Mamoru Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4463717/publications.pdf

Version: 2024-02-01

104 papers 1,998 citations

331670 21 h-index 243625 44 g-index

106 all docs

106
docs citations

106 times ranked 1970 citing authors

#	Article	IF	CITATIONS
1	Near real-time nerve visualization using coherent Raman scattering rigid endoscope and deep learning-based image processing for nerve-sparing surgery. , 2022, , .		O
2	Avoidance of four-wave mixing in optical fiber bundle for coherent anti-Stokes Raman scattering endomicroscopy. Optics Letters, 2021, 46, 3356.	3.3	3
3	Ultrahigh-speed multiplex coherent anti-Stokes Raman scattering microspectroscopy using scanning elliptical focal spot. Journal of Chemical Physics, 2021, 155, 144201.	3.0	5
4	Improvement of nerve imaging speed with coherent anti-Stokes Raman scattering rigid endoscope using deep-learning noise reduction. Scientific Reports, 2020, 10, 15212.	3.3	17
5	Nerve Segmentation with Deep Learning from Label-Free Endoscopic Images Obtained Using Coherent Anti-Stokes Raman Scattering. Biomolecules, 2020, 10, 1012.	4.0	7
6	Coherent anti-Stokes Raman scattering rigid endoscope toward robot-assisted surgery. Biomedical Optics Express, 2018, 9, 387.	2.9	20
7	Invited Article: Label-free nerve imaging with a coherent anti-Stokes Raman scattering rigid endoscope using two optical fibers for laser delivery. APL Photonics, 2018, 3, 092407.	5.7	8
8	10.1063/1.5031817.1., 2018,,.		0
9	Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering. Sensors, 2017, 17, 2581.	3.8	8
10	Photo-Induced Cell Damage Analysis for Single- and Multifocus Coherent Anti-Stokes Raman Scattering Microscopy. Journal of Spectroscopy, 2017, 2017, 1-8.	1.3	10
11	Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging. Nanomaterials, 2016, 6, 163.	4.1	17
12	A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier. Sensors, 2016, 16, 532.	3.8	17
13	Synthesis of Y_2O_3 nanophosphors by homogeneous precipitation method using excessive urea for cathodoluminescence and upconversion luminescence bioimaging. Optical Materials Express, 2016, 6, 831.	3.0	15
14	Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging. Scientific Reports, 2016, 6, 25950.	3.3	37
15	Influence of Nonenzymatic Glycation in Dentinal Collagen on Dental Caries. Journal of Dental Research, 2016, 95, 1528-1534.	5.2	12
16	A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering. , 2016, , .		1
17	C6-P-04Tri-modal imaging techniques Cathodoluminescence (CL) - Near Infrared (NIR) and Magnetic resonance imaging (MRI) with lanthanides doped Gd ₂ O ₃ . Microscopy (Oxford,) Tj ETQ	q 11.5 0.78	43 0 .4 rgBT 0
18	C6-P-01Rare-earth doped Y ₂ O ₃ nano-phosphor probes for correlative cathodoluminescence and near-infrared optical bio-imaging. Microscopy (Oxford, England), 2015, 64, i140.2-i140.	1.5	0

