient cell death suppressor, TMBIM6, and its related signaling pathways after endoplasmic reticulum stress. Journal of Neuroscience Research, 2020, 98, 77-86.	1.3	9
572	Single clip: An improvement of the filament-perforation mouse subarachnoid haemorrhage model. Brain Injury, 2019, 33, 701-711.	0.6	9
573	Role of peroxisome proliferatorâ€activated receptors in stroke prevention and therapyâ€"The best is yet to come?. Journal of Neuroscience Research, 2020, 98, 2275-2289.	1.3	9
574	T0901317, an Agonist of Liver X Receptors, Attenuates Neuronal Apoptosis in Early Brain Injury after Subarachnoid Hemorrhage in Rats via Liver X Receptors/Interferon Regulatory Factor/P53 Upregulated Modulator of Apoptosis/Dynamin-1-Like Protein Pathway. Oxidative Medicine and Cellular Longevity, 2021, 201, 1-16.	1.9	9
575	Development of an Infarct Volume Algorithm to Correct for Brain Swelling After Ischemic Stroke in Rats. Acta Neurochirurgica Supplementum, 2016, 121, 103-109.	0.5	9
576	ECG Change of Acute Subarachnoid Hemorrhagic Patients. Acta Neurochirurgica Supplementum, 2011, 111, 357-359.	0.5	9

#	Article	IF	CITATIONS
577	Management Strategies for Patients with Brain Metastases: Has Radiosurgery Made a Difference?. Southern Medical Journal, 2004, 97, 254-258.	0.3	9
578	Electro-stimulation of cerebellar fastigial nucleus (FNS) improves axonal regeneration. Frontiers in Bioscience - Landmark, 2008, Volume, 6999.	3.0	8
579	Sleep a therapeutic target for stroke?. Experimental Neurology, 2012, 234, 1-4.	2.0	8
580	Blood-filled cerebrospinal fluid-enhanced pericyte microvasculature contraction in rat retina: A novel in vitro study of subarachnoid hemorrhage. Experimental and Therapeutic Medicine, 2016, 12, 2411-2416.	0.8	8
581	Multiple mechanisms underlying neuroprotection by secretory phospholipase A2 preconditioning in a surgically induced brain injury rat model. Experimental Neurology, 2018, 300, 30-40.	2.0	8
582	Viral-mediated gene delivery of TMBIM6 protects the neonatal brain via disruption of NPR-CYP complex coupled with upregulation of Nrf-2 post-HI. Journal of Neuroinflammation, 2019, 16, 174.	3.1	8
583	Recent Advances in Stem Cell Research in Subarachnoid Hemorrhage. Stem Cells and Development, 2020, 29, 178-186.	1.1	8
584	Evolution of the stroke paradigm: A review of delayed recanalization. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 945-957.	2.4	8
585	Imaging Acute Stroke: From One-Size-Fit-All to Biomarkers. Frontiers in Neurology, 2021, 12, 697779.	1.1	8
586	The antioxidant effects of melatonin in surgical brain injury in rats. Acta Neurochirurgica Supplementum, 2008, 102, 367-371.	0.5	8
587	Prostaglandin E2 EP1 Receptor Inhibition Fails to Provide Neuroprotection in Surgically Induced Brain-Injured Mice. Acta Neurochirurgica Supplementum, 2011, 111, 277-281.	0.5	8
588	Early Hematoma Enlargement in Primary Intracerebral Hemorrhage. Current Drug Targets, 2017, 18, 1345-1348.	1.0	8
589	Exendin-4 Preserves Blood-Brain Barrier Integrity via Glucagon-Like Peptide 1 Receptor/Activated Protein Kinase-Dependent Nuclear Factor-Kappa B/Matrix Metalloproteinase-9 Inhibition After Subarachnoid Hemorrhage in Rat. Frontiers in Molecular Neuroscience, 2021, 14, 750726.	1.4	8
590	Role of Ca ²⁺ -dependent K ⁺ channels in erythrocyte lysate-induced contraction of rabbit cerebral artery. Neurological Research, 1999, 21, 705-711.	0.6	7
