Stefan Glasauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4461049/publications.pdf

Version: 2024-02-01

241 papers

7,169 citations

44 h-index

57758

70 g-index

261 all docs

261 docs citations

times ranked

261

4347 citing authors

#	Article	IF	Citations
1	Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology, 2004, 62, 1623-1625.	1.1	244
2	A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 2015, 19, 285-293.	7.8	229
3	Goal-directed linear locomotion in normal and labyrinthine-defective subjects. Experimental Brain Research, 1994, 98, 323-35.	1.5	185
4	The predictive brain. NeuroReport, 1996, 7, 1170-1174.	1.2	150
5	The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. European Journal of Neuroscience, 2001, 14, 756-762.	2.6	150
6	Iterative Bayesian Estimation as an Explanation for Range and Regression Effects: A Study on Human Path Integration. Journal of Neuroscience, 2011, 31, 17220-17229.	3.6	150
7	Human-robot interaction in handing-over tasks. , 2008, , .		143
8	Spatial memory and hippocampal volume in humans with unilateral vestibular deafferentation. Hippocampus, 2007, 17, 471-485.	1.9	142
9	How predictive is grip force control in the complete absence of somatosensory feedback?. Brain, 2004, 127, 182-192.	7.6	138
10	Three-Dimensional Eye Position and Slow Phase Velocity in Humans With Downbeat Nystagmus. Journal of Neurophysiology, 2003, 89, 338-354.	1.8	127
11	Central paroxysmal positional nystagmus. Neurology, 2015, 84, 2238-2246.	1.1	125
12	Interaction of Semicircular Canals and Otoliths in the Processing Structure of the Subjective Zenith. Annals of the New York Academy of Sciences, 1992, 656, 847-849.	3.8	124
13	4-Aminopyridine restores vertical and horizontal neural integrator function in downbeat nystagmus. Brain, 2007, 130, 2441-2451.	7. 6	120
14	Rapid and independent memory formation in the parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13251-13256.	7.1	114
15	Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Experimental Brain Research, 2002, 145, 489-497.	1.5	109
16	Comparison of Human Ocular Torsion Patterns During Natural and Galvanic Vestibular Stimulation. Journal of Neurophysiology, 2002, 87, 2064-2073.	1.8	100
17	Detection of floccular hypometabolism in downbeat nystagmus by fMRI. Neurology, 2006, 66, 281-283.	1.1	100
18	Visualâ€Vestibular and Visuovisual Cortical Interaction. Annals of the New York Academy of Sciences, 2002, 956, 230-241.	3.8	97

#	Article	IF	Citations
19	How the eyes move the body. Neurology, 2005, 65, 1291-1293.	1.1	90
20	4-Aminopyridine improves downbeat nystagmus, smooth pursuit, and VOR gain. Neurology, 2004, 62, 1228-1229.	1.1	89
21	4-aminopyridine restores visual ocular motor function in upbeat nystagmus. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 451-453.	1.9	87
22	Structural and functional plasticity of the hippocampal formation in professional dancers and slackliners. Hippocampus, $2011, 21, 855-865$.	1.9	87
23	Adjustments of Speed and Path when Avoiding Collisions with Another Pedestrian. PLoS ONE, 2014, 9, e89589.	2.5	84
24	Updating an object's orientation and location during nonvisual navigation: A comparison between two processing modes. Perception & Psychophysics, 1997, 59, 404-418.	2.3	83
25	Vestibular Perception following Acute Unilateral Vestibular Lesions. PLoS ONE, 2013, 8, e61862.	2.5	80
26	Estimation of passive horizontal linear whole-body displacement in humans. Journal of Neurophysiology, 1993, 70, 1270-1273.	1.8	72
27	Characteristics and mechanism of apogeotropic central positional nystagmus. Brain, 2018, 141, 762-775.	7.6	72
28	Perception of spatial orientation in microgravity. Brain Research Reviews, 1998, 28, 185-193.	9.0	71
29	Structural and functional MRIs disclose cerebellar pathologies in idiopathic downbeat nystagmus. Neurology, 2007, 69, 1128-1135.	1.1	68
30	A Simple Model of Vestibular Canal-Otolith Signal Fusion. Annals of the New York Academy of Sciences, 1999, 871, 430-434.	3.8	64
31	Vestibular Perception and Navigation in the Congenitally Blind. Journal of Neurophysiology, 2007, 97, 4341-4356.	1.8	64
32	A model-based theory on the origin of downbeat nystagmus. Experimental Brain Research, 2008, 188, 613-631.	1.5	63
33	Strategies of locomotor collision avoidance. Gait and Posture, 2013, 37, 385-390.	1.4	61
34	Moving weightless objects. Experimental Brain Research, 2000, 132, 52-64.	1.5	59
35	The Origin of Downbeat Nystagmus: An Asymmetry in the Distribution of Onâ€Directions of Vertical Gazeâ€Velocity Purkinje Cells. Annals of the New York Academy of Sciences, 2005, 1039, 548-553.	3.8	59
36	Contralesionally beating torsional nystagmus in a unilateral rostral midbrain lesion. Neurology, 1996, 47, 482-486.	1.1	57

