Jaime Cubero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4461658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	â€~ <i>Candidatus</i> Liberibacter' Pathosystems at the Forefront of Agricultural and Biological Research Challenges. Phytopathology, 2022, 112, 7-10.	2.2	3
2	Complete Genome Sequence Resources of SixÂStrains of the Most Virulent Pathovars of <i>Xanthomonas arboricola</i> Using Long- and Short-Read Sequencing Approaches. Phytopathology, 2022, 112, 1808-1813.	2.2	3
3	Pathotyping Citrus Ornamental Relatives with Xanthomonas citri pv. citri and X. citri pv. aurantifolii Refines Our Understanding of Their Susceptibility to These Pathogens. Microorganisms, 2022, 10, 986.	3.6	6
4	Assessment of Psyllid Handling and DNA Extraction Methods in the Detection of â€~Candidatus Liberibacter Solanacearum' by qPCR. Microorganisms, 2022, 10, 1104.	3.6	2
5	Biofilm Formation in Xanthomonas arboricola pv. pruni: Structure and Development. Agronomy, 2021, 11, 546.	3.0	4
6	Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas. Microorganisms, 2021, 9, 862.	3.6	22
7	Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain. Microorganisms, 2020, 8, 1446.	3.6	5
8	Characterization of the extracellular matrix of biofilms formed by Xanthomonas citri subsp. citri srips strains with different host ranges. Tropical Plant Pathology, 2020, 45, 306-319.	1.5	0
9	Xanthomonas citri subsp. citri and Xanthomonas arboricola pv. pruni: Comparative analysis of two pathogens producing similar symptoms in different host plants. PLoS ONE, 2019, 14, e0219797.	2.5	7
10	<i>Xanthomonas arboricola</i> pv. <i>pruni</i> , causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the <i>X.Âarboricola</i> species context. Molecular Plant Pathology, 2018, 19, 2053-2065.	4.2	35
11	The structure and function of the global citrus rhizosphere microbiome. Nature Communications, 2018, 9, 4894.	12.8	304
12	Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var.) Tj ETQq0 0 0 rgBT 1857-1866.	/Overlock 1.7	10 Tf 50 30 19
13	The use of stable and unstable green fluorescent proteins for studies in two bacterial models: Agrobacterium tumefaciens and Xanthomonas campestris pv. campestris. Archives of Microbiology, 2017, 199, 581-590.	2.2	2
14	Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors. Frontiers in Microbiology, 2017, 8, 573.	3.5	38
15	Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range. PLoS ONE, 2016, 11, e0156695.	2.5	26
16	Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits. PLoS ONE, 2016, 11, e0161977.	2.5	31
17	Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from <i>Prunus persica</i> Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on <i>Prunus</i> spp. Genome Announcements, 2016, 4, .	0.8	6
18	Draft genome sequence for virulent and avirulent strains of Xanthomonas arboricola isolated from Prunus spp. in Spain. Standards in Genomic Sciences, 2016, 11, 12.	1.5	16