591	Suramin-induced reversal of chronic cerebral vasospasm in experimental subarachnoid hemorrhage. Journal of Neurosurgery, 2002, 97, 129-135.	0.9	7
592	The production of high dose hydrogen gas by the AMS-H-01 for treatment of disease. Medical Gas Research, 2016, 6, 164.	1.2	7
593	Maintaining Plasma Fibrinogen Levels and Fibrinogen Replacement Therapies for Treatment of Intracranial Hemorrhage. Current Drug Targets, 2017, 18, 1349-1357.	1.0	7
594	Recombinant Human Milk Fat Globule-Epidermal Growth Factor 8 Attenuates Microthrombosis after Subarachnoid Hemorrhage in Rats. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104536.	0.7	7

#	Article	IF	CITATIONS
595	Effects of Low-Dose Unfractionated Heparin Pretreatment on Early Brain Injury after Subarachnoid Hemorrhage in Mice. Acta Neurochirurgica Supplementum, 2016, 121, 127-130.	0.5	7
596	Subarachnoid Hemorrhage Causes Pulmonary Endothelial Cell Apoptosis and Neurogenic Pulmonary Edema in Mice. Acta Neurochirurgica Supplementum, 2011, 111, 129-132.	0.5	7
597	Granulocyte Colony-Stimulating Factor Treatment Provides Neuroprotection in Surgically Induced Brain Injured Mice. Acta Neurochirurgica Supplementum, 2011, 111, 265-269.	0.5	7
598	Intracerebral Hemorrhage and Meteorological Factors in Chongqing, in the Southwest of China. Acta Neurochirurgica Supplementum, 2011, 111, 321-325.	0.5	7
599	Timing Pattern of Onset in Hypertensive Intracerebral Hemorrhage Patients. Acta Neurochirurgica Supplementum, 2011, 111, 327-331.	0.5	7
600	New Missions for an Old Agent: Granulocyte-Colony Stimulating Factor in the Treatment of Stroke Patients. Current Medicinal Chemistry, 2015, 22, 1302-1309.	1.2	7
601	Hematoma Expansion: Clinical and Molecular Predictors and Corresponding Pharmacological Treatment. Current Drug Targets, 2017, 18, 1367-1376.	1.0	7
602	NgR acts as an inhibitor to axonal regeneration in adults. Frontiers in Bioscience - Landmark, 2008, 13, 2030.	3.0	7
603	Inhibition of Aryl Hydrocarbon Receptor Attenuates Hyperglycemiaâ€Induced Hematoma Expansion in an Intracerebral Hemorrhage Mouse Model. Journal of the American Heart Association, 2021, 10, e022701.	1.6	7
604	Mitogen-Activated Protein Kinase Plays an Important Role in Hemolysate-Induced Contraction in Rabbit Basilar Artery., 2000, 76, 217-221.		7
605	Heat shock proteins expression in brain stem after subarachnoid hemorrhage in rats. , 2003, 86, 477-482.		7
606	Adiponectin Ameliorates GMH-Induced Brain Injury by Regulating Microglia M1/M2 Polarization Via AdipoR1/APPL1/AMPK/PPARÎ 3 Signaling Pathway in Neonatal Rats. Frontiers in Immunology, 2022, 13, .	2.2	7
607	Time course of changes in arterial relaxation following subarachnoid hemorrhage in dogs. Neurological Research, 1996, 18, 227-232.	0.6	6
608	Hemolysate activates P21RAS in rabbit basilar artery. Life Sciences, 2000, 67, 1233-1242.	2.0	6
609	Naja sputatrix Venom Preconditioning Attenuates Neuroinflammation in a Rat Model of Surgical Brain Injury via PLA2/5-LOX/LTB4 Cascade Activation. Scientific Reports, 2017, 7, 5466.	1.6	6
610	Neurobiology of stroke: Research progress and perspectives. Progress in Neurobiology, 2018, 163-164, 1-4.	2.8	6
611	<i>Crotalus atrox</i> disintegrin reduces hemorrhagic transformation by attenuating matrix metalloproteinaseâ€9 activity after middle cerebral artery occlusion in hyperglycemic male rats. Journal of Neuroscience Research, 2020, 98, 191-200.	1.3	6