#	Article	IF	CITATIONS
37	Interacting in time and space: Investigating human-human and human-robot joint action. , 2010, , .		54
38	Linear Acceleration Perception: Frequency Dependence of the Hilltop Illusion. Acta Oto-Laryngologica, 1995, 115, 37-40.	0.9	53
39	Central processing of human ocular torsion analyzed by galvanic vestibular stimulation. NeuroReport, 2000, 11, 1559-1563.	1.2	53
40	Space–Time Relativity in Self-Motion Reproduction. Journal of Neurophysiology, 2007, 97, 451-461.	1.8	53
41	Aminopyridines for the treatment of cerebellar and ocular motor disorders. Progress in Brain Research, 2008, 171, 535-541.	1.4	53
42	Legible robot navigation in the proximity of moving humans. , 2012, , .		53
43	Suppression of eye movements improves balance. Brain, 2002, 125, 2005-2011.	7.6	52
44	Grip forces exerted against stationary held objects during gravity changes. Experimental Brain Research, 1999, 126, 205-214.	1.5	49
45	Biological movement increases acceptance of humanoid robots as human partners in motor interaction. Al and Society, 2011, 26, 339-345.	4.6	48
46	Investigating Human-Human Approach and Hand-Over. Cognitive Systems Monographs, 2009, , 151-160.	0.1	47
47	Central Positional Nystagmus Simulated by a Mathematical Ocular Motor Model of Otolith-Dependent Modification of Listing's Plane. Journal of Neurophysiology, 2001, 86, 1546-1554.	1.8	46
48	Influence of visual and proprioceptive afferences on upper limb ataxia in patients with multiple sclerosis. Journal of the Neurological Sciences, 1999, 163, 61-69.	0.6	45
49	Cerebellar Contribution to Saccades and Gaze Holding. Annals of the New York Academy of Sciences, 2003, 1004, 206-219.	3.8	45
50	Eye Movements and Balance. Annals of the New York Academy of Sciences, 2003, 1004, 352-358.	3.8	45
51	False-Positive Head-Impulse Test in Cerebellar Ataxia. Frontiers in Neurology, 2012, 3, 162.	2.4	45
52	Force control in object manipulationâ€"A model for the study of sensorimotor control strategies. Neuroscience and Biobehavioral Reviews, 2013, 37, 1578-1586.	6.1	45
53	Rostral Fastigial Nucleus Activity in the Alert Monkey During Three-Dimensional Passive Head Movements. Journal of Neurophysiology, 1997, 77, 1432-1446.	1.8	44
54	Optimal Control of Natural Eye-Head Movements Minimizes the Impact of Noise. Journal of Neuroscience, 2011, 31, 16185-16193.	3.6	42

