
## Weizhou Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4459294/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1),<br>C <sub>21</sub> H <sub>11</sub> F <sub>4</sub> I <sub>2</sub> N <sub>3</sub> . Zeitschrift Fur<br>Kristallographie - New Crystal Structures, 2022, 237, 161-163.              | 0.3  | 0         |
| 2  | The Bifurcated Ïf-Hole···Ïf-Hole Stacking Interactions. Molecules, 2022, 27, 1252.                                                                                                                                                                                                      | 3.8  | 2         |
| 3  | Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole,<br>C <sub>6</sub> H <sub>2</sub> Br <sub>2</sub> N <sub>2</sub> Se. Zeitschrift Fur Kristallographie - New<br>Crystal Structures, 2022, 237, 169-171.                                                 | 0.3  | 0         |
| 4  | Origin of the unexpected attractive interactions between positive σ-holes and positive π-lumps.<br>Computational and Theoretical Chemistry, 2022, 1213, 113736.                                                                                                                         | 2.5  | 1         |
| 5  | The Existence of a N→C Dative Bond in the C 60 –Piperidine Complex. Angewandte Chemie, 2021, 133, 1970-1978.                                                                                                                                                                            | 2.0  | 4         |
| 6  | The Existence of a N→C Dative Bond in the C <sub>60</sub> –Piperidine Complex. Angewandte Chemie -<br>International Edition, 2021, 60, 1942-1950.                                                                                                                                       | 13.8 | 15        |
| 7  | Theoretical rationale for the role of the strong halogen bond in the design and synthesis of organic semiconductor materials. Computational and Theoretical Chemistry, 2021, 1194, 113074.                                                                                              | 2.5  | 7         |
| 8  | Effects of functional groups for CO2 capture using metal organic frameworks. Frontiers of Chemical Science and Engineering, 2021, 15, 437-449.                                                                                                                                          | 4.4  | 26        |
| 9  | Structure-directed formation of the dative/covalent bonds in complexes with<br>C <sub>70</sub> â <piperidine. 2021,="" 23,="" 4365-4375.<="" chemical="" chemistry="" physical="" physics,="" td=""><td>2.8</td><td>9</td></piperidine.>                                                | 2.8  | 9         |
| 10 | Performance limit of monolayer MoSi <sub>2</sub> N <sub>4</sub> transistors. Journal of Materials<br>Chemistry C, 2021, 9, 14683-14698.                                                                                                                                                 | 5.5  | 32        |
| 11 | Addition Reaction between Piperidine and C <sub>60</sub> to Form 1,4-Disubstituted C <sub>60</sub><br>Proceeds through van der Waals and Dative Bond Complexes: Theoretical and Experimental Study.<br>Journal of the American Chemical Society, 2021, 143, 10930-10939.                | 13.7 | 6         |
| 12 | The Face-to-Face σ-Holeâ<⁻σ-Hole Stacking Interactions: Structures, Energies, and Nature. Crystals, 2021, 11,<br>877.                                                                                                                                                                   | 2.2  | 2         |
| 13 | A Robust Supramolecular Heterosynthon Assembled by a Hydrogen Bond and a Chalcogen Bond.<br>Crystals, 2021, 11, 1309.                                                                                                                                                                   | 2.2  | 6         |
| 14 | Halogen bonding in room-temperature phosphorescent materials. Coordination Chemistry Reviews, 2020, 404, 213107.                                                                                                                                                                        | 18.8 | 106       |
| 15 | Determination of cis-diol-containing flavonoids in real samples using boronate affinity quantum dots coated with imprinted silica based on controllable oriented surface imprinting approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117542. | 3.9  | 26        |