612	The potential of Slit2 as a therapeutic target for central nervous system disorders. Expert Opinion on Therapeutic Targets, 2020, 24, 805-818.	1.5	6

#	Article	IF	CITATIONS
613	Molecular Hydrogen Application in Stroke: Bench to Bedside. Current Pharmaceutical Design, 2021, 27, 703-712.	0.9	6
614	Activation of Galanin Receptor 1 with M617 Attenuates Neuronal Apoptosis via ERK/GSK-3 \hat{I}^2 /TIP60 Pathway After Subarachnoid Hemorrhage in Rats. Neurotherapeutics, 2021, 18, 1905-1921.	2.1	6
615	Osteopontin-Rac1 on Blood-Brain Barrier Stability Following Rodent Neonatal Hypoxia-Ischemia. Acta Neurochirurgica Supplementum, 2016, 121, 263-267.	0.5	6
616	Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury. Acta Neurochirurgica Supplementum, 2016, 121, 317-321.	0.5	6
617	PKGIα Inhibits the Proliferation of Cerebral Arterial Smooth Muscle Cell Induced by Oxyhemoglobin After Subarachnoid Hemorrhage1., 2011, 110, 167-171.		6
618	Pharmacological Management Options to Prevent and Reduce Ischemic Hemorrhagic Transformation. Current Drug Targets, 2017, 18, 1441-1459.	1.0	6
619	Decreased RhoA expression in myocardium of diabetic rats. Canadian Journal of Physiology and Pharmacology, 2005, 83, 775-783.	0.7	5
620	Serum leptin levels decrease after permanent MCAo in the rat and remain unaffected by delayed hyperbaric oxygen therapy. Medical Gas Research, 2013, 3, 8.	1.2	5
621	Crotalus atrox venom preconditioning increases plasma fibrinogen and reduces perioperative hemorrhage in a rat model of surgical brain injury. Scientific Reports, 2017, 7, 40821.	1.6	5
622	The arousal effect of hyperbaric oxygen through orexin/hypocretin an upregulation on ketamine/ethanolâ€induced unconsciousness in male rats. Journal of Neuroscience Research, 2020, 98, 201-211.	1.3	5
623	Effects of low-dose unfractionated heparin on early brain injury after subarachnoid hemorrhage in mice. Neuroscience Letters, 2020, 728, 134979.	1.0	5
624	LJ529 attenuates mast cell-related inflammation via A3R-PKCε-ALDH2 pathway after subarachnoid hemorrhage in rats. Experimental Neurology, 2021, 340, 113686.	2.0	5
625	Dihydrolipoic acid enhances autophagy and alleviates neurological deficits after subarachnoid hemorrhage in rats. Experimental Neurology, 2021, 342, 113752.	2.0	5
626	Simvastatin treatment in surgically induced brain injury in rats. Acta Neurochirurgica Supplementum, 2008, 102, 401-404.	0.5	5
627	Cyclooxygenase-2 Inhibition Provides Lasting Protection Following Germinal Matrix Hemorrhage in Premature Infant Rats. Acta Neurochirurgica Supplementum, 2016, 121, 203-207.	0.5	5
628	PAR-1, -4, and the mTOR Pathway Following Germinal Matrix Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 213-216.	0.5	5
629	Geldanamycin Reduced Brain Injury in Mouse Model of Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 161-165.	0.5	5
630	Pretreatment with Normobaric and Hyperbaric Oxygenation Worsens Cerebral Edema and Neurologic Outcomes in a Murine Model of Surgically Induced Brain Injury. Acta Neurochirurgica Supplementum, 2011, 111, 243-251.	0.5	5

#	Article	IF	CITATIONS
631	Beneficial Effect of Hyperbaric Oxygenation After Neonatal Germinal Matrix Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 253-257.	0.5	5
632	SPARC Aggravates Blood-Brain Barrier Disruption via Integrin $\hat{l}\pm V\hat{l}^23/MAPKs/MMP-9$ Signaling Pathway after Subarachnoid Hemorrhage. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	1.9	5