#	Article	IF	CITATIONS
55	Grip force efficiency in long-term deprivation of somatosensory feedback. NeuroReport, 2003, 14, 1803-1807.	1.2	41
56	Comparison of 10-mg Doses of 4-Aminopyridine and 3,4-Diaminopyridine for the Treatment of Downbeat Nystagmus. Journal of Neuro-Ophthalmology, 2011, 31, 320-325.	0.8	41
57	Head motion predictability explains activity-dependent suppression of vestibular balance control. Scientific Reports, 2020, 10, 668.	3.3	41
58	Vertical vestibular responses to head impulses are symmetric in downbeat nystagmus. Neurology, 2004, 63, 621-625.	1.1	40
59	A Theory of the Dual Pathways for Smooth Pursuit Based on Dynamic Gain Control. Journal of Neurophysiology, 2008, 99, 2798-2808.	1.8	40
60	Neuronal network-based mathematical modeling of perceived verticality in acute unilateral vestibular lesions: from nerve to thalamus and cortex. Journal of Neurology, 2018, 265, 101-112.	3.6	40
61	Differential Dynamic Processing of Afferent Signals in Frog Tonic and Phasic Second-Order Vestibular Neurons. Journal of Neuroscience, 2008, 28, 10349-10362.	3.6	39
62	Unilateral vestibular failure suppresses cortical visual motion processing. Brain, 2008, 131, 1025-1034.	7.6	38
63	Vestibular and cerebellar contribution to gaze optimality. Brain, 2014, 137, 1080-1094.	7.6	37
64	The predictive brain: anticipatory control of head direction for the steering of locomotion. NeuroReport, 1996, 7, 1170-4.	1.2	37
65	Velocity scaling of cue-induced smooth pursuit acceleration obeys constraints of natural motion. Experimental Brain Research, 2007, 182, 343-356.	1.5	36
66	Even simple forms of social learning rely on intention attribution in marmoset monkeys (Callithrix) Tj ETQq0 0 0	rgBT /Over	logk 10 Tf 50
67	Influence of person- and situation-specific characteristics on collision avoidance behavior in human locomotion Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 1332-1343.	0.9	36
68	Determinants of orientation in microgravity. Acta Astronautica, 1992, 27, 1-9.	3.2	35
69	The role of cutaneous feedback for anticipatory grip force adjustments during object movements and externally imposed variation of the direction of gravity. Somatosensory & Motor Research, 2002, 19, 49-60.	0.9	35
70	Moving Just Like You: Motor Interference Depends on Similar Motility of Agent and Observer. PLoS ONE, 2012, 7, e39637.	2.5	35
71	TMS Evidence for Smooth Pursuit Gain Control by the Frontal Eye Fields. Cerebral Cortex, 2009, 19, 1144-1150.	2.9	34
72	Grayâ€Matter Atrophy after Chronic Complete Unilateral Vestibular Deafferentation. Annals of the New York Academy of Sciences, 2009, 1164, 383-385.	3.8	33

#	Article	IF	Citations
73	Effect of 4-Aminopyridine on Upbeat and Downbeat Nystagmus Elucidates the Mechanism of Downbeat Nystagmus. Annals of the New York Academy of Sciences, 2005, 1039, 528-531.	3.8	32
74	Quantification of Head Movement Predictability and Implications for Suppression of Vestibular Input during Locomotion. Frontiers in Computational Neuroscience, 2017, 11, 47.	2.1	32
75	Spatial orientation during locomation following space flight. Acta Astronautica, 1995, 36, 423-431.	3.2	31
76	Age-related decline in functional connectivity of the vestibular cortical network. Brain Structure and Function, 2016, 221, 1443-1463.	2.3	31
77	Magnetic vestibular stimulation modulates default mode network fluctuations. Neurolmage, 2016, 127, 409-421.	4.2	30
78	Moving and being moved: Differences in cerebral activation during recollection of whole-body motion. Behavioural Brain Research, 2012, 227, 21-29.	2.2	29
79	Esophoria or esotropia in adulthood: a sign of cerebellar dysfunction?. Journal of Neurology, 2015, 262, 585-592.	3.6	29
80	Functional Organization of Vestibulo-Ocular Responses in Abducens Motoneurons. Journal of Neuroscience, 2017, 37, 4032-4045.	3.6	29
81	A simplified calibration method for three-dimensional eye movement recordings using search-coils. Vision Research, 1996, 36, 997-1006.	1.4	28
82	Current Models of the Ocular Motor System. , 2007, 40, 158-174.		27
83	The origin of Vierordt's law: The experimental protocol matters. PsyCh Journal, 2021, 10, 732-741.	1.1	27
84	Canal-otolith interaction in the fastigial nucleus of the alert monkey. Experimental Brain Research, 2001, 136, 169-178.	1.5	26
85	"Taller and Shorter― Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings. PLoS ONE, 2015, 10, e0141257.	2.5	26
86	Smooth Pursuit in Patients with Downbeat Nystagmus. Annals of the New York Academy of Sciences, 2005, 1039, 532-535.	3.8	25
87	3-D spatial memory and navigation: functions and disorders. Current Opinion in Neurology, 2017, 30, 90-97.	3.6	25
88	Illusions of verticality in weightlessness. The Clinical Investigator, 1993, 71, 732-9.	0.6	24
89	An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models. Scientific Reports, 2018, 8, 5583.	3. 3	24
90	Up–Down Asymmetry of Cerebellar Activation During Vertical Pursuit Eye Movements. Cerebellum, 2009, 8, 385-388.	2.5	23