JAIME CUBERO

#	Article	IF	CITATIONS
19	First Report of Bark Canker Disease of Poplar Caused by Lonsdalea quercina subp. populi in Spain. Plant Disease, 2016, 100, 2159-2159.	1.4	12
20	Influence of selected bactericides on biofilm formation and viability of Xanthomonas citri subsp. citri. Crop Protection, 2015, 78, 204-213.	2.1	8
21	Biofilm formation and motility of <i>Xanthomonas</i> strains with different citrus host range. Plant Pathology, 2015, 64, 767-775.	2.4	21
22	Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond. Genome Announcements, 2014, 2, .	0.8	14
23	The antagonistic strain <i><scp>B</scp>acillus subtilis</i> â€ <scp>UMAF</scp> 6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate―and salicylic acidâ€dependent defence responses. Microbial Biotechnology, 2013, 6, 264-274.	4.2	174
24	Protection of citrus roots against infection by Phytophthora spp. by hypovirulent P. nicotianae is not related to induction of systemic acquired resistance. Plant and Soil, 2012, 358, 39-49.	3.7	8
25	Biocontrol traits of plant growth suppressive arbuscular mycorrhizal fungi against root rot in tomato caused by Pythium aphanidermatum. European Journal of Plant Pathology, 2012, 133, 361-369.	1.7	15
26	mRNA from selected genes is useful for specific detection and quantification of viable <i>Xanthomonas citri</i> subsp. <i>citri</i> . Plant Pathology, 2012, 61, 479-488.	2.4	10
27	Resistance of several strawberry cultivars against three different pathogens. Spanish Journal of Agricultural Research, 2012, 10, 502.	0.6	18
28	Development of an Efficient Real-Time Quantitative PCR Protocol for Detection of <i>Xanthomonas arboricola</i> pv. pruni in <i>Prunus</i> Species. Applied and Environmental Microbiology, 2011, 77, 89-97.	3.1	52
29	Unstable green fluorescent protein for study of <i>Xanthomonas citri</i> subsp. <i>citri</i> survival on citrus. Plant Pathology, 2011, 60, 977-985.	2.4	26
30	Use of Maximum Likelihood-Mixed Models to select stable reference genes: a case of heat stress response in sheep. BMC Molecular Biology, 2011, 12, 36.	3.0	14
31	Development of a simplified NASBA protocol for detecting viable cells of the citrus pathogen <i>Xanthomonas citri</i> subsp. c <i>itri</i> under different treatments. Plant Pathology, 2010, 59, 764-772.	2.4	17
32	QBOL: a new EU project focusing on DNA barcoding of Quarantine organisms. EPPO Bulletin, 2010, 40, 30-33.	0.8	34
33	Differential susceptibility of entomopathogenic nematodes to nematophagous fungi from Florida citrus orchards. Nematology, 2009, 11, 231-241.	0.6	22
34	Characterization of Penicillium Species by Ribosomal DNA Sequencing and BOX, ERIC and REP-PCR Analysis. Mycopathologia, 2009, 168, 11-22.	3.1	20
35	Diagnosis of Xanthomonas axonopodis pv. citri, causal agent of citrus canker, in commercial fruits by isolation and PCR-based methods. Journal of Applied Microbiology, 2007, 103, 2309-2315.	3.1	51
36	Two different PCR approaches for universal diagnosis of brown rot and identification of Monilinia spp. in stone fruit trees. Journal of Applied Microbiology, 2007, 103, 2629-2637.	3.1	60

JAIME CUBERO

#	Article	IF	CITATIONS
37	Systemic movement of Agrobacterium tumefaciens in several plant species. Journal of Applied Microbiology, 2006, 101, 412-421.	3.1	22
38	<i>Agrobacterium </i> Persistence in Plant Tissues After Transformation. , 2005, 286, 351-364.		2
39	Quantitative Real-Time Polymerase Chain Reaction for Bacterial Enumeration and Allelic Discrimination to Differentiate Xanthomonas Strains on Citrus. Phytopathology, 2005, 95, 1333-1340.	2.2	39
40	Detection and Characterization of a New Strain of Citrus Canker Bacteria from Key/Mexican Lime and Alemow in South Florida. Plant Disease, 2004, 88, 1179-1188.	1.4	104
41	The leucine-responsive regulatory protein (Irp) gene for characterization of the relationship among Xanthomonas species. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 429-437.	1.7	28
42	Detection moleculaire specifique de la region vir du plasmide pTi d'Agrobacterium tumefaciens dans les sols et plants au Maroc. EPPO Bulletin, 2004, 34, 403-406.	0.8	1
43	Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Molecular Breeding, 2004, 14, 171-183.	2.1	79
44	Xanthomonas axonopodis pv. citri : factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 2004, 5, 1-15.	4.2	352
45	Genetic Relationship among Worldwide Strains of Xanthomonas Causing Canker in Citrus Species and Design of New Primers for Their Identification by PCR. Applied and Environmental Microbiology, 2002, 68, 1257-1264.	3.1	144
46	An internal control for the diagnosis of crown gall by PCR. Journal of Microbiological Methods, 2002, 51, 387-392.	1.6	27
47	An Efficient Microtiter System to Determine Agrobacterium Biovar. European Journal of Plant Pathology, 2001, 107, 757-760.	1.7	5
48	Quantitative PCR Method for Diagnosis of Citrus Bacterial Canker. Applied and Environmental Microbiology, 2001, 67, 2849-2852.	3.1	37
49	A simple and efficient PCR method for the detection ofAgrobacterium tumefaciensin plant tumours. Journal of Applied Microbiology, 1999, 86, 591-602.	3.1	56
50	Evidence of Migration and Endophytic Presence of Agrobacterium tumefaciens in Rose Plants. European Journal of Plant Pathology, 1999, 105, 39-50.	1.7	34
51	A simple extraction procedure for efficient routine detection of pathogenic bacteria in plant material by polymerase chain reaction. Journal of Microbiological Methods, 1999, 37, 23-31.	1.6	115
52	Detection of Agrobacterium tumefaciens and biological control of crown gall in almond rootstocks. EPPO Bulletin, 1997, 27, 519-519.	0.8	1
53	Detection of cauliflower mosaic virus (CaMV) in single aphids by the polymerase chain reaction (PCR). Journal of Virological Methods, 1992, 37, 129-137.	2.1	29