633	BMS-470539 Attenuates Oxidative Stress and Neuronal Apoptosis via MC1R/cAMP/PKA/Nurr1 Signaling Pathway in a Neonatal Hypoxic-Ischemic Rat Model. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	5
634	HEPES inhibits contractile responses of canine basilar artery Neurological Research, 1997, 19, 527-533.	0.6	4
635	Crotalus helleri venom preconditioning reduces postoperative cerebral edema and improves neurological outcomes after surgical brain injury. Neurobiology of Disease, 2017, 107, 66-72.	2.1	4
636	Effects of Lifestyle Factors on Cognitive Resilience: Commentary on "What This Sunny, Religious Town in California Teaches Us About Living Longer― Translational Stroke Research, 2020, 11, 161-164.	2.3	4
637	Subarachnoid Hemorrhage-Triggered Acute Hypotension Is Associated with Left Ventricular Cardiomyocyte Apoptosis in a Rat Model. Acta Neurochirurgica Supplementum, 2016, 121, 145-150.	0.5	4
638	Intranasal Osteopontin for Rodent Germinal Matrix Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 217-220.	0.5	4
639	NC1900, an Arginine Vasopressin Analogue, Fails to Reduce Brain Edema and Improve Neurobehavioral Deficits in an Intracerebral Hemorrhagic Stroke Mice Model. Acta Neurochirurgica Supplementum, 2011, 111, 155-159.	0.5	4
640	Endothelin Receptor-A (ETa) Inhibition Fails to Improve Neonatal Hypoxic-Ischemic Brain Injury in Rats. Acta Neurochirurgica Supplementum, 2011, 111, 207-212.	0.5	4
641	Fsllry-nh2 improves neurological outcome following cardiac arrest in rats. Turkish Neurosurgery, 2019, 30, 244-251.	0.1	4
642	Mechanism of hemolysate-induced [Ca2+]ielevation in cultured fibroblasts. Neurological Research, 2001, 23, 367-373.	0.6	3
643	Risk factors for short-term mortality from carbon monoxide poisoning treated with hyperbaric oxygen*. Critical Care Medicine, 2008, 36, 2684-2685.	0.4	3
644	Magnesium Sulfate Treatment Improves Outcome in Patients with Subarachnoid Hemorrhage: A Meta-analysis Study. Translational Stroke Research, 2010, 1, 108-112.	2.3	3
645	Small molecule inhibitors in the treatment of cerebral ischemia. Expert Opinion on Pharmacotherapy, 2014, 15, 659-680.	0.9	3
646	Temporal evolution of heme oxygenase-1 expression in reactive astrocytes and microglia in response to traumatic brain injury. Brain Hemorrhages, 2020, 1, 65-74.	0.4	3
647	Stem Cell Therapy for Brain Injury. Stem Cells and Development, 2020, 29, 177-177.	1.1	3
648	IL-20R Activation via rlL-19 Enhances Hematoma Resolution through the IL-20R1/ERK/Nrf2 Pathway in an Experimental GMH Rat Pup Model. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	3

#	Article	IF	CITATIONS
649	Pre-vasospasm: early brain injury. Acta Neurochirurgica Supplementum, 2008, , 7-10.	0.5	3
650	Fucoidan from Fucus vesiculosus Fails to Improve Outcomes Following Intracerebral Hemorrhage in Mice. Acta Neurochirurgica Supplementum, 2016, 121, 191-198.	0.5	3
651	Valproic Acid Pretreatment Reduces Brain Edema in a Rat Model of Surgical Brain Injury. Acta Neurochirurgica Supplementum, 2016, 121, 305-310.	0.5	3
652	Epsilon Aminocaproic Acid Pretreatment Provides Neuroprotection Following Surgically Induced Brain Injury in a Rat Model. Acta Neurochirurgica Supplementum, 2016, 121, 311-315.	0.5	3
653	The Postpartum Period of Pregnancy Worsens Brain Injury and Functional Outcome After Cerebellar Hemorrhage in Rats. Acta Neurochirurgica Supplementum, 2011, 111, 37-41.	0.5	3