#	Article	IF	CITATIONS
91	Human workflow analysis using 3D occupancy grid hand tracking in a human-robot collaboration scenario. , $2011,\ldots$		23
92	Do robots have goals? How agent cues influence action understanding in non-human primates. Behavioural Brain Research, 2013, 246, 47-54.	2.2	23
93	Potential and optimal control of human head movement using Tait–Bryan parametrization. Automatica, 2014, 50, 519-529.	5.0	23
94	Replication of Passive Whole-Body Linear Displacements from Inertial Cues: Facts and Mechanisms. Annals of the New York Academy of Sciences, 1999, 871, 345-366.	3.8	22
95	The Intensity of Downbeat Nystagmus during Daytime. Annals of the New York Academy of Sciences, 2009, 1164, 293-299.	3.8	22
96	Evaluation of a novel biologically inspired trajectory generator in human-robot interaction., 2009,,.		22
97	Why acute unilateral vestibular midbrain lesions rarely manifest with rotational vertigo: a clinical and modelling approach to head direction cell function. Journal of Neurology, 2018, 265, 1184-1198.	3.6	22
98	Simulation of pathological ocular counter-roll and skew-torsion by a 3-D mathematical model. NeuroReport, 1999, 10, 1843-1848.	1.2	21
99	Effects of Changing Gravity on Anticipatory Grip Force Control during Point-to-Point Movements of a Hand-Held Object. Motor Control, 2001, 5, 231-253.	0.6	21
100	Anterior canal failure: ocular torsion without perceptual tilt due to preserved otolith function. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 1336-1338.	1.9	21
101	Moving objects in a rotating environment: rapid prediction of Coriolis and centrifugal force perturbations. Experimental Brain Research, 2004, 157, 241-54.	1.5	21
102	Subjective somatosensory vertical during dynamic tilt is dependent on task, inertial condition, and multisensory concordance. Experimental Brain Research, 2006, 172, 310-321.	1.5	21
103	Differences in saccade-evoked brain activation patterns with eyes open or eyes closed in complete darkness. Experimental Brain Research, 2008, 186, 419-430.	1.5	21
104	Vestibular guidance of active head movements. Experimental Brain Research, 2009, 194, 495-503.	1.5	21
105	Head position during resting modifies spontaneous daytime decrease of downbeat nystagmus. Neurology, 2010, 75, 1928-1932.	1.1	21
106	Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation. Scientific Reports, 2018, 8, 10110.	3.3	21
107	The effect of nicotine on perceptual, ocular motor, postural, and vegetative functions at rest and in motion. Journal of Neurology, 2007, 254, 1689-1697.	3.6	20
108	Downbeat nystagmus caused by a paramedian ponto-medullary lesion. Journal of Neurology, 2009, 256, 1572-1574.	3.6	20

#	Article	IF	CITATIONS
109	A clinical test of otolith function: static ocular counterroll with passive head tilt. NeuroReport, 2006, 17, 611-615.	1.2	19
110	A third eye for the surgeon. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 278-278.	1.9	19
111	Head impulses in complete bilateral vestibular loss: Catch-up saccades require visual input. Neurology, 2013, 81, 688-690.	1.1	19
112	Haptic Subjective Vertical Shows Context Dependence: Task and Vision Play a Role during Dynamic Tilt Stimulation. Annals of the New York Academy of Sciences, 2003, 1004, 531-535.	3.8	19
113	The Effect of Dual Tasks in Locomotor Path Integration. Annals of the New York Academy of Sciences, 2009, 1164, 201-205.	3.8	18
114	Synchronization between instructor and observer when learning a complex bimanual skill. Neurolmage, 2020, 216, 116659.	4.2	18
115	Plan-Based Control of Joint Human-Robot Activities. KI - Kunstliche Intelligenz, 2010, 24, 223-231.	3.2	17
116	The Response of MSTd Neurons to Perturbations in Target Motion During Ongoing Smooth-Pursuit Eye Movements. Journal of Neurophysiology, 2010, 103, 519-530.	1.8	17
117	Individual beliefs about temporal continuity explain variation of perceptual biases. Scientific Reports, 2022, 12, .	3.3	17
118	How to Explain a Constant Subjective Vertical at Constant High Speed Rotation about an Earth-horizontal Axis. Acta Oto-Laryngologica, 1989, 108, 295-299.	0.9	16
119	Three-dimensional modeling of static vestibulo-ocular brain stem syndromes. NeuroReport, 1998, 9, 3841-3845.	1.2	16
120	Compensatory manual motor responses while object wielding during combined linear visual and physical roll tilt stimulation. Experimental Brain Research, 2009, 192, 683-694.	1.5	16
121	Opioid-Induced Nausea Involves a Vestibular Problem Preventable by Head-Rest. PLoS ONE, 2015, 10, e0135263.	2.5	16
122	Noncommutative Updating of Perceived Self-Orientation in Three Dimensions. Journal of Neurophysiology, 2007, 97, 2958-2964.	1.8	15
123	Handing Over a Cube. Annals of the New York Academy of Sciences, 2009, 1164, 380-382.	3.8	15
124	Effects of unilateral midbrain lesions on gaze (eye and head) movements. Annals of the New York Academy of Sciences, 2011, 1233, 71-77.	3.8	15
125	Model approach to neurological variants of visuo-spatial neglect. Biological Cybernetics, 2012, 106, 681-690.	1.3	15
126	Combining Symbolic Cues with Sensory Input and Prior Experience in an Iterative Bayesian Framework. Frontiers in Integrative Neuroscience, 2012, 6, 58.	2.1	15

