
Juraj OrszÃ;gh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4459152/publications.pdf Version: 2024-02-01

ΙΠΟΛΙ ΟΡεζΑιςΗ

#	Article	IF	CITATIONS
1	Dissociative Excitation of Nitromethane Induced by Electron Impact in the Ultraviolet – Visible Spectrum. ChemPhysChem, 2022, 23, e202100705.	2.1	3
2	Atomic Iron and Nickel in the Coma of C/1996 B2 (Hyakutake): Production Rates, Emission Mechanisms, and Possible Parents. Planetary Science Journal, 2021, 2, 228.	3.6	4
3	Electron Induced Emission of Nitrous Oxide in the UV-VIS Spectral Range. Plasma Physics and Technology, 2020, 7, 36-42.	0.3	Ο
4	A locked mode indicator for disruption prediction on JET and ASDEX upgrade. Fusion Engineering and Design, 2019, 138, 254-266.	1.9	8
5	Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall. Nuclear Fusion, 2019, 59, 112021.	3.5	87
6	Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign. Nuclear Materials and Energy, 2019, 18, 258-261.	1.3	10
7	Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 045001.	1.5	1
8	Diagnostics of Collisions between Electrons and Water Molecules in Near-ultraviolet and Visible Wavelengths. Astrophysical Journal, 2019, 885, 167.	4.5	9
9	Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 2019, 516, 202-213.	2.7	18
10	Analysis of the outer divertor hot spot activity in the protection video camera recordings at JET. Fusion Engineering and Design, 2019, 139, 115-123.	1.9	3
11	Improved neutron activation dosimetry for fusion. Fusion Engineering and Design, 2019, 139, 109-114.	1.9	7
12	Neutron spectroscopy measurements of 14 MeV neutrons at unprecedented energy resolution and implications for deuterium–tritium fusion plasma diagnostics. Measurement Science and Technology, 2018, 29, 045502.	2.6	35
13	14 MeV calibration of JET neutron detectors—phase 1: calibration and characterization of the neutron source. Nuclear Fusion, 2018, 58, 026012.	3.5	22
14	Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nature Physics, 2017, 13, 973-978.	16.7	73
15	Dissociative Excitation of Acetylene Induced by Electron Impact: Excitation-emission Cross-sections. Astrophysical Journal, 2017, 841, 17.	4.5	9
16	Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001.	3.5	150
17	Electron impact study of H2 and D2 continuum radiation. Journal of Physics: Conference Series, 2017, 875, 062050.	0.4	0
18	Absolute excitation-emission cross section of electron induced argon excitation. Journal of Physics: Conference Series, 2017, 875, 052023.	0.4	0

Juraj OrszÃigh

#	Article	IF	CITATIONS
19	Electron induced fluorescence of the H ₂ molecule—Balmer lines and Fulcher <i>α</i> system. Plasma Sources Science and Technology, 2016, 25, 065007.	3.1	4
20	Role of NH ₃ in the Electron-Induced Reactions of Adsorbed and Solid Cisplatin. Journal of Physical Chemistry C, 2016, 120, 4112-4120.	3.1	18
21	Dissociative excitation study of iron pentacarbonyl molecule. European Physical Journal D, 2015, 69, 1.	1.3	10
22	Experimental simulation of negative ion chemistry in Martian atmosphere using ion mobility spectrometry-mass spectrometry. European Physical Journal D, 2014, 68, 1.	1.3	4
23	Behaviour of amorphous silicon carbide in Au/a-SiC/Si heterostructures prepared by PECVD technology using two different RF modes. Applied Surface Science, 2013, 269, 143-147.	6.1	4
24	Electron impact excitation of methane: determination of appearance energies for dissociation products. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 045203.	1.5	21
25	Current transport mechanisms of amorphous n-doped silicon carbide/crystalline silicon heterostructure: Impact of nitrogen dopation. , 2012, , .		0
26	Nitrogen second positive system studied by electron induced fluorescence. Nuclear Instruments & Methods in Physics Research B, 2012, 279, 76-79.	1.4	17
27	Influence of the Outer Electrode Material on Ozone Generation in Corona Discharges. Plasma Chemistry and Plasma Processing, 2010, 30, 43-53.	2.4	11
28	Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure. International Journal of Mass Spectrometry, 2008, 272, 12-21.	1.5	62
29	A mass spectrometric study of ions extracted from point to plane DC corona discharge fed by carbon dioxide at atmospheric pressure. International Journal of Mass Spectrometry, 2008, 277, 210-214.	1.5	11
30	Positive and negative corona discharges in flowing carbon dioxide. Journal Physics D: Applied Physics, 2008, 41, 175211.	2.8	7
31	Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide. Physica Scripta, 2008, T131, 014012.	2.5	9
32	Positive dc corona between coaxial electrodes in mixtures of carbon dioxide and oxygen. Physica Scripta, 2008, T131, 014014.	2.5	0
33	A mass spectrometric study of ions extracted from a point-to-plane dc corona discharge in N2O at atmospheric pressure. Journal Physics D: Applied Physics, 2008, 41, 085202.	2.8	5
34	The Mass Spectrometric Analysis of Negative lons Extracted from Point-to-Plane Negative Corona Discharge in Ambient Air AIP Conference Proceedings, 2008, , .	0.4	1
35	A Study of the Physical and Chemical Processes Active in Corona Discharges Fed by Carbon Dioxide. Ozone: Science and Engineering, 2008, 30, 145-151.	2.5	2
36	A Study of the Physical and Chemical Processes Active in Ozone Generation by Carbon Dioxide Fed Corona Discharges. Ozone: Science and Engineering, 2007, 29, 399-404.	2.5	4

#	Article	IF	CITATIONS
37	The role of water and oxygen impurities on ozone production in a negative corona discharge of CO ₂ . Journal Physics D: Applied Physics, 2007, 40, 6646-6650.	2.8	6
38	Ozone Formation in a Coaxial DC Corona Discharge under Carbon Dioxide Gas Flow. Plasma Processes and Polymers, 2007, 4, 694-700.	3.0	8