654	Sestrins: A New Kid for Stroke Treatment?. Current Drug Delivery, 2017, 14, 797-806.	0.8	3
655	Role of Tyrosine Kinase in Fibroblast Compaction and Cerebral Vasospasm., 2000, 76, 227-230.		3
656	Effect of Recombinant Osteopontin on Cerebral Vasospasm After Subarachnoid Hemorrhage in Rats. , 2011, 110, 29-32.		3
657	Developing a standardized system of exposure and intervention endpoints for isoflurane in preclinical stroke models. Medical Gas Research, 2019, 9, 46-51.	1.2	3
658	Mucosal Tolerance to Brain Antigens Preserves Endogenous $TGF\hat{l}^2$ -1 and Improves Neurological Outcomes Following Experimental Craniotomy. Acta Neurochirurgica Supplementum, 2011, 111, 283-287.	0.5	2
659	Editorial for the Third Pangu Stroke Conference. Experimental Neurology, 2015, 272, 1-3.	2.0	2
660	Response to Letter Regarding Article, "Norrin Protected Blood–Brain Barrier via Frizzled-4/β-Catenin Pathway After Subarachnoid Hemorrhage in Rats― Stroke, 2015, 46, e91.	1.0	2
661	Acute Hyperglycemia Does Not Affect Brain Swelling or Infarction Volume After Middle Cerebral Artery Occlusion in Rats. Acta Neurochirurgica Supplementum, 2016, 121, 251-255.	0.5	2
662	Improving and Predicting Outcomes of Traumatic Brain Injury: Neuroplasticity, Imaging Modalities, and Perspective Therapy. Neural Plasticity, 2017, 2017, 1-2.	1.0	2
663	Remote Limb Ischemic Preconditioning Attenuates Cerebrovascular Depression During Sinusoidal Galvanic Vestibular Stimulation via Î ± 1 â \in Adrenoceptorâ \in "Protein Kinase Cεâ \in "Endothelial NO Synthase Pathway in Rats. Journal of the American Heart Association, 2018, 7, .	1.6	2
664	Novel Technologies in Studying Brain Immune Response. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-10.	1.9	2
665	Inflammation as a Therapeutic Target after Subarachnoid Hemorrhage: Advances and Challenges. , 2014, , 249-274.		2
666	Changes in Brain Swelling and Infarction Volume over Four Days After Hypoxia Ischemia in Neonatal Rats. Acta Neurochirurgica Supplementum, 2016, 121, 111-114.	0.5	2

#	Article	IF	CITATIONS
667	Stroke Pathophysiology and Reactive Oxygen Species. , 2014, , 1979-1997.		2
668	Roles of Signal Transduction Mechanisms in Cerebral Vasospasm Following Subarachnoid Hemorrhage: Overview., 2011, 110, 27-30.		2
669	Clinical Analysis of Electrolyte Imbalance in Thalamic Hemorrhage Patients Within 24 H After Admission. Acta Neurochirurgica Supplementum, 2011, 111, 343-348.	0.5	2
670	Thrombin Preconditioning in Surgical Brain Injury in Rats. Acta Neurochirurgica Supplementum, 2016, 121, 299-304.	0.5	2
671	Introduction to the special issue on cerebral vascular diseases. Pathophysiology, 2005, 12, 3-4.	1.0	1
672	Molecular neurosciences. Neurological Research, 2009, 31, 113-113.	0.6	1
673	The neurosurgical role of epigenome. World Neurosurgery, 2009, 71, 159-160.	1.3	1
674	The pacific chapter annual meeting of the undersea & Damp; hyperbaric medical society. Medical Gas Research, 2011, 1, 19.	1.2	1
675	Response to Letter to the Editor from Dr. Dale Ding: Abrogation of cerebral edema and vascular inflammation following subarachnoid hemorrhage by cannabinoid receptor activation. Journal of the Neurological Sciences, 2014, 346, 338.	0.3	1
676	The inauguration of the English issue of the Chinese Neurosurgical Journal. Chinese Neurosurgical Journal, 2015, $1, \dots$	0.3	1