| 16 | The σ-holeâ‹Ïƒ-hole stacking interaction: An unrecognized type of noncovalent interaction. Journal of<br>Chemical Physics, 2020, 153, 214302.                                                                                                                                           | 3.0  | 14        |
| 17 | Unexpected Sandwiched-Layer Structure of the Cocrystal Formed by Hexamethylbenzene with<br>1,3-Diiodotetrafluorobenzene: A Combined Theoretical and Crystallographic Study. Crystals, 2020, 10,<br>379.                                                                                 | 2.2  | 4         |
| 18 | Computational screening of heterocycle decorations in metal-organic frameworks for efficient C2/C1 adsorption and separation. Fuel, 2020, 279, 118431.                                                                                                                                  | 6.4  | 6         |

WEIZHOU WANG

| #  | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy.<br>Journal of Computational Chemistry, 2020, 41, 1252-1260.                                                                                                                                  | 3.3 | 11        |
| 20 | Performance Limit of Monolayer WSe <sub>2</sub> Transistors; Significantly Outperform Their<br>MoS <sub>2</sub> Counterpart. ACS Applied Materials & Interfaces, 2020, 12, 20633-20644.                                                                                                       | 8.0 | 39        |
| 21 | Zinc 2- <i>N</i> -methyl N-confused porphyrin: an efficient catalyst for the conversion of CO <sub>2</sub> into cyclic carbonates. Catalysis Science and Technology, 2019, 9, 4255-4261.                                                                                                      | 4.1 | 24        |
| 22 | Determination and Correlation of Solubilities of 1,3,5-Trifluoro-2,4,6-triiodobenzene in Different<br>Solvents from 289.25 to 332.15 K. Journal of Chemical & Engineering Data, 2019, 64, 4306-4313.                                                                                          | 1.9 | 2         |
| 23 | Metal–Organic Frameworks Grafted by Univariate and Multivariate Heterocycles for Enhancing CO2<br>Capture: A Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2019, 58,<br>2195-2205.                                                                                 | 3.7 | 17        |
| 24 | Noncovalent Interactions between 1,3,5-Trifluoro-2,4,6-triiodobenzene and a Series of<br>1,10-Phenanthroline Derivatives: A Combined Theoretical and Experimental Study. Crystals, 2019, 9, 140.                                                                                              | 2.2 | 5         |
| 25 | Halogen bonds in the crystal structure of 5-bromo-3,4′-bipyridine – 1,4-diiodotetrafluorobenzene (2/1),<br>C <sub>26</sub> H <sub>14</sub> Br <sub>2</sub> F <sub>4</sub> I <sub>2</sub> N <sub>4</sub> .<br>Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 1187-1188. | 0.3 | 1         |
| 26 | Halogen bonds in the crystal structure of 4,3:5,4-terpyridine – 1,4-diiodotetrafluorobenzene (1/1),<br>C <sub>21</sub> H <sub>11</sub> F <sub>4</sub> I <sub>2</sub> N <sub>3</sub> . Zeitschrift Fur<br>Kristallographie - New Crystal Structures, 2019, 234, 935-937.                       | 0.3 | 2         |
| 27 | Tetrel bonding on graphene. Computational and Theoretical Chemistry, 2019, 1147, 8-12.                                                                                                                                                                                                        | 2.5 | 21        |
| 28 | Intermolecular and very strong intramolecular C–Seâ‹⁻O/N chalcogen bonds in nitrophenyl selenocyanate crystals. Physical Chemistry Chemical Physics, 2018, 20, 5227-5234.                                                                                                                     | 2.8 | 28        |
| 29 | Supramolecular Interactions of Fullerene C <sub>60</sub> with 1,3,5â€Trifluoroâ€2,4,6â€triiodobenzene: A<br>Combined Theoretical and Experimental Study. ChemPlusChem, 2018, 83, 470-477.                                                                                                     | 2.8 | 4         |
| 30 | Ab Initio Study of Gas Adsorption in Metal–Organic Frameworks Modified by Lithium: The Significant<br>Role of Li-Containing Functional Groups. Journal of Physical Chemistry C, 2018, 122, 18395-18404.                                                                                       | 3.1 | 11        |
