Jaime Cubero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4461658/publications.pdf

Version: 2024-02-01

53	2,180	23	45
papers	citations	h-index	g-index
53	53	53	2182
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Xanthomonas axonopodis pv. citri : factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 2004, 5, 1-15.	4.2	352
2	The structure and function of the global citrus rhizosphere microbiome. Nature Communications, 2018, 9, 4894.	12.8	304
3	The antagonistic strain <i><scp>B</scp>acillus subtilis</i> â€ <scp>UMAF</scp> 6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate―and salicylic acidâ€dependent defence responses. Microbial Biotechnology, 2013, 6, 264-274.	4.2	174
4	Genetic Relationship among Worldwide Strains of Xanthomonas Causing Canker in Citrus Species and Design of New Primers for Their Identification by PCR. Applied and Environmental Microbiology, 2002, 68, 1257-1264.	3.1	144
5	A simple extraction procedure for efficient routine detection of pathogenic bacteria in plant material by polymerase chain reaction. Journal of Microbiological Methods, 1999, 37, 23-31.	1.6	115
6	Detection and Characterization of a New Strain of Citrus Canker Bacteria from Key/Mexican Lime and Alemow in South Florida. Plant Disease, 2004, 88 , $1179-1188$.	1.4	104
7	Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Molecular Breeding, 2004, 14, 171-183.	2.1	79
8	Two different PCR approaches for universal diagnosis of brown rot and identification of Monilinia spp. in stone fruit trees. Journal of Applied Microbiology, 2007, 103, 2629-2637.	3.1	60
9	A simple and efficient PCR method for the detection of Agrobacterium tume faciens in plant tumours. Journal of Applied Microbiology, 1999, 86, 591-602.	3.1	56
10	Development of an Efficient Real-Time Quantitative PCR Protocol for Detection of (i) Xanthomonas arboricola (i) pv. pruni in (i) Prunus (i) Species. Applied and Environmental Microbiology, 2011, 77, 89-97.	3.1	52
11	Diagnosis of Xanthomonas axonopodis pv. citri, causal agent of citrus canker, in commercial fruits by isolation and PCR-based methods. Journal of Applied Microbiology, 2007, 103, 2309-2315.	3.1	51
12	Quantitative Real-Time Polymerase Chain Reaction for Bacterial Enumeration and Allelic Discrimination to Differentiate Xanthomonas Strains on Citrus. Phytopathology, 2005, 95, 1333-1340.	2.2	39
13	Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors. Frontiers in Microbiology, 2017, 8, 573.	3 . 5	38
14	Quantitative PCR Method for Diagnosis of Citrus Bacterial Canker. Applied and Environmental Microbiology, 2001, 67, 2849-2852.	3.1	37
15	<i>Xanthomonas arboricola</i> pv. <i>pruni</i> , causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the <i>X.Âarboricola</i> species context. Molecular Plant Pathology, 2018, 19, 2053-2065.	4.2	35
16	Evidence of Migration and Endophytic Presence of Agrobacterium tumefaciens in Rose Plants. European Journal of Plant Pathology, 1999, 105, 39-50.	1.7	34
17	QBOL: a new EU project focusing on DNA barcoding of Quarantine organisms. EPPO Bulletin, 2010, 40, 30-33.	0.8	34
18	Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits. PLoS ONE, 2016, 11, e0161977.	2.5	31