#	Article	IF	CITATIONS
19	Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window. Optics Express, 2015, 23, 33184.	3.4	26
20	Orientation detection of a single molecule using pupil filter with electrically controllable polarization pattern. Optical Review, 2015, 22, 875-881.	2.0	8
21	Multimodal Imaging Probing Platform Based on Upconverting Rare-Earth Doped Gd2O3 Nanocrystals. Biophysical Journal, 2015, 108, 171a-172a.	0.5	0
22	High-sensitivity and high-spatial-resolution imaging of self-assembled monolayer on platinum using radially polarized beam excited second-harmonic-generation microscopy. Applied Physics Express, 2015, 8, 112401.	2.4	7
23	Label free bioimaging using nonlinear coherent Raman microscopy. , 2015, , .		0
24	Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy. Journal of Biomedical Optics, 2015, 20, 056007.	2.6	13
25	Decrease in fluorescence lifetime by glycation of collagen and its application in determining advanced glycation end-products in human dentin. Biomedical Optics Express, 2015, 6, 1844.	2.9	15
26	Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation. Optica, 2015, 2, 460.	9.3	21
27	1G34 Histological assessment of the atherosclerosis by nonlinear optical multimodal microscopy II. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 287-288.	0.0	O
28	PS2-14 OBSERVATION OF CELLULLAR RESPONSE TO OXYGEN TENSION USING MICROFLUIDIC DEVICES(PS2:) Tj Biomechanics Emerging Science and Technology in Biomechanics, 2015, 2015.8, 256.	ETQq00 o.o	0 rgBT /Overlo 0
29	1C35 Development of a microfluidic device for observation of oxygen-dependent cellular response. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 123-124.	0.0	0
30	PS2-3 Label free imaging of atherosclerotic lesions using stimulated Raman scattering, second harmonic generation, and two-photon fluorescence microscopy(PS2: Poster Short Presentation) Tj ETQq0 0 0 rg and Technology in Biomechanics, 2015, 2015.8, 244.	BT/Overlo	ck ₀ 10 Tf 50 3
31	Discrete Fourier Transform Infrared Spectroscopy Using Precisely Periodic Pulse., 2015,,.		0
32	Fourth-order coherent Raman microspectroscopy for detection of material symmetry. Proceedings of SPIE, 2014, , .	0.8	0
33	Lock-in pixels readout circuit using a high speed lateral electric field modulator with differential charge accumulation for stimulated Raman scattering imager. , 2014, , .		0
34	Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging. Micron, 2014, 67, 90-95.	2.2	26
35	Accumulation of advanced glycation end-products in human dentine. Archives of Oral Biology, 2014, 59, 119-124.	1.8	42
36	A stimulated Raman scattering imager using high-speed lateral electric field modulator and lock-in pixels amplifiers. , 2014, , .		1

#	Article	IF	CITATIONS
37	1F16 Histological assessment of atherosclerosis by nonlinear optical multimodal microscopy. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 175-176.	0.0	O
38	High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y_2O_3nanophosphors. Optics Express, 2013, 21, 25655.	3.4	22
39	Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser. Journal of Biomedical Optics, 2013, 18, 1.	2.6	19
40	Molecular Orientation Imaging of Liquid Crystals by Tunable-Polarization-Mode Coherent Anti-Stokes Raman Scattering Microscopy. Applied Physics Express, 2013, 6, 072401.	2.4	3
41	Coherent Anti-Stokes Raman Scattering Microscopy for High Speed Non- Staining Biomolecular Imaging. Current Pharmaceutical Biotechnology, 2013, 14, 150-158.	1.6	1
42	Frequency-Swept Asynchronous-Optical-Sampling Terahertz Time-Domain Spectroscopy. , 2013, , .		1
43	Coherent anti-stokes Raman scattering microscopy for high speed non- staining biomolecular imaging. Current Pharmaceutical Biotechnology, 2013, 14, 150-8.	1.6	1
44	A Time-Resolved CMOS Image Sensor With Draining-Only Modulation Pixels for Fluorescence Lifetime Imaging. IEEE Transactions on Electron Devices, 2012, 59, 2715-2722.	3.0	104
45	High-speed spectral tuning CARS microscopy using AOTF laser. Proceedings of SPIE, 2012, , .	0.8	1
46	CARS Microscopy: Implementation of Nonlinear Vibrational Spectroscopy for Far-Field and Near-Field Imaging. Springer Series in Optical Sciences, 2012, , 317-346.	0.7	0
47	Development of a strain visualization system for microstructures using single fluorescent molecule tracking on a three-dimensional orientation microscope. Proceedings of SPIE, 2011, , .	0.8	0
48	Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors. Applied Physics Express, 2011, 4, 112402.	2.4	34
49	Development of polarization-mode controllable CARS microscope. Proceedings of SPIE, 2011, , .	0.8	1
50	Real-time imaging of laser-induced membrane disruption of a living cell observed with multifocus coherent anti-Stokes Raman scattering microscopy. Journal of Biomedical Optics, 2011, 16, 1.	2.6	7
51	Photo-induced cell damage analysis for multi-focus CARS microscopy. , 2011, , .		2
52	High-speed CARS spectral imaging using acousto optic tunable filter. , 2010, , .		1
53	Real-time molecular imaging of organelles in living cell by multifocus excitation CARS microscope. Proceedings of SPIE, 2010, , .	0.8	1
54	Lipids distribution imaging of lipid vesicles by multi-focus excitation CARS microscope. Proceedings of SPIE, 2009, , .	0.8	0