| 31 | Pseudo-Bifurcated Chalcogen Bond in Crystal Engineering. Crystals, 2018, 8, 163.                                                                                                                                                                                                              | 2.2 | 14        |
| 32 | Sub-5 nm Monolayer Arsenene and Antimonene Transistors. ACS Applied Materials & Interfaces, 2018, 10, 22363-22371.                                                                                                                                                                            | 8.0 | 77        |
| 33 | Solubility Measurement and the Correlation of 1-Naphthaleneacetic Acid in Pure and Methanol +<br>Water Binary Solvents from <i>T</i> = (278.25 to 323.55) K. Journal of Chemical & Engineering Data,<br>2017, 62, 1292-1301.                                                                  | 1.9 | 24        |
| 34 | Accurate calculations of the noncovalent systems with flat potential energy surfaces: Naphthalene dimer and azulene dimer. Computational and Theoretical Chemistry, 2017, 1112, 52-60.                                                                                                        | 2.5 | 4         |
| 35 | Weakening and Leveling Effect of Solvent Polarity on Halogen Bond Strength of<br>Diiodoperfluoroalkane with Halide. Journal of Solution Chemistry, 2017, 46, 1092-1103.                                                                                                                       | 1.2 | 4         |
| 36 | Crystal structure of 2,9-dibromo-1,10-phenanthroline, C12H6Br2N2. Zeitschrift Fur Kristallographie -<br>New Crystal Structures, 2017, 232, 441-442.                                                                                                                                           | 0.3 | 0         |

WEIZHOU WANG

| #  | Article                                                                                                                                                                                                                                                                                      | IF      | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 37 | Structures, mobility and electronic properties of point defects in arsenene, antimonene and an antimony arsenide alloy. Journal of Materials Chemistry C, 2017, 5, 4159-4166.                                                                                                                | 5.5     | 72        |
| 38 | Highly accurate benchmark calculations of the interaction energies in the complexes<br>C <sub>6</sub> H <sub>6</sub> AAAAC <sub>6</sub> X <sub>6</sub> (X = F, Cl, Br, and I). International Ju<br>of Quantum Chemistry, 2017, 117, e25345.                                                  | ozuonal | 24        |
| 39 | Interactions between haloperfluorobenzenes and fluoranthene in luminescent cocrystals from<br>ï€-holeâ<ï€ to ïƒ-holeâ<ï€ bonds. CrystEngComm, 2017, 19, 5058-5067.                                                                                                                           | 2.6     | 40        |
| 40 | The nature of the noncovalent interactions between fullerene C60 and aromatic hydrocarbons.<br>Computational and Theoretical Chemistry, 2017, 1122, 34-39.                                                                                                                                   | 2.5     | 12        |
| 41 | Crystal structure of halogen-bonded 2-chloro-1,10-phenanthroline—1,4-diiodotetrafluorobenzene<br>(2/1), C <sub>30</sub> H <sub>14</sub> Cl <sub>2</sub> F <sub>4</sub> I <sub>2</sub> N <sub>4</sub> .<br>Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 323-324.     | 0.3     | 2         |
| 42 | Halogen bonds and π–π interactions in the crystal structure of<br>1,3,5-trifluoro-2,4,6-triiodobenzene– <i>N</i> , <i>N</i> -dimethylformamide (1/1),<br>C <sub>9</sub> H <sub>7</sub> F <sub>3</sub> 3NO. Zeitschrift Fur Kristallographie - New<br>Crystal Structures, 2017, 232, 937-938. | 0.3     | 1         |
| 43 | The Nature of the Noncovalent Interactions between Benzene and C <sub>60</sub> Fullerene. Journal of Physical Chemistry A, 2016, 120, 5766-5772.                                                                                                                                             | 2.5     | 41        |
| 44 | σ-Hole Bond vs π-Hole Bond: A Comparison Based on Halogen Bond. Chemical Reviews, 2016, 116,<br>5072-5104.                                                                                                                                                                                   | 47.7    | 487       |
