
Kanchan Mukhopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4463003/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of association between components of the folate metabolic pathway and autism spectrum disorder in eastern Indian subjects. Molecular Biology Reports, 2022, 49, 1281-1293.	2.3	3
2	Functional SLC6A3 polymorphisms differentially affect autism spectrum disorder severity: a study on Indian subjects. Metabolic Brain Disease, 2022, 37, 397-410.	2.9	3
3	Specific dopaminergic genetic variants influence impulsivity, cognitive deficit, and disease severity of Indian ADHD probands. Molecular Biology Reports, 2022, , .	2.3	Ο
4	GABA Receptor SNPs and Elevated Plasma GABA Levels Affect the Severity of the Indian ASD Probands. Journal of Molecular Neuroscience, 2022, 72, 1300-1312.	2.3	4
5	Association of Dopamine Transporter Gene with Heroin Dependence in an Indian Subpopulation from Manipur. Journal of Molecular Neuroscience, 2021, 71, 122-136.	2.3	4
6	A pioneering study indicate role of GABRQ rs3810651 in ASD severity of Indo-Caucasoid female probands. Scientific Reports, 2021, 11, 7010.	3.3	1
7	Adhesion G protein-coupled receptor L3 gene variants: Statistically significant association observed in the male Indo-caucasoid Attention deficit hyperactivity disorder probands. Molecular Biology Reports, 2021, 48, 3213-3222.	2.3	1
8	Autistic traits and components of the folate metabolic system: an explorative analysis in the eastern Indian ASD subjects. Nutritional Neuroscience, 2020, 23, 860-867.	3.1	6
9	A single nucleotide polymorphism in <i>OPRM1</i> (rs483481) and risk for heroin use disorder. Journal of Addictive Diseases, 2020, 38, 214-222.	1.3	3
10	Working memory, impulsivity and emotional regulation correlates with frontal asymmetry of healthy young subjects during auditory session. Neural Network World, 2020, 30, 365-378.	0.8	0
11	Folate System Gene Variant rs1801394 66A>G may have a Causal Role in Down Syndrome in the Eastern Indian Population. International Journal of Molecular and Cellular Medicine, 2020, 9, 215-224.	1.1	Ο
12	Dopaminergic gene analysis indicates influence of inattention but not IQ in executive dysfunction of Indian ADHD probands. Journal of Neurogenetics, 2019, 33, 209-217.	1.4	3
13	Parental age and developmental milestones: pilot study indicated a role in understanding ADHD severity in Indian probands. BMC Pediatrics, 2019, 19, 117.	1.7	2
14	Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 1-10.	4.8	14
15	Significance of Dopaminergic Gene Variants in the Male Biasness of ADHD. Journal of Attention Disorders, 2017, 21, 200-208.	2.6	12
16	Dimorphic association of dopaminergic transporter gene variants with treatment outcome: Pilot study in Indian ADHD probands. Meta Gene, 2017, 11, 64-69.	0.6	7
17	Functional genetic polymorphisms in dopaminergic transporters: Association with ADHD traits in the Indian probands. Meta Gene, 2017, 11, 117-122.	0.6	3
18	Components of the folate metabolic pathway and ADHD core traits: an exploration in eastern Indian probands. Journal of Human Genetics, 2017, 62, 687-695.	2.3	19

#	Article	IF	CITATIONS
19	Cyclin-dependent Kinase 5: Novel role of gene variants identified in ADHD. Scientific Reports, 2017, 7, 6828.	3.3	9
20	Pilot study indicate role of preferentially transmitted monoamine oxidase gene variants in behavioral problems of male ADHD probands. BMC Medical Genetics, 2017, 18, 109.	2.1	11
21	Genetic effect of monoamine oxidase B (MAOB) gene on ASD associated behavior phenotypes. Canadian Journal of Biotechnology, 2017, 1, 77-77.	0.3	0
22	Monoamine oxidase B gene variants associated with attention deficit hyperactivity disorder in the Indo-Caucasoid population from West Bengal. BMC Genetics, 2016, 17, 92.	2.7	7
23	Attention deficit-hyperactivity disorder suffers from mitochondrial dysfunction. BBA Clinical, 2016, 6, 153-158.	4.1	38
24	The Dopamine Receptor D5 May Influence Age of Onset. Journal of Child Neurology, 2016, 31, 1250-1256.	1.4	8
25	A Pilot Study on the Contribution of Folate Gene Variants in the Cognitive Function of ADHD Probands. Neurochemical Research, 2014, 39, 2058-2067.	3.3	14
26	Sexual dimorphic effect in the genetic association of monoamine oxidase A (MAOA) markers with autism spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 50, 11-20.	4.8	39
27	Potential Contribution of Monoamine Oxidase A Gene Variants in ADHD and Behavioral Co-Morbidities: Scenario in Eastern Indian Probands. Neurochemical Research, 2014, 39, 843-852.	3.3	12
28	Potential Contribution of Dopaminergic Gene Variants in ADHD Core Traits and Co-Morbidity: A Study on Eastern Indian Probands. Cellular and Molecular Neurobiology, 2014, 34, 549-564.	3.3	17
29	Catecholaminergic Gene Variants: Contribution in ADHD and Associated Comorbid Attributes in the Eastern Indian Probands. BioMed Research International, 2013, 2013, 1-12.	1.9	9
30	Down Syndrome Related Muscle Hypotonia: Association with COL6A3 Functional SNP rs2270669. Frontiers in Genetics, 2013, 4, 57.	2.3	31
31	Association of monoamine oxidase A and serotonin transporter gene functional variants with intellectual disability related behavioral problems. Psychiatric Genetics, 2012, 22, 152.	1.1	0
32	Association of XRCC1, XRCC3, and NAT2 polymorphisms with the risk of oral submucous fibrosis among eastern Indian population. Journal of Oral Pathology and Medicine, 2012, 41, 292-302.	2.7	18
33	Role of SNAP25 Explored in Eastern Indian Attention Deficit Hyperactivity Disorder Probands. Neurochemical Research, 2012, 37, 349-357.	3.3	21
34	Role of gene–gene/gene–environment interaction in the etiology of eastern Indian ADHD probands. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 577-587.	4.8	38
35	Role of functional dopaminergic gene polymorphisms in the etiology of idiopathic intellectual disability. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1714-1722.	4.8	4
36	Importance of gene variants and co-factors of folate metabolic pathway in the etiology of idiopathic intellectual disability. Nutritional Neuroscience, 2011, 14, 202-209.	3.1	12