677	Translational Hemorrhagic Stroke: Physiology, Pharmaceutical Drugs, and Management. BioMed Research International, 2017, 2017, 1-1.	0.9	1
678	Progress and Updates in Stroke Research: Introduction to the Special Issue on Stroke. Cell Transplantation, 2018, 27, 1709-1710.	1.2	1
679	Brain Injury and Stem Cell Replacement. Stem Cells International, 2018, 2018, 1-1.	1.2	1
680	Acute Treatment With Gleevec Does Not Promote Early Vascular Recovery Following Intracerebral Hemorrhage in Adult Male Rats. Frontiers in Neuroscience, 2020, 14, 46.	1.4	1
681	SAH Models: Review, New Modification, and Prospective. , 2014, , 255-267.		1
682	Remote Ischemic Postconditioning (RIPC) After GMH in Rodents. Acta Neurochirurgica Supplementum, 2016, 121, 63-67.	0.5	1
683	Propofol Pretreatment Fails to Provide Neuroprotection Following a Surgically Induced Brain Injury Rat Model. Acta Neurochirurgica Supplementum, 2016, 121, 323-327.	0.5	1
684	Characteristics of Pulse Pressure Parameters in Acute Intracerebral Hemorrhage Patients. Acta Neurochirurgica Supplementum, 2011, 111, 349-352.	0.5	1

#	Article	IF	CITATIONS
685	Janus Kinase 2 and Tissue Inhibitor of Matrix Metalloproteinaseâ€1 Mediate the Protective Effects of Erythropoietin in Inâ€Vitro Model of Hypoxia Ischemia. FASEB Journal, 2009, 23, 614.20.	0.2	1
686	Characteristics of Acute Cerebral Hemorrhage with Regard to Lipid Metabolism and Glycometabolism Among Different Age Groups. Acta Neurochirurgica Supplementum, 2011, 111, 367-371.	0.5	1
687	Tyrosine Phosphatase Inhibition Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats. , 2011, 110, 67-70.		1
688	Forelimb Use Asymmetry Analysis of Vertical Exploratory Activity After Intracerebral Hemorrhage in Rats and Mice. Springer Protocols, 2012, , 685-689.	0.1	1
689	Brain Volume Determination in Subarachnoid Hemorrhage Using Rats. Acta Neurochirurgica Supplementum, 2016, 121, 99-102.	0.5	1
690	Exsanguination Postconditioning of ICH (EPIC-H) Using the Lancet for Brain Bleed in Rodents, Preliminary Study. Acta Neurochirurgica Supplementum, 2016, 121, 49-53.	0.5	1
691	New Beginnings for <i>Medical Gas Research</i> . Medical Gas Research, 2016, 6, 1.	1.2	1
692	Perspectives of Translational Medicine. Translational Perioperative and Pain Medicine, 2015, 2, 12-18.	0.0	1
693	New frontiers in cerebral vasospasm: signaling pathways. International Congress Series, 2003, 1251, 3-15.	0.2	0
694	Response to Letter by Schal bitz et al. Stroke, 2006, 37, 1655-1655.	1.0	0
695	Chinese Neurosurgery Research. Neurological Research, 2008, 30, 549-549.	0.6	0
696	Response to Letter by Pfeilschifter et al. Stroke, 2010, 41, .	1.0	0
697	Response to Letter by Tsuda. Stroke, 2010, 41, .	1.0	O
698	Reply. Annals of Neurology, 2014, 75, 972-973.	2.8	0
699	Evaluation of APP695 Transgenic Mice Bone Marrow Mesenchymal Stem Cells Neural Differentiation for Transplantation. BioMed Research International, 2015, 2015, 1-7.	0.9	O
700	Neurovascular Repair After Stroke. Springer Series in Translational Stroke Research, 2016, , 347-375.	0.1	0
701	Mechanisms of Cerebral Hemorrhage. , 2016, , 102-112.e6.		O
702	Editorial: Targeting Cerebral Vascular Injury for Intervention. Current Drug Delivery, 2017, 14, 742-743.	0.8	0

#	Article	IF	CITATIONS
703	Call for Papers: Special Issue on Stem Cell Therapy for Traumatic Brain Injury. Stem Cells and Development, 2019, 28, 1213-1213.	1.1	O