| 45 | Synthesis, Structure, and Photophysical Properties of Two Four-Coordinate Cu <sup>I</sup> –NHC<br>Complexes with Efficient Delayed Fluorescence. Inorganic Chemistry, 2016, 55, 2157-2164.                                                                                                   | 4.0     | 70        |
| 46 | The benzeneâ∂naphthalene complex: A more challenging system than the benzene dimer for newly developed computational methods. Journal of Chemical Physics, 2015, 143, 114312.                                                                                                                | 3.0     | 24        |
| 47 | Benchmark calculations of the adsorption of aromatic molecules on graphene. Journal of<br>Computational Chemistry, 2015, 36, 1763-1771.                                                                                                                                                      | 3.3     | 23        |
| 48 | Determination and Correlation of Solubilities of 2-Isopropylthioxanthone (ITX) in Seven Different<br>Solvents from (299.15 to 329.85) K. Journal of Chemical & Engineering Data, 2015, 60, 941-946.                                                                                          | 1.9     | 13        |
| 49 | Structural study on four co-crystals of N-containing heteroaromatics with iodofluorobenzene.<br>Chemical Research in Chinese Universities, 2015, 31, 84-90.                                                                                                                                  | 2.6     | 2         |
| 50 | Strength order and nature of the π-hole bond of cyanuric chloride and 1,3,5-triazine with halide.<br>Physical Chemistry Chemical Physics, 2015, 17, 20636-20646.                                                                                                                             | 2.8     | 9         |
| 51 | Phosphorescent π-Hole··΀ Bonding Cocrystals of Pyrene with Halo-perfluorobenzenes (F, Cl, Br, I).<br>Crystal Growth and Design, 2015, 15, 4938-4945.                                                                                                                                         | 3.0     | 62        |
| 52 | On the nature of the stacking interaction between two graphene layers. Chemical Physics Letters, 2015, 620, 46-49.                                                                                                                                                                           | 2.6     | 9         |
| 53 | Noncovalent Ï€â‹â‹ï€ interaction between graphene and aromatic molecule: Structure, energy, and nature.<br>Journal of Chemical Physics, 2014, 140, 094302.                                                                                                                                   | 3.0     | 83        |
| 54 | The nature of the lâ<ī interactions and a comparative study with the nature of the Ï€â<Ï€ interactions.<br>Computational and Theoretical Chemistry, 2014, 1030, 1-8.                                                                                                                         | 2.5     | 10        |

| #  | ARTICLE                                                                                                                                                                                                                               | IF        | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 55 | Substituent effects in the Ï€â<ï€ interaction between graphene and benzene: An indication for the<br>noncovalent functionalization of graphene. Computational and Theoretical Chemistry, 2014, 1046,<br>64-69.                        | 2.5       | 19            |
| 56 | Unexpected strong stacking interactions between the homogeneous dimers of C6FxI(6â^'x) (x=0, 1, 2, 3, 4) Tj ET                                                                                                                        | Qq0_0 0 r | gBT_/Overlock |
| 57 | A Twoâ€Step Sequence to Ethyl αâ€Fluorocyclopropanecarboxylates Through MIRC Reaction of Ethyl<br>Dichloroacetate and Highly Regioselective Fluorination. European Journal of Organic Chemistry, 2013,<br>2013, 7372-7381.            | 2.4       | 39            |
| 58 | Improper halogen bond in the crystal structure. CrystEngComm, 2013, 15, 3093.                                                                                                                                                         | 2.6       | 12            |
