Leonard Nunney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4461891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer suppression and the evolution of multiple retrogene copies of TP53 in elephants: A reâ€evaluation. Evolutionary Applications, 2022, 15, 891-901.	3.1	11
2	Telomeres, the loop tying cancer to organismal lifeâ€histories. Molecular Ecology, 2022, 31, 6273-6285.	3.9	6
3	Identifying key questions in the ecology and evolution of cancer. Evolutionary Applications, 2021, 14, 877-892.	3.1	58
4	Determining cancer risk: the evolutionary multistage model or total stem cell divisions?. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202291.	2.6	4
5	Resolving Peto's paradox: Modeling the potential effects of sizeâ€related metabolic changes, and of the evolution of immune policing and cancer suppression. Evolutionary Applications, 2020, 13, 1581-1592.	3.1	14
6	An Experimental Test of the Host-Plant Range of Nonrecombinant Strains of North American <i>Xylella fastidiosa</i> subsp. <i>multiplex</i> . Phytopathology, 2019, 109, 294-300.	2.2	37
7	A phylogenetic test of the role of CRISPR-Cas in limiting plasmid acquisition and prophage integration in bacteria. Plasmid, 2019, 104, 102418.	1.4	14
8	Size matters: height, cell number and a person's risk of cancer. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181743.	2.6	70
9	Host and symbiont genetic contributions to fitness in a <i>Trichogramma–Wolbachia</i> symbiosis. PeerJ, 2018, 6, e4655.	2.0	5
10	The Evolutionary Origins of Cancer andÂof Its Control by Immune PolicingÂand Genetic Suppression. , 2017, , 1-9.		3
11	The effect of neighborhood size on effective population size in theory and in practice. Heredity, 2016, 117, 224-232.	2.6	25
12	Overestimating the Role of Environment in Cancers. Cancer Prevention Research, 2016, 9, 773-776.	1.5	13
13	The guardians of inherited oncogenic vulnerabilities. Evolution; International Journal of Organic Evolution, 2016, 70, 1-6.	2.3	10
14	Adapting to a Changing Environment: Modeling the Interaction of Directional Selection and Plasticity. Journal of Heredity, 2016, 107, 15-24.	2.4	34
15	Commentary: The multistage model of carcinogenesis, Peto's paradox and evolution. International Journal of Epidemiology, 2016, 45, 649-653.	1.9	13
16	Reduction in the cumulative effect of stress-induced inbreeding depression due to intragenerational purging in Drosophila melanogaster. Heredity, 2016, 116, 304-313.	2.6	7
17	How Do Plant Diseases Caused by <i>Xylella fastidiosa</i> Emerge?. Plant Disease, 2015, 99, 1457-1467.	1.4	168
18	Peto's paradox and the hallmarks of cancer: constructing an evolutionary framework for understanding the incidence of cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150161.	4.0	39

#	Article	IF	CITATIONS
19	Peto's paradox and the promise of comparative oncology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140177.	4.0	58
20	The expression of tumour suppressors and proto-oncogenes in tissues susceptible to their hereditary cancers. British Journal of Cancer, 2015, 113, 345-353.	6.4	13
21	The Complex Biogeography of the Plant Pathogen Xylella fastidiosa: Genetic Evidence of Introductions and Subspecific Introgression in Central America. PLoS ONE, 2014, 9, e112463.	2.5	72
22	Can Neutral Molecular Markers be Used to Determine the Success of an Introduction of a "Better― Strain Into an Established Population of a Biocontrol Parasitoid?. Journal of Economic Entomology, 2014, 107, 483-495.	1.8	5
23	Large-Scale Intersubspecific Recombination in the Plant-Pathogenic Bacterium Xylella fastidiosa Is Associated with the Host Shift to Mulberry. Applied and Environmental Microbiology, 2014, 80, 3025-3033.	3.1	110
24	Intersubspecific Recombination in Xylella fastidiosa Strains Native to the United States: Infection of Novel Hosts Associated with an Unsuccessful Invasion. Applied and Environmental Microbiology, 2014, 80, 1159-1169.	3.1	53
25	The real war on cancer: the evolutionary dynamics of cancer suppression. Evolutionary Applications, 2013, 6, 11-19.	3.1	67
26	Recent Evolutionary Radiation and Host Plant Specialization in the Xylella fastidiosa Subspecies Native to the United States. Applied and Environmental Microbiology, 2013, 79, 2189-2200.	3.1	74
27	Seasonal stress drives predictable changes in inbreeding depression in field-tested captive populations of <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3756-3764.	2.6	24