#	Article	IF	Citations
55	Multi-focus CARS microscopy using microlens array scanner for realtime molecular spectral imaging. , 2009, , .		2
56	Enhancement of second-harmonic generation from self-assembled monolayers on gold by excitation with a radially polarized beam. Optics Letters, 2009, 34, 1423.	3.3	13
57	Multi-focus excitation coherent anti-Stokes Raman scattering (CARS) microscopy and its applications for real-time imaging. Optics Express, 2009, 17, 9526.	3.4	52
58	Multifocus CARS microscopy for realtime vibrational imaging. Proceedings of SPIE, 2009, , .	0.8	1
59	B201 Label-free and real-time CARS imaging of living cell reactions in laser-induced ablation. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2009, 2009.20, 93-94.	0.0	0
60	Real-time terahertz color scanner for moving objects. Optics Express, 2008, 16, 1208.	3.4	108
61	1203 Second harmonic generation imaging of organic molecule on metal by radial polarization excitation. The Proceedings of Conference of Kansai Branch, 2008, 2008.83, _12-3	0.0	0
62	602 Label-free, high-speed imaging with real-time CARS microscope. The Proceedings of Conference of Kansai Branch, 2008, 2008.83, _6-2	0.0	0
63	A compact polarization converter to observe molecular orientation. , 2007, , .		0
64	Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation. Optics Letters, 2007, 32, 1680.	3.3	48
65	Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation: publisher's note. Optics Letters, 2007, 32, 2465.	3.3	2
66	SHG microscopy excited by polarization controlled beam for three-dimensional molecular orientation measurement., 2006, 6290, 130.		0
67	Jitter reduction of two synchronized picosecond mode-locked lasers using balanced cross-correlator with two-photon detectors. Applied Physics Letters, 2006, 89, 191101.	3.3	29
68	Coherent anti-Stokes Raman scattering microscopy. The Review of Laser Engineering, 2006, 34, 256-257.	0.0	0
69	Tip-enhanced near-field CARS microscopy for molecular nano-imaging. , 2005, 5700, 52.		1
70	Proposition of Single Molecular Orientation Determination Using polarization Controlled Beam by Liquid Crystal Spatial Light Modulators. Optical Review, 2005, 12, 37-41.	2.0	16
71	Finding of Optimal Calcium Ion Probes for Fluorescence Lifetime Measurement. Optical Review, 2005, 12, 415-419.	2.0	16
72	Second-Harmonic-Generation Microscopy Using Excitation Beam with Controlled Polarization Pattern to Determine Three-Dimensional Molecular Orientation. Japanese Journal of Applied Physics, 2005, 44, L1066-L1068.	1.5	54