#	Article	IF	CITATIONS
19	Detection of cauliflower mosaic virus (CaMV) in single aphids by the polymerase chain reaction (PCR). Journal of Virological Methods, 1992, 37, 129-137.	2.1	29
20	The leucine-responsive regulatory protein (Irp) gene for characterization of the relationship among Xanthomonas species. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 429-437.	1.7	28
21	An internal control for the diagnosis of crown gall by PCR. Journal of Microbiological Methods, 2002, 51, 387-392.	1.6	27
22	Unstable green fluorescent protein for study of <i>Xanthomonas citri</i> subsp. <i>citri</i> survival on citrus. Plant Pathology, 2011, 60, 977-985.	2.4	26
23	Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range. PLoS ONE, 2016, 11, e0156695.	2.5	26
24	Systemic movement of Agrobacterium tumefaciens in several plant species. Journal of Applied Microbiology, 2006, 101, 412-421.	3.1	22
25	Differential susceptibility of entomopathogenic nematodes to nematophagous fungi from Florida citrus orchards. Nematology, 2009, 11, 231-241.	0.6	22
26	Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas. Microorganisms, 2021, 9, 862.	3.6	22
27	Biofilm formation and motility of <i>Xanthomonas</i> strains with different citrus host range. Plant Pathology, 2015, 64, 767-775.	2.4	21
28	Characterization of Penicillium Species by Ribosomal DNA Sequencing and BOX, ERIC and REP-PCR Analysis. Mycopathologia, 2009, 168, 11-22.	3.1	20
29	Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var.) Tj ETQq1 1 0.7843	l 4 rgBT /C 1.7	verlock 10 19
30	Resistance of several strawberry cultivars against three different pathogens. Spanish Journal of Agricultural Research, 2012, 10, 502.	0.6	18
31	Development of a simplified NASBA protocol for detecting viable cells of the citrus pathogen <i>Xanthomonas citri</i> subsp. c <i>itri</i> under different treatments. Plant Pathology, 2010, 59, 764-772.	2.4	17
32	Draft genome sequence for virulent and avirulent strains of Xanthomonas arboricola isolated from Prunus spp. in Spain. Standards in Genomic Sciences, 2016, 11, 12.	1.5	16
33	Biocontrol traits of plant growth suppressive arbuscular mycorrhizal fungi against root rot in tomato caused by Pythium aphanidermatum. European Journal of Plant Pathology, 2012, 133, 361-369.	1.7	15
34	Use of Maximum Likelihood-Mixed Models to select stable reference genes: a case of heat stress response in sheep. BMC Molecular Biology, 2011, 12, 36.	3.0	14
35	Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond. Genome Announcements, 2014, 2, .	0.8	14
36	First Report of Bark Canker Disease of Poplar Caused by Lonsdalea quercina subp. populi in Spain. Plant Disease, 2016, 100, 2159-2159.	1.4	12

#	Article	IF	CITATIONS
37	mRNA from selected genes is useful for specific detection and quantification of viable <i>Xanthomonas citri</i> subsp. <i>citri</i> > Plant Pathology, 2012, 61, 479-488.	2.4	10
38	Protection of citrus roots against infection by Phytophthora spp. by hypovirulent P. nicotianae is not related to induction of systemic acquired resistance. Plant and Soil, 2012, 358, 39-49.	3.7	8
39	Influence of selected bactericides on biofilm formation and viability of Xanthomonas citri subsp. citri. Crop Protection, 2015, 78, 204-213.	2.1	8
40	Xanthomonas citri subsp. citri and Xanthomonas arboricola pv. pruni: Comparative analysis of two pathogens producing similar symptoms in different host plants. PLoS ONE, 2019, 14, e0219797.	2.5	7
41	Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from <i>Prunus persica</i> Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on <i>Prunus</i> Spp. Genome Announcements, 2016, 4, .	0.8	6
42	Pathotyping Citrus Ornamental Relatives with Xanthomonas citri pv. citri and X. citri pv. aurantifolii Refines Our Understanding of Their Susceptibility to These Pathogens. Microorganisms, 2022, 10, 986.	3.6	6
43	An Efficient Microtiter System to Determine Agrobacterium Biovar. European Journal of Plant Pathology, 2001, 107, 757-760.	1.7	5
44	Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain. Microorganisms, 2020, 8, 1446.	3.6	5
45	Biofilm Formation in Xanthomonas arboricola pv. pruni: Structure and Development. Agronomy, 2021, 11, 546.	3.0	4
46	â€~ <i>Candidatus</i> Liberibacter' Pathosystems at the Forefront of Agricultural and Biological Research Challenges. Phytopathology, 2022, 112, 7-10.	2.2	3
47	Complete Genome Sequence Resources of SixÂStrains of the Most Virulent Pathovars of <i>Xanthomonas arboricola</i> Using Long- and Short-Read Sequencing Approaches. Phytopathology, 2022, 112, 1808-1813.	2.2	3
48	<i>Agrobacterium </i> Persistence in Plant Tissues After Transformation., 2005, 286, 351-364.		2
49	The use of stable and unstable green fluorescent proteins for studies in two bacterial models: Agrobacterium tumefaciens and Xanthomonas campestris pv. campestris. Archives of Microbiology, 2017, 199, 581-590.	2.2	2
50	Assessment of Psyllid Handling and DNA Extraction Methods in the Detection of  Candidatus Liberibacter Solanacearum' by qPCR. Microorganisms, 2022, 10, 1104.	3.6	2
51	Detection of Agrobacterium tumefaciens and biological control of crown gall in almond rootstocks. EPPO Bulletin, 1997, 27, 519-519.	0.8	1
52	Detection moleculaire specifique de la region vir du plasmide pTi d'Agrobacterium tumefaciens dans les sols et plants au Maroc. EPPO Bulletin, 2004, 34, 403-406.	0.8	1
53	Characterization of the extracellular matrix of biofilms formed by Xanthomonas citri subsp. citri strains with different host ranges. Tropical Plant Pathology, 2020, 45, 306-319.	1.5	0