#	Article	IF	Citations
127	Pathological torsional eye deviation during voluntary saccades: a violation of Listing's law Journal of Neurology, Neurosurgery and Psychiatry, 1997, 62, 253-260.	1.9	14
128	The role of regularity and synchrony of cerebellar Purkinje cells for pathological nystagmus. Annals of the New York Academy of Sciences, 2011, 1233, 162-167.	3.8	14
129	Fractal dimension analysis for spike detection in low SNR extracellular signals. Journal of Neural Engineering, 2016, 13, 036004.	3.5	14
130	Central processing of human ocular torsion analyzed by galvanic vestibular stimulation. NeuroReport, 2000, 11, 1559-63.	1.2	14
131	Diagnosis of vestibular imbalance in the blink of an eye. Neurology, 2004, 63, 1209-1216.	1.1	13
132	Modeling and Analysis of Human Navigation with Crossing Interferer Using Inverse Optimal Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 475-480.	0.4	13
133	Ecological Momentary Assessment of Head Motion: Toward Normative Data of Head Stabilization. Frontiers in Human Neuroscience, 2019, 13, 179.	2.0	13
134	Spatiotemporal Movement Planning and Rapid Adaptation for Manual Interaction. PLoS ONE, 2013, 8, e64982.	2.5	13
135	Multimodal Signal Integration in Vestibular Neurons of the Primate Fastigial Nucleus. Annals of the New York Academy of Sciences, 2003, 1004, 241-251.	3.8	12
136	Gravity Perception: The Role of the Cerebellum. Current Biology, 2018, 28, R1296-R1298.	3.9	12
137	Short-term synaptic depression can increase the rate of information transfer at a release site. PLoS Computational Biology, 2019, 15, e1006666.	3.2	12
138	Crucial effects of weightlessness on human orientation. Journal of Vestibular Research: Equilibrium and Orientation, 1993, 3, 307-14.	2.0	12
139	Otolith Processing in the Deep Cerebellar Nuclei. Annals of the New York Academy of Sciences, 1999, 871, 81-93.	3.8	11
140	Head movement control during head-free gaze shifts. Progress in Brain Research, 2008, 171, 331-334.	1.4	11
141	Cerebellar and visual gray matter brain volume increases in congenital nystagmus. Frontiers in Neurology, 2011, 2, 60.	2.4	11
142	It's not all black and white: visual scene parameters influence optokinetic reflex performance in <i>Xenopus laevis</i> tadpoles. Journal of Experimental Biology, 2017, 220, 4213-4224.	1.7	11
143	Computational neurology of gravity perception involving semicircular canal dysfunction in unilateral vestibular lesions. Progress in Brain Research, 2019, 248, 303-317.	1.4	11
144	Deficient head motor control in functional dizziness: Experimental evidence of central sensory-motor dysfunction in persistent physical symptoms. Progress in Brain Research, 2019, 249, 385-400.	1.4	11