704	Contribution of Experimental Animal Research Studies to the Emergency Medicine Literature. Emergency Medicine International, 2019, 2019, 1-10.	0.3	0
705	Involvement of Cerebral Venous System in Ischemic Stroke. Springer Series in Translational Stroke Research, 2019, , 195-205.	0.1	O
706	Neurovascular Network as Future Therapeutic Targets. Springer Series in Translational Stroke Research, 2019, , 1-47.	0.1	0
707	Cerebral Venous Collateral Circulation. Springer Series in Translational Stroke Research, 2019, , 103-117.	0.1	O
708	17th international conference on Brain Edema and Cellular Injury. Journal of Neuroscience Research, 2020, 98, 5-8.	1.3	0
709	Experimental and Clinical Treatment of Subarachnoid Hemorrhage after the Rupture of Saccular Intracranial Aneurysms. Brain Sciences, 2020, 10, 371.	1.1	O
710	Editorial: Pluripotent Cells for Stroke: From Mechanism to Therapeutic Strategies. Frontiers in Cellular Neuroscience, 2021, 15, 738240.	1.8	0
711	Mechanisms of Damage After Cerebral Hemorrhage. , 2022, , 92-102.e9.		O
712	Apoptosis in Cerebral Vasospasm After Subarachnoid Hemorrhage. , 2001, , 202-208.		0
713	Apoptotic markers in vasospasm after an experimental subarachnoid haemorrhage. Acta Neurochirurgica Supplementum, 2008, , 11-15.	0.5	O
714	Monofilament Perforation Subarachnoid Hemorrhage Rat Model. Springer Protocols, 2009, , 261-270.	0.1	0
715	The Vibrissae-Elicited Forelimb Placing Test After Intracerebral Hemorrhage in Rodents. Springer Protocols, 2012, , 691-696.	0.1	O
716	Aneurysmal Subarachnoid Hemorrhage Grading in Animal Models. Springer Protocols, 2012, , 321-330.	0.1	0
717	Granulocyteâ€Colony Stimulating Factor Exerts Neuroprotection in the Neonatal Hypoxiaâ€Ischemia Rat Model via the Hypothalamicâ€Pituitaryâ€Adrenal Axis. FASEB Journal, 2012, 26, lb690.	0.2	O
718	Preconditioning for Surgical Brain Injury. , 2013, , 485-498.		0
719	Preconditioning for SAH., 2013,, 291-308.		0
720	Magnesium in Subarachnoid Hemorrhage: From Bench to Bedside. , 2013, , 269-295.		0

#	Article	IF	CITATIONS
721	Dimethyl Fumarate Confers Neuroprotection through CK2 Mediated Phosphorylation of Nrf2 in Murine Intracerebral Hemorrhage. FASEB Journal, 2015, 29, 771.19.	0.2	0
722	Inducing Hemorrhagic Transformation Following Middle Cerebral Artery Occlusion via Acute Hyperglycemia in Rats. Springer Series in Translational Stroke Research, 2019, , 173-187.	0.1	0
723	Collagenase Induced Pontine Hemorrhage in Rats. Springer Series in Translational Stroke Research, 2019, , 311-321.	0.1	0
724	Germinal Matrix Hemorrhage Neonatal Rat Model Using Bacterial Collagenase Injection. Springer Series in Translational Stroke Research, 2019, , 323-329.	0.1	0
725	A Rat Model of Surgical Brain Injury. Springer Series in Translational Stroke Research, 2019, , 379-401.	0.1	0
726	Monofilament Perforation Subarachnoid Hemorrhage Rat Model. Springer Series in Translational Stroke Research, 2019, , 219-230.	0.1	0
727	Collagenase Model of Intracerebral Hemorrhage in Rats. Springer Series in Translational Stroke Research, 2019, , 263-279.	0.1	0
728	Introduction to Special Issue: Brain Immunity and Neuroinflammation. Experimental Neurology, 2022, 349, 113957.	2.0	0
729	Human Galectin-7 Gene LGALS7 Promoter Sequence Polymorphisms and Risk of Spontaneous Intracerebral Hemorrhage: A Prospective Study. Frontiers in Molecular Neuroscience, 2022, 15, 840340.	1.4	0