#	Article	IF	CITATIONS
37	Exploratory investigation on functional significance of ETS2 and SIM2 genes in Down syndrome. Disease Markers, 2011, 31, 247-57.	1.3	3
38	Study on DBH Genetic Polymorphisms and Plasma Activity in Attention Deficit Hyperactivity Disorder Patients from Eastern India. Cellular and Molecular Neurobiology, 2010, 30, 265-274.	3.3	19
39	Congenital pouch colon with unilateral renal agenesis and monorchism. Iranian Journal of Pediatrics, 2010, 20, 491-4.	0.3	1
40	Chromosomal abnormalities associated with mental retardation in female subjects. Indian Journal of Human Genetics, 2009, 15, 28.	0.7	3
41	<i>MAOA</i> exon 8 941T > G <i>Fnu</i> 4HI polymorphism: Actual rs number. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 446-446.	1.7	0
42	Correlation between cystathionine beta synthase gene polymorphisms, plasma homocysteine and idiopathic mental retardation in Indian individuals from Kolkata. Neuroscience Letters, 2009, 453, 214-218.	2.1	14
43	Correlation of Plasma Dopamine β-hydroxylase Activity with Polymorphisms in DBH Gene: A Study on Eastern Indian Population. Cellular and Molecular Neurobiology, 2008, 28, 343-350.	3.3	33
44	Lack of Association Between Down Syndrome and Polymorphisms in Dopamine Receptor D4 and Serotonin Transporter Genes. Neurochemical Research, 2008, 33, 1286-1291.	3.3	3
45	Screening for methylenetetrahydrofolate reductase C677T and A1298C polymorphisms in Indian patients with idiopathic mental retardation. Nutritional Neuroscience, 2008, 11, 18-24.	3.1	7
46	Analysis of cystathionine β-synthase 31 bp variable number tandem repeats in mentally retarded patients. Psychiatric Genetics, 2007, 17, 243.	1.1	3
47	Analysis of monoamine oxidase A promoter polymorphism in mentally retarded individuals. Psychiatric Genetics, 2007, 17, 5.	1.1	2
48	DAT1 3′-UTR 9R allele: Preferential transmission in Indian children with attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 826-829.	1.7	16
49	Dopamine receptor D4 exon 3 variable number of tandem repeat polymorphism: Distribution in eastern Indian population. Indian Journal of Human Genetics, 2007, 13, 54.	0.7	9
50	Risk of Down syndrome conferred by <i>MTHFR</i> C677T polymorphism: Ethnic variations. Indian Journal of Human Genetics, 2007, 13, 76.	0.7	6
51	Lack of significant association between â^'1021C→T polymorphism in the dopamine beta hydroxylase gene and attention deficit hyperactivity disorder. Neuroscience Letters, 2006, 402, 12-16.	2.1	18
52	Association of dopamine D4 receptor (DRD4) polymorphisms with attention deficit hyperactivity disorder in Indian population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 61-66.	1.7	35
53	MAOA promoter polymorphism and attention deficit hyperactivity disorder (ADHD) in indian children. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 637-642.	1.7	49
54	Cystathionine beta-synthase T833C/844INS68 polymorphism: a family-based study on mentally retarded children. Behavioral and Brain Functions, 2005, 1, 25.	3.3	33

#	Article	IF	CITATIONS
55	Molecular aspects of Down syndrome. Indian Pediatrics, 2005, 42, 339-44.	0.4	6
56	Involvement of in vivo inducedcheY-4gene ofVibrio choleraein motility, early adherence to intestinal epithelial cells and regulation of virulence factors. FEBS Letters, 2002, 532, 221-226.	2.8	26
57	Use of RNA Arbitrarily Primed-PCR Fingerprinting To Identify Vibrio cholerae Genes Differentially Expressed in the Host following Infection. Infection and Immunity, 2000, 68, 3878-3887.	2.2	29