#	Article	IF	Citations
145	Surface filling-in and contour interpolation contribute independently to Kanizsa figure formation Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 1399-1413.	0.9	11
146	Galvanic Vestibular Stimulation Combines with Earthâ€Horizontal Rotation in Roll to Induce the Illusion of Translation. Annals of the New York Academy of Sciences, 2009, 1164, 116-118.	3.8	10
147	Spatial Neglect: Hypothetical Mechanisms of Disturbed Interhemispheric Crosstalk for Orientation. Annals of the New York Academy of Sciences, 2009, 1164, 216-221.	3.8	10
148	Torsional deviations with voluntary saccades caused by a unilateral midbrain lesion. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1155-1157.	1.9	9
149	Frequency-domain analysis of intrinsic neuronal properties using high-resistant electrodes. Frontiers in Neuroscience, 2009, 3, 64.	2.8	9
150	Cellular and Network Contributions to Vestibular Signal Processing: Impact of Ion Conductances, Synaptic Inhibition, and Noise. Journal of Neuroscience, 2011, 31, 8359-8372.	3.6	9
151	Neuronal Variability of MSTd Neurons Changes Differentially With Eye Movement and Visually Related Variables. Cerebral Cortex, 2013, 23, 1774-1783.	2.9	9
152	Quantitative postural models as biomarkers of balance in Parkinson's disease. Brain, 2018, 141, 2824-2827.	7.6	9
153	Gain Control in Predictive Smooth Pursuit Eye Movements: Evidence for an Acceleration-Based Predictive Mechanism. ENeuro, 2017, 4, ENEURO.0343-16.2017.	1.9	9
154	Neural activity in cortical areas MST and FEF in relation to smooth pursuit gain control. Progress in Brain Research, 2008, 171, 261-264.	1.4	8
155	Head-Free Gaze Control in Humans with Chronic Loss of Vestibular Function. Annals of the New York Academy of Sciences, 2009, 1164, 409-412.	3.8	8
156	Sequential Bayesian updating as a model for human perception. Progress in Brain Research, 2019, 249, 3-18.	1.4	8
157	Image motion with color contrast suffices to elicit an optokinetic reflex in Xenopus laevis tadpoles. Scientific Reports, 2021, 11, 8445.	3.3	8
158	Unstable Gaze in Functional Dizziness: A Contribution to Understanding the Pathophysiology of Functional Disorders. Frontiers in Neuroscience, 2021, 15, 685590.	2.8	8
159	Linear spatio-temporal convergence in vestibular neurons of the primate nucleus fastigii. NeuroReport, 1999, 10, 3915-3921.	1.2	7
160	Modelling transfer characteristics of vestibular neurons in the fastigial nucleus of the behaving monkey on the basis of canal–otolith interaction. NeuroReport, 2002, 13, 799-804.	1.2	7
161	Prognosis of Idiopathic Downbeat Nystagmus. Annals of the New York Academy of Sciences, 2009, 1164, 479-481.	3.8	7
162	Potential and Optimal Target Fixating Control of the Human Head/Eye Complex. IEEE Transactions on Control Systems Technology, 2015, 23, 796-804.	5.2	7

#	Article	IF	Citations
163	Frontoâ€parietal coding of goalâ€directed actions performed by artificial agents. Human Brain Mapping, 2018, 39, 1145-1162.	3.6	7
164	Head Impulses in Three Orthogonal Planes of Space: Influence of Age. Annals of the New York Academy of Sciences, 2003, 1004, 473-477.	3.8	6
165	Downbeat nystagmus: evidence for enhancement of utriculo-ocular pathways by ocular vestibular evoked myogenic potentials?. European Archives of Oto-Rhino-Laryngology, 2015, 272, 3575-3583.	1.6	6
166	Eye Velocity Gain Fields in MSTd During Optokinetic Stimulation. Cerebral Cortex, 2015, 25, 2181-2190.	2.9	6
167	Postural Control: Learning to Balance Is a Question of Timing. Current Biology, 2017, 27, R105-R107.	3.9	6
168	Vestibular brainstem disorders: Clinical syndromes in roll plane and their model simulation. Movement Disorders, 2002, 17, S58-S62.	3.9	5
169	Expectation of Sensory Stimulation Modulates Brain Activation during Visual Motion Stimulation. Annals of the New York Academy of Sciences, 2005, 1039, 325-336.	3.8	5
170	Dependence of the Torsional Vestibulo-Ocular Reflex on the Direction of Gravity. Annals of the New York Academy of Sciences, 2005, 1039, 455-458.	3.8	5
171	Biomimetic control for adaptive camera stabilization in driver-assistance systems. Journal of Mechanical Science and Technology, 2007, 21, 930-934.	1.5	5
172	MSTd neurons during ocular following and smooth pursuit perturbation. Progress in Brain Research, 2008, 171, 253-260.	1.4	5
173	Driving Dreams. Annals of the New York Academy of Sciences, 2009, 1164, 372-375.	3.8	5
174	Hippocampal Involvement in Processing of Indistinct Visual Motion Stimuli. Journal of Cognitive Neuroscience, 2012, 24, 1344-1357.	2.3	5
175	Inferring the goal of an approaching agent: A human-robot study. , 2012, , .		5
176	Inverse eye position dependency of downbeat nystagmus in midline medullary lesion. Journal of Neurology, 2013, 260, 2908-2910.	3.6	5
177	I spy with my little eye: a simple behavioral assay to test color sensitivity on digital displays. Biology Open, 2018, 7, .	1.2	5
178	An experimental litmus test of the emerging hypothesis that persistent physical symptoms can be explained as perceptual dysregulation. Journal of Psychosomatic Research, 2018, 114, 15-17.	2.6	5
179	Nonlinear Nystagmus Processing Causes Torsional VOR Nonlinearity. Annals of the New York Academy of Sciences, 2003, 1004, 500-505.	3.8	5
180	Mathematical Model Predicts Clinical Ocular Motor Syndromes. Annals of the New York Academy of Sciences, 2003, 1004, 142-157.	3.8	4