28	Detecting Genetic Introgression: High Levels of Intersubspecific Recombination Found in Xylella fastidiosa in Brazil. Applied and Environmental Microbiology, 2012, 78, 4702-4714.	3.1	74
29	The Importance of Multilocus Sequence Typing: Cautionary Tales from the Bacterium <i>Xylella fastidiosa</i> . Phytopathology, 2012, 102, 456-460.	2.2	25
30	Understanding and Estimating Effective Population Size for Practical Application in Marine Species Management. Conservation Biology, 2011, 25, 438-449.	4.7	270
31	Multilocus Sequence Typing of <i>Xylella fastidiosa</i> Causing Pierce's Disease and Oleander Leaf Scorch in the United States. Phytopathology, 2010, 100, 601-611.	2.2	133
32	Intragenomic conflict in populations infected by Parthenogenesis Inducing Wolbachia ends with irreversible loss of sexual reproduction. BMC Evolutionary Biology, 2010, 10, 229.	3.2	44
33	Sexâ€specific effects of inbreeding in wildâ€caught <i>Drosophila melanogaster</i> under benign and stressful conditions. Journal of Evolutionary Biology, 2010, 23, 2309-2323.	1.7	26
34	Population Genomic Analysis of a Bacterial Plant Pathogen: Novel Insight into the Origin of Pierce's Disease of Grapevine in the U.S PLoS ONE, 2010, 5, e15488.	2.5	88
35	SEXUAL SELECTION AND IMMUNE FUNCTION IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2008, 62, 386-400.	2.3	39
36	Pupal period and adult size in Drosophila melanogaster: a cautionary tale of contrasting correlations between two sexually dimorphic traits. Journal of Evolutionary Biology, 2007, 20, 141-151.	1.7	9

#	Article	IF	CITATIONS
37	Insight into post-mating interactions between the sexes: relatedness suppresses productivity of singly mated femaleDrosophila melanogaster. Journal of Evolutionary Biology, 2007, 20, 1988-1997.	1.7	4
38	LOWER GROUP PRODUCTIVITY UNDER KIN-SELECTED REPRODUCTIVE ALTRUISM. Evolution; International Journal of Organic Evolution, 2006, 60, 2023-2031.	2.3	6
39	Detecting Natural Selection at the Molecular Level: A Reexamination of Some "Classic―Examples of Adaptive Evolution. Journal of Molecular Evolution, 2006, 62, 176-195.	1.8	8
40	LOWER GROUP PRODUCTIVITY UNDER KIN-SELECTED REPRODUCTIVE ALTRUISM. Evolution; International Journal of Organic Evolution, 2006, 60, 2023.	2.3	0
41	BATEMAN'S PRINCIPLE AND IMMUNITY: PHENOTYPICALLY PLASTIC REPRODUCTIVE STRATEGIES PREDICT CHANGES IN IMMUNOLOGICAL SEX DIFFERENCES. Evolution; International Journal of Organic Evolution, 2005, 59, 1510-1517	2.3	132
42	Multilocus Sequence Type System for the Plant Pathogen Xylella fastidiosa and Relative Contributions of Recombination and Point Mutation to Clonal Diversity. Applied and Environmental Microbiology, 2005, 71, 8491-8499.	3.1	137
43	A Multigene Phylogenetic Study of Clonal Diversity and Divergence in North American Strains of the Plant Pathogen Xylella fastidiosa. Applied and Environmental Microbiology, 2005, 71, 3832-3839.	3.1	126
44	The population genetics of multistage carcinogenesis. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1183-1191.	2.6	36
45	The Effective Size of Annual Plant Populations: The Interaction of a Seed Bank with Fluctuating Population Size in Maintaining Genetic Variation. American Naturalist, 2002, 160, 195-204.	2.1	119
46	The evolution of senescence in fish. Mechanisms of Ageing and Development, 2002, 123, 773-789.	4.6	115
47	GEOGRAPHIC PATTERNS OF GENETIC DIFFERENTIATION WITHIN THE RESTRICTED RANGE OF THE ENDANGERED STEPHENS?KANGAROO RAT DIPODOMYS STEPHENSI. Evolution; International Journal of Organic Evolution, 2001, 55, 1233-1244.	2.3	10
48	GEOGRAPHIC PATTERNS OF GENETIC DIFFERENTIATION WITHIN THE RESTRICTED RANGE OF THE ENDANGERED STEPHENS' KANGAROO RAT DIPODOMYS STEPHENSI. Evolution; International Journal of Organic Evolution, 2001, 55, 1233.	2.3	8
49	Increased sexual activity reduces male immune function in Drosophila melanogaster. Proceedings of the United States of America, 2001, 98, 7904-7909.	7.1	250
50	Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology and Evolution, 2000, 15, 421-425.	8.7	674
51	The Limits to Knowledge in Conservation Genetics. , 2000, , 179-194.		24
52	12. Lineage Selection: Natural Selection for Long-Term Benefit. , 2000, , 238-252.		8