| 59 | Structural competition between Ï€â<ï€ interactions and halogen bonds: a crystallographic study.<br>CrystEngComm, 2013, 15, 769-774.                                                                                                   | 2.6       | 20            |
| 60 | ASSESSMENT OF THE PERFORMANCE OF THE M05-CLASS AND M06-CLASS FUNCTIONALS FOR THE STRUCTURE AND GEOMETRY OF THE HYDROGEN-BONDED AND HALOGEN-BONDED COMPLEXES. Journal of Theoretical and Computational Chemistry, 2012, 11, 1165-1173. | 1.8       | 12            |
| 61 | Communication: Competition between <i>Ï€</i> â<⁻ <i>Ï€</i> interaction and halogen bond in solution: A combined 13C NMR and density functional theory study. Journal of Chemical Physics, 2012, 136, 141101.                          | 3.0       | 33            |
| 62 | The π··Â-Ï€ Stacking Interactions between Homogeneous Dimers of C6FxI(6–x) (x = 0, 1, 2, 3, 4, and 5): A<br>Comparative Study with the Halogen Bond. Journal of Physical Chemistry A, 2012, 116, 12486-12491.                         | 2.5       | 21            |
| 63 | Effect of carboxylic acid on micelles of a neutral amphiphilic dendro-calix[4]arene. Organic and<br>Biomolecular Chemistry, 2012, 10, 729-735.                                                                                        | 2.8       | 18            |
| 64 | Thioformyl chloride dimer: An excellent model system for the assessment of new computational methods. Computational and Theoretical Chemistry, 2012, 983, 83-87.                                                                      | 2.5       | 2             |
| 65 | Syntheses, Structures, Luminescence, and Magnetic Properties of One-dimensional Lanthanide<br>Coordination Polymers with a Rigid 2,2′-Bipyridine-3,3′,6,6′-tetracarboxylic Acid Ligand. Inorganic<br>Chemistry, 2012, 51, 2170-2177.  | 4.0       | 64            |
| 66 | Novel pyrene derivatives: Synthesis, properties and highly efficient non-doped deep-blue electroluminescent device. Dyes and Pigments, 2012, 92, 732-736.                                                                             | 3.7       | 35            |
| 67 | Structural Competition between Halogen Bonds and Loneâ€Pairâ‹â‹â‹ï€ Interactions in Solution.<br>ChemPhysChem, 2012, 13, 1411-1414.                                                                                                   | 2.1       | 34            |
| 68 | A new class of halogen bonds that avoids the $i_f$ -hole. Chemical Physics Letters, 2012, 532, 27-30.                                                                                                                                 | 2.6       | 31            |
| 69 | On the correlation between bond-length change and vibrational frequency shift in halogen-bonded complexes. Journal of Chemical Physics, 2011, 134, 224303.                                                                            | 3.0       | 32            |
| 70 | Halogen Bond Involving Hypervalent Halogen: CSD Search and Theoretical Study. Journal of Physical<br>Chemistry A, 2011, 115, 9294-9299.                                                                                               | 2.5       | 55            |
| 71 | Symmetrical Bifurcated Halogen Bond: Design and Synthesis. Crystal Growth and Design, 2011, 11, 3622-3628.                                                                                                                            | 3.0       | 74            |
|    |                                                                                                                                                                                                                                       |           |               |

<sup>72</sup>Hydrogen bond and halogen bond inside the carbon nanotube. Journal of Chemical Physics, 2011, 134,<br/>054317.3.018

WEIZHOU WANG

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Highly efficient undoped deep-blue electroluminescent device based on a novel pyrene derivative.<br>Solid-State Electronics, 2010, 54, 524-526.                                                         | 1.4 | 12        |
| 74 | Prolylprolinol atalyzed Asymmetric Michael Addition of Aliphatic Aldehydes to Nitroalkenes.<br>Advanced Synthesis and Catalysis, 2010, 352, 644-650.                                                    | 4.3 | 45        |
| 75 | A theoretical study of the atomic hydrogen binding on small Ag Cu (n+m⩽ 5) clusters. Computational and Theoretical Chemistry, 2010, 959, 75-79.                                                         | 1.5 | 10        |