#	Article	lF	CITATIONS
181	Nonlinear Nystagmus Processing Causes Torsional VOR Nonlinearity. Annals of the New York Academy of Sciences, 2003, 1004, 500-505.	3.8	4
182	Modelling drug modulation of nystagmus. Progress in Brain Research, 2008, 171, 527-534.	1.4	4
183	On the origin of systematic errors in a simple navigation task. BMC Neuroscience, 2009, 10, .	1.9	4
184	Modeling of Intrinsic and Synaptic Properties to Reveal the Cellular and Network Contribution for Vestibular Signal Processing. Annals of the New York Academy of Sciences, 2009, 1164, 451-454.	3.8	4
185	Spatiotemporal phase-scrambling increases visual cortex activity. NeuroReport, 2010, 21, 596-600.	1.2	4
186	An information-theoretic approach for evaluating probabilistic tuning functions of single neurons. Frontiers in Computational Neuroscience, 2011, 5, 15.	2.1	4
187	Increasing efficiency in robot-supported assemblies through predictive mechanisms: An experimental evaluation. , 2013, , .		4
188	Central Tendency as Consequence of Experimental Protocol. , 2019, , .		4
189	LPDT2 La Plissure du Texte 2., 2013,, 75-90.		4
190	Otolithic Thresholds Influence the Perception of Passive Linear Displacement. Acta Oto-Laryngologica, 1995, 115, 41-44.	0.9	3
191	Modeling the Role of the Interstitial Nucleus of Cajal in Otolithic Control of Static Eye Position. Acta Oto-Laryngologica, 2001, 121, 105-107.	0.9	3
192	Eye and head torsion is affected in patients with midbrain lesions. Progress in Brain Research, 2008, 171, 591-595.	1.4	3
193	Teaching Video Neuro <i>Images</i> : Unilateral RIMLF lesion. Neurology, 2009, 73, e92-3.	1.1	3
194	Modalityâ€dependent Indication of the Subjective Vertical during Combined Linear and Rotational Movements. Annals of the New York Academy of Sciences, 2009, 1164, 376-379.	3.8	3
195	Information Rate Analysis of a Synaptic Release Site Using a Two-State Model of Short-Term Depression. Neural Computation, 2017, 29, 1528-1560.	2.2	3
196	Synaptic Information Transmission in a Two-State Model of Short-Term Facilitation. Entropy, 2019, 21, 756.	2.2	3
197	Preventing opioid-induced nausea and vomiting: Rest your head and close your eyes?. PLoS ONE, 2017, 12, e0173925.	2.5	3
198	Perception of spatial orientation in different g-levels. Journal of Gravitational Physiology: A Journal of the International Society for Gravitational Physiology, 1997, 4, P5-8.	0.0	3

#	Article	IF	CITATIONS
199	Low Gain Values of the Vestibulo-Ocular Reflex Can Optimize Retinal Image Slip. Frontiers in Neurology, $0,13,.$	2.4	3
200	Separation Between On- and Off-Center Passive Mortion in Darkness. Annals of the New York Academy of Sciences, 1999, 871, 417-421.	3.8	2
201	Influence of Uninformative Visual Cues on Gravity Perception. Annals of the New York Academy of Sciences, 2009, 1164, 403-405.	3.8	2
202	Tracking and optimal control problems in human head/eye coordination. , 2013, , .		2
203	I spy with my little eye: A simple behavioral assay to test color perception in animal virtual reality setups. Journal of Vision, 2017, 17, 661.	0.3	2
204	Physical Nature of Vestibular Stimuli. , 2020, , 6-11.		2
205	Biologically Inspired Multi-Sensor Fusion for Adaptive Camera Stabilization in Driver-Assistance Systems. , 2006, , 107-121.		2
206	VOR Gain Modulation in the Monkey Due to Convergence of Otolith and Semicircular Canal Afferences During Eccentric Sinusoidal Rotation. Annals of the New York Academy of Sciences, 1999, 871, 398-401.	3.8	1
207	Human smooth pursuit gain is modulated by a signal related to gaze velocity. NeuroReport, 2008, 19, 1217-1220.	1.2	1
208	Neuronal responses in the cortical area MSTd during smooth pursuit and ocular following eye movements. BMC Neuroscience, 2009, 10 , .	1.9	1
209	Somatosensory Influence on Platform-Induced Translational Vestibulo-Ocular Reflex in Vertical Direction in Humans. Frontiers in Neurology, 2020, 11, 332.	2.4	1
210	Human workflow analysis using 3D occupancy grid hand tracking in a human-robot collaboration scenario. , $2011, \dots$		1
211	Head Impulses in Three Orthogonal Planes of Space: Influence of Age. Annals of the New York Academy of Sciences, 2003, 1004, 473-477.	3.8	1
212	Eye-Head Coordination: Challenging the System by Increasing Head Inertia. Annals of the New York Academy of Sciences, 2003, 1004, 524-526.	3.8	1
213	Intersubject synchrony of viewers during naturalistic observational self-learning of a complex bimanual task. Neurolmage Reports, 2022, 2, 100084.	1.0	1
214	Neural constraints in kinematics of head-free gaze. BMC Neuroscience, 2009, 10, .	1.9	0
215	Modeling of frog second-order vestibular neurons using frequency-domain analysis reveals the cellular contribution for vestibular signal processing. BMC Neuroscience, 2009, 10, .	1.9	0
216	Vestibular and ocular motor function. Handbook of Clinical Neurophysiology, 2010, 9, 537-555.	0.0	0

