
Steven C Hempleman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4463207/publications.pdf Version: 2024-02-01

STEVEN C HEMDLEMAN

#	Article	IF	CITATIONS
1	Comparative embryology of the carotid body. Respiratory Physiology and Neurobiology, 2013, 185, 3-8.	1.6	25
2	Carbonic anhydrase activity underlies spike frequency adaptation in avian intrapulmonary chemoreceptors (IPC). FASEB Journal, 2013, 27, 1137.1.	0.5	0
3	Prenatal development of respiratory chemoreceptors in endothermic vertebrates. Respiratory Physiology and Neurobiology, 2011, 178, 156-162.	1.6	14
4	Effects of aerobic and anaerobic metabolic inhibitors on avian intrapulmonary chemoreceptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1576-R1584.	1.8	3
5	Mechanisms of CO2 Sensing in Avian Intrapulmonary Chemoreceptors. , 2009, , 213-234.		1
6	Evidence for TREK-like tandem-pore domain channels in intrapulmonary chemoreceptor chemotransduction. Respiratory Physiology and Neurobiology, 2007, 156, 120-131.	1.6	6
7	Development of avian intrapulmonary chemoreceptors. Respiratory Physiology and Neurobiology, 2007, 157, 393-402.	1.6	12
8	Intracellular energy metabolism in avian intrapulmonary chemoreceptors. FASEB Journal, 2007, 21, A919.	0.5	1
9	Imidazole binding reagent diethyl pyrocarbonate (DEPC) inhibits avian intrapulmonary chemoreceptor discharge in vivo. Respiratory Physiology and Neurobiology, 2006, 150, 144-154.	1.6	8
10	Calcium and avian intrapulmonary chemoreceptor response to CO2. Journal of Applied Physiology, 2006, 101, 1565-1575.	2.5	9
11	Spike firing allometry in avian intrapulmonary chemoreceptors: matching neural code to body size. Journal of Experimental Biology, 2005, 208, 3065-3073.	1.7	16
12	CO2 transduction mechanisms in avian intrapulmonary chemoreceptors: experiments and models. Respiratory Physiology and Neurobiology, 2004, 144, 203-214.	1.6	27
13	Breathing in thin air: acclimatization to altitude in ducks. Respiratory Physiology and Neurobiology, 2004, 144, 225-235.	1.6	18
14	CO2 transduction in avian intrapulmonary chemoreceptors is critically dependent on transmembrane Na+/H+ exchange. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1551-R1559.	1.8	16
15	Avian intrapulmonary chemoreceptor discharge rate is increased by anion exchange blocker â€~DIDS'. Respiration Physiology, 2001, 128, 195-204.	2.7	19
16	Endosulfan Exposure Disrupts Pheromonal Systems in the Red-Spotted Newt: A Mechanism for Subtle Effects of Environmental Chemicals. Environmental Health Perspectives, 2001, 109, 669.	6.0	6
17	Increased calcium current in carotid body glomus cells following in vivo acclimatization to chronic hypoxia. Journal of Neurophysiology, 1996, 76, 1880-1886.	1.8	39
18	Sodium and potassium current in neonatal rat carotid body cells following chronic in vivo hypoxia. Brain Research, 1995, 699, 42-50.	2.2	28

STEVEN C HEMPLEMAN

#	Article	IF	CITATIONS
19	Calcium deficient diet, acetazolamide and gas exchange characteristics of avian eggshells. Respiration Physiology, 1994, 95, 11-20.	2.7	4
20	Diffusion limitation in comparative models of gas exchange. Respiration Physiology, 1993, 91, 17-29.	2.7	4
21	Oxygen and avian eggshell formation at high altitude. Respiration Physiology, 1993, 92, 1-12.	2.7	10
22	Cardiopulmonary response to exercise in patients with intrapulmonary vascular shunts. Journal of Applied Physiology, 1993, 75, 321-328.	2.5	52
23	CO2 and avian eggshell formation at high altitude. Respiration Physiology, 1992, 87, 1-10.	2.7	5
24	Avian arterial chemoreceptor responses to steps of CO2 and O2. Respiration Physiology, 1992, 90, 325-340.	2.7	26
25	Estimating exercise Dlo2 and diffusion limitation in patients with interstitial fibrosis. Respiration Physiology, 1991, 83, 167-178.	2.7	13
26	Respiratory system mechanical behavior in the chicken. Respiration Physiology, 1991, 84, 145-157.	2.7	7
27	Temperature and the oxygen-hemoglobin dissociation curve of the harbor seal, Phoca vitulina. Respiration Physiology, 1990, 79, 137-144.	2.7	17
28	Effects of normobaric and hypobaric hypoxia on ventilation and arterial blood gases in ducks. Respiration Physiology, 1990, 80, 163-170.	2.7	15
29	Amplitude Dependency of Regional Chest Wall Resistance and Elastance at Normal Breathing Frequencies. The American Review of Respiratory Disease, 1989, 140, 25-30.	2.9	31
30	Modulation of duck intrapulmonary chemoreceptor discharge by cardiac activity. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1989, 159, 597-599.	1.5	0
31	Estimating steady-state DIO2 with nonlinear dissociation curves and Va/Q̇ inequality. Respiration Physiology, 1988, 73, 279-288.	2.7	21
32	Comparative Physiology of Oxygen Transfer in Lungs. Advances in Experimental Medicine and Biology, 1988, 227, 53-65.	1.6	4
33	Oxygen diffusing capacity estimates derived from measured V̇A/Q̇ distributions in man. Respiration Physiology, 1987, 69, 129-147.	2.7	52
34	Influence of pulmonary blood flow and O2 flux on DO2 in avian lungs. Respiration Physiology, 1986, 63, 285-292.	2.7	15
35	Sensitivity of avian intrapulmonary chemoreceptors to venous CO2 load. Respiration Physiology, 1986, 66, 53-60.	2.7	7
36	Computer simulation of mammalian gas-exchange. Computers in Biology and Medicine, 1986, 16, 91-101.	7.0	12

STEVEN C HEMPLEMAN

#	Article	IF	CITATIONS
37	Comparison of intrapulmonary chemoreceptor response to PCO2 in the duck and chicken. Respiration Physiology, 1985, 61, 179-184.	2.7	8
38	Receptive fields of intrapulmonary chemoreceptors in the Pekin duck. Respiration Physiology, 1984, 57, 317-330.	2.7	20
39	A model of regional ventilation-perfusion inhomogeneity in the avian lung. Computer Programs in Biomedicine, 1983, 17, 11-18.	0.7	3
40	Effect of temperature on the CO2 sensitivity of avian intrapulmonary chemoreceptors. Respiration Physiology, 1983, 54, 233-240.	2.7	9
41	"OPT― A Linear Program for Formulation of Diets at Minimal Cost. Poultry Science, 1981, 60, 76-88.	3.4	0
42	A model of the interaction between O2 and CO2 exchange and cardiopulmonary control in the duck. Computers in Biology and Medicine, 1979, 9, 167-178.	7.0	3