53	The Effective Size of a Hierarchically Structured Population. Evolution; International Journal of Organic Evolution, 1999, 53, 1.	2.3	47
54	Lineage selection and the evolution of multistage carcinogenesis. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 493-498.	2.6	175

#	Article	IF	CITATIONS
55	THE EFFECTIVE SIZE OF A HIERARCHICALLY STRUCTURED POPULATION. Evolution; International Journal of Organic Evolution, 1999, 53, 1-10.	2.3	68
56	Fluctuating Population Size and the Ratio of Effective to Census Population Size. Evolution; International Journal of Organic Evolution, 1997, 51, 2017.	2.3	63
57	THE EFFECT OF TEMPERATURE ON BODY SIZE AND FECUNDITY IN FEMALE <i>DROSOPHILA MELANOGASTER </i> : EVIDENCE FOR ADAPTIVE PLASTICITY. Evolution; International Journal of Organic Evolution, 1997, 51, 1529-1535.	2.3	72
58	FLUCTUATING POPULATION SIZE AND THE RATIO OF EFFECTIVE TO CENSUS POPULATION SIZE. Evolution; International Journal of Organic Evolution, 1997, 51, 2017-2021.	2.3	128
59	The Response to Selection for Fast Larval Development in Drosophila melanogaster and its Effect on Adult Weight: An Example of a Fitness Trade-Off. Evolution; International Journal of Organic Evolution, 1996, 50, 1193.	2.3	68
60	The colonization of organges by the cosmopolitan Drosophila. Oecologia, 1996, 108, 552-561.	2.0	27
61	THE RESPONSE TO SELECTION FOR FAST LARVAL DEVELOPMENT IN <i>DROSOPHILA MELANOGASTER </i> AND ITS EFFECT ON ADULT WEIGHT: AN EXAMPLE OF A FITNESS TRADE-OFF. Evolution; International Journal of Organic Evolution, 1996, 50, 1193-1204.	2.3	112
62	The influence of variation in female fecundity on effective population size. Biological Journal of the Linnean Society, 1996, 59, 411-425.	1.6	106
63	The influence of variation in female fecundity on effective population size. Biological Journal of the Linnean Society, 1996, 59, 411-425.	1.6	9
64	MEASURING THE RATIO OF EFFECTIVE POPULATION SIZE TO ADULT NUMBERS USING GENETIC AND ECOLOGICAL DATA. Evolution; International Journal of Organic Evolution, 1995, 49, 389-392.	2.3	52
65	Measuring the Ratio of Effective Population Size to Adult Numbers using Genetic and Ecological Data. Evolution; International Journal of Organic Evolution, 1995, 49, 389.	2.3	41
66	Minimum animal populations. Trends in Ecology and Evolution, 1995, 10, 134-135.	8.7	0
67	Estimating the Effective Population Size of Conserved Populations. Conservation Biology, 1994, 8, 175-184.	4.7	270
68	George C. Williams. 1992: Natural Selection: Domains, Levels and Challenges. Oxford University Press. f14.95. ISBN: 0-19-506933-1 Journal of Evolutionary Biology, 1993, 6, 773-775.	1.7	0
69	Assessing minimum viable population size: Demography meets population genetics. Trends in Ecology and Evolution, 1993, 8, 234-239.	8.7	257
70	The Influence of Mating System and Overlapping Generations on Effective Population Size. Evolution; International Journal of Organic Evolution, 1993, 47, 1329.	2.3	182
71	THE INFLUENCE OF MATING SYSTEM AND OVERLAPPING GENERATIONS ON EFFECTIVE POPULATION SIZE. Evolution; International Journal of Organic Evolution, 1993, 47, 1329-1341.	2.3	304
72	THE ROLE OF DEME SIZE, REPRODUCTIVE PATTERNS, AND DISPERSAL IN THE DYNAMICS OF <i>t </i> -LETHAL HAPLOTYPES. Evolution; International Journal of Organic Evolution, 1993, 47, 1342-1359.	2.3	8

#	Article	IF	CITATIONS
73	Drosophila on Oranges: Colonization, Competition, and Coexistence. Ecology, 1990, 71, 1904-1915.	3.2	65
74	THE MAINTENANCE OF SEX BY GROUP SELECTION. Evolution; International Journal of Organic Evolution, 1989, 43, 245-257.	2.3	115
75	Factors influencing the optimum sex ratio in a structured population. Theoretical Population Biology, 1988, 33, 1-30.	1.1	115
76	Evolutionary biology: Group selection and the sex ratio. Nature, 1985, 313, 10-11.	27.8	30
77	The effect of long time delays in predator-prey systems. Theoretical Population Biology, 1985, 27, 202-221.	1.1	28
78	Absolute stability in predator-prey models. Theoretical Population Biology, 1985, 28, 209-232.	1.1	15
79	Sex Differences in Larval Competition in Drosophila melanogaster: The Testing of a Competition Model and Its Relevance to Frequency-Dependent Selection. American Naturalist, 1983, 121, 67-93.	2.1	57
80	Interactive competition models and isocline shape. Mathematical Biosciences, 1981, 56, 77-110.	1.9	5
81	Hardy–Weinberg ratios and rare male mating advantage. Nature, 1976, 259, 304-305.	27.8	0