#	Article	IF	Citations
217	A Method for Evaluating Tuning Functions of Single Neurons based on Mutual Information Maximization. , $2011, \ldots$		O
218	Thinking the impossible: Synthetic physics. Metaverse Creativity, 2012, 2, 33-44.	0.1	0
219	Information-theoretic analysis of a dynamic release site using a two-channel model of depression. BMC Neuroscience, 2015, 16, .	1.9	0
220	Stefan Glasauer. Current Biology, 2019, 29, R668-R669.	3.9	0
221	Complementing Conceptual Models of Persistent Somatic Symptoms With Mathematical Formalization. Psychosomatic Medicine, 2020, 82, 527-528.	2.0	0
222	Cellular contribution to vestibular signal processing - a modeling approach. Frontiers in Computational Neuroscience, 0, 3, .	2.1	0
223	Neural response latency of smooth pursuit responsive neurons in cortical area MSTd. Frontiers in Computational Neuroscience, 0, 3, .	2.1	0
224	Torsional deviations with voluntary saccades caused by a unilateral midbrain lesion. BMJ Case Reports, 2009, 2009, bcr0820080807-bcr0820080807.	0.5	0
225	Evaluating Neuronal Tuning Functions by Mutual Information Maximization. Frontiers in Computational Neuroscience, 0, 4, .	2.1	0
226	Signal dependent noise- and time-minimization determine head-free gaze shifts. Frontiers in Computational Neuroscience, 0, 4, .	2.1	0
227	The spiking irregularity of MSTd neurons depends on visual and oculomotor variables. Frontiers in Computational Neuroscience, 0, 5, .	2.1	0
228	Accessing robot acceptance by motor interference. Advances in Interaction Studies, 2011, , 165-184.	2.0	0
229	How to Pass People - A Dynamic Navigation Model Using Repulsive Potentials. Frontiers in Computational Neuroscience, 0, 6, .	2.1	0
230	A model of the optokinetic reflex system in larval Xenopus. Frontiers in Computational Neuroscience, 0, 6, .	2.1	0
231	Dynamic Bayesian Networks for Cue Integration. Frontiers in Computational Neuroscience, 0, 6, .	2.1	0
232	Eye Velocity Gain Fields in the Medial Superior Temporal Cortex. Frontiers in Computational Neuroscience, 0, 6, .	2.1	0
233	Beyond Sensory Input: Human displacement estimation depends on prior experience. Frontiers in Neuroscience, 0, 6, .	2.8	0
234	The influence of prior experience and symbolic cueing on human path integration. Frontiers in Computational Neuroscience, 0, 6, .	2.1	0

#	Article	IF	CITATIONS
235	On the feed-forward control of eye-head coordination. Frontiers in Computational Neuroscience, 0, 6, .	2.1	0
236	Object orientation and location updating during nonvisual navigation: The characteristics and effects of object-versus trajectory-centered processing modes. Lecture Notes in Computer Science, 1995, , 193-206.	1.3	0
237	Spatio-temporal uncertainty and cortical-hippocampal interactions: fMRI study. Journal of Vision, 2015, 15, 991.	0.3	0
238	Computational Rules for Integrating Vestibular and Multi-Modal Motion Signals in the Central Nervous System., 2020,, 445-457.		0
239	Mathematical Methods for Three-Dimensional Eye Movement Recordings Using Search Coils. , 2020, , 413-421.		0
240	The Healthcare Benefits and Impact of Artificial Intelligence Applications on Behaviour of Healthcare Users: A Structured Review of Primary Literature. Journal of the International Society for Telemedicine and EHealth, 0, 8, .	0.0	0
241	Gaze Anticipation Contributes to the Steering of Locomotion. , 2020, , 337-345.		0