#	Article	IF	Citations
73	Automatic Pulse Duration Control of Picosecond Laser using Two-Photon Absorption Detector. Japanese Journal of Applied Physics, 2005, 44, 3958-3961.	1.5	15
74	Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy. Journal of Applied Physics, 2004, 95, 2676-2681.	2.5	71
75	TIP-ENHANCED NEAR-FIELD CARS MICROSCOPY. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 593-599.	1.8	5
76	Tip-enhanced NSOM., 2004,,.		1
77	Application of tip-enhanced microscopy for nonlinear Raman spectroscopy. Applied Physics Letters, 2004, 84, 1768-1770.	3.3	61
78	Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging. Physical Review Letters, 2004, 92, 220801.	7.8	380
79	Coherent anti-Stokes Raman spectroscopy for nano-imaging with a metallic near-field probe. , 2004, 5516, 1.		0
80	Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles. Journal of Raman Spectroscopy, 2003, 34, 651-654.	2.5	63
81	Multi-focus coherent anti-Stokes Raman scattering microscopy. Microscopy and Microanalysis, 2003, 9, 1090-1091.	0.4	7
82	Confocal Fluorescence Lifetime Imaging by Asynchronous Sampling. The Proceedings of Conference of Kansai Branch, 2003, 2003.78, _1-311-32	0.0	0
83	Coherent anti-Stokes Raman scattering microscopy using near IR exitation and UV excitation. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2003, 2003.15, 137-138.	0.0	0
84	Development of Coherent Anti-Stokes Raman Scattering Microscopy. The Review of Laser Engineering, 2003, 31, 375-379.	0.0	0
85	Coherent Anti-Stokes Raman Scattering Microscopy Acta Histochemica Et Cytochemica, 2002, 35, 83-86.	1.6	2
86	Resonance enhancement of coherent anti-Stokes Raman scattering microscopy. Proceedings of the JSME Bioengineering Conference and Seminar, 2002, 2002.13, 85-86.	0.0	0
87	Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 771.	1.5	39
88	Correlations of Calcium Accumulations in Arteries, Veins, Cartilages, Ligaments, and Bones in Single Humans. Biological Trace Element Research, 2001, 74, 211-222.	3.5	15
89	Visual Demonstration of Calcium Accumulation in Human Arteries of Upper and Lower Limbs. Biological Trace Element Research, 2001, 81, 115-125.	3.5	22
90	Capillary electrophoresis system using a fluorescence labeled cell as a sensor probe. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2001, 2001.13, 20-21.	0.0	0

#	Article	IF	CITATIONS
91	Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration. Optics Letters, 2000, 25, 1768.	3.3	218
92	Capillary Electrophoresis System using Biological Reaction of Single Cell as a Sensor Probe. The Proceedings of the JSME Annual Meeting, 2000, 2000.2, 267-268.	0.0	0
93	Changes of autofluorescence in human dentine caused by caries. Proceedings of the JSME Bioengineering Conference and Seminar, 2000, 2000.11, 149-150.	0.0	0
94	<title>Coherent anti-Stokes Raman scattering microscope</title> ., 1999, 3749, 496.		5
95	Real-Time Pursuit of Crystal Growth by Millisecond Time-Resolved Multichannel Fourier Transform Infrared Spectroscopy. Applied Spectroscopy, 1998, 52, 222-225.	2.2	2
96	An ultraviolet nanosecond light pulse generator using a light emitting diode for test of photodetectors. Review of Scientific Instruments, 1997, 68, 1365-1368.	1.3	19
97	Time-resolved infrared study of ground-state phototautomer formed in the excited-state proton transfer of 7-hydroxyquinoline in methanol. Chemical Physics Letters, 1997, 271, 320-326.	2.6	21
98	Construction of a Multichannel Fourier Transform Infrared Spectrometer for Single-Event Time-Resolved Spectroscopy. Applied Spectroscopy, 1996, 50, 1030-1033.	2.2	9
99	Structure of the Twisted-Intramolecular-Charge-Transfer Excited Singlet and Triplet States of 4-(Dimethylamino)benzonitrile As Studied by Nanosecond Time-Resolved Infrared Spectroscopy. The Journal of Physical Chemistry, 1995, 99, 7875-7877.	2.9	105
100	Multichannel Fourier-transform infrared spectrometer. Applied Optics, 1992, 31, 6096.	2.1	58
101	MULTICHANNEL Fr-IR SPECTROMETER WITH A 4096-ELEMENT INFRARED CCD. Analytical Sciences, 1991, 7, 575-576.	1.6	0
102	Coherent anti-stokes raman microscope for identification of cellular molecule. , 0, , .		0
103	Multi-focus CARS microscopy using automatic pulse duration control system. , 0, , .		0
104	Three dimensional polarization control and its application to SHG imaging. , 0, , .		1