| 76 | The nature of the bond-length change upon molecule complexation. Collection of Czechoslovak<br>Chemical Communications, 2010, 75, 243-256.                                                              | 1.0 | 7         |
| 77 | On the Difference of the Properties between the Blue-Shifting Halogen Bond and the Blue-Shifting<br>Hydrogen Bond. Journal of Physical Chemistry A, 2010, 114, 7257-7260.                               | 2.5 | 47        |
| 78 | The bifurcate chalcogen bond: Some theoretical observations. Computational and Theoretical Chemistry, 2009, 916, 135-138.                                                                               | 1.5 | 16        |
| 79 | Chalcogen Bond: A Sister Noncovalent Bond to Halogen Bond. Journal of Physical Chemistry A, 2009,<br>113, 8132-8135.                                                                                    | 2.5 | 489       |
| 80 | Theoretical Study on the Complexes of Benzene with Isoelectronic Nitrogen ontaining Heterocycles.<br>ChemPhysChem, 2008, 9, 1003-1009.                                                                  | 2.1 | 64        |
| 81 | Origin of the Xâ^'Hal (Hal = Cl, Br) Bond-Length Change in the Halogen-Bonded Complexes. Journal of<br>Physical Chemistry A, 2008, 112, 4114-4119.                                                      | 2.5 | 115       |
| 82 | Application of Berlin's Theorem to Bond-Length Changes in Isolated Molecules and Red- and<br>Blue-Shifting H-Bonded Clusters. Collection of Czechoslovak Chemical Communications, 2008, 73,<br>862-872. | 1.0 | 10        |
| 83 | Cĩ£¿H Stretching Vibrational Shift of Benzene Dimer: Consistency of Experiment and Calculation.<br>ChemPhysChem, 2007, 8, 2107-2111.                                                                    | 2.1 | 67        |
| 84 | Method-dependent relative stability of hydrogen bonded and π–π stacked structures of the formic<br>acid tetramer. Chemical Physics Letters, 2005, 402, 54-56.                                           | 2.6 | 9         |
| 85 | Self-curl and self-assembly of boric acid clusters. Chemical Physics Letters, 2005, 405, 425-428.                                                                                                       | 2.6 | 16        |
| 86 | Unconventional interaction in N(P)-related systems. Chemical Physics Letters, 2005, 411, 439-444.                                                                                                       | 2.6 | 14        |
| 87 | SN2-like Reaction in Hydrogen-Bonded Complexes:  A Theoretical Study. Journal of Physical Chemistry A,<br>2005, 109, 9353-9355.                                                                         | 2.5 | 1         |
| 88 | Prediction of a Family of Cage-shaped Boric Acid Clusters. Journal of Physical Chemistry B, 2005, 109, 8562-8564.                                                                                       | 2.6 | 17        |
| 89 | Theoretical Study on the Bromomethaneâ^'Water 1:2 Complexes. Journal of Physical Chemistry A, 2005, 109, 8035-8040.                                                                                     | 2.5 | 40        |
| 90 | Theoretical Study of 1,3,4,6,7,9,9b-Heptaazaphenalene and Its Ten Derivatives. Journal of Physical<br>Chemistry A, 2004, 108, 97-106.                                                                   | 2.5 | 46        |

Weizhou Wang

| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Theoretical Study on the Blueshifting Halogen Bond. Journal of Physical Chemistry A, 2004, 108, 1799-1805.                                                      | 2.5 | 186       |
| 92 | Hyperconjugation versus intramolecular hydrogen bond: origin of the conformational preference of gaseous glycine. Chemical Physics Letters, 2003, 370, 147-153. | 2.6 | 26        |
| 93 | An ab initio study of P–Hâ∢P interactions using the PH3â∢PH3 model complex. Computational and Theoretical Chemistry, 2003, 625, 25-30.                          | 1.5 | 9         |
| 94 | Some theoretical observations on the 1:1 glycine zwitterion–water complex. Computational and Theoretical Chemistry, 2003, 626, 127-132.                         | 1.5 | 55        |
| 95 | Effect of CP-corrected gradient optimization on the water-radical (anion) dimmer hypersurface.<br>Computational and Theoretical Chemistry, 2003, 631, 171-180.  | 1.5 | 3         |
| 96 | The 1:1 glycine–water complex: some theoretical observations. Computational and Theoretical Chemistry, 2002, 618, 235-244.                                      | 1.5 | 34        |