Yi-Rong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4458033/publications.pdf

Version: 2024-02-01

41 papers 3,561 citations

236925 25 h-index 315739 38 g-index

41 all docs

41 docs citations

times ranked

41

4072 citing authors

#	Article	IF	CITATIONS
1	The Role of c-Jun N-terminal Kinase (JNK) in Apoptosis Induced by Ultraviolet C and \hat{I}^3 Radiation. Journal of Biological Chemistry, 1996, 271, 31929-31936.	3.4	792
2	High Frequency of Epidermal Growth Factor Receptor Mutations with Complex Patterns in Non–Small Cell Lung Cancers Related to Gefitinib Responsiveness in Taiwan. Clinical Cancer Research, 2004, 10, 8195-8203.	7.0	500
3	Persistent Activation of c-Jun N-terminal Kinase 1 (JNK1) in \hat{I}^3 Radiation-induced Apoptosis. Journal of Biological Chemistry, 1996, 271, 631-634.	3.4	428
4	Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene, 1998, 17, 173-178.	5.9	366
5	Molecular Mechanisms of c-Jun N-terminal Kinase-mediated Apoptosis Induced by Anticarcinogenic Isothiocyanates. Journal of Biological Chemistry, 1998, 273, 1769-1775.	3.4	216
6	Design and Synthesis of Tetrahydropyridothieno [2,3- <i>d</i>] pyrimidine Scaffold Based Epidermal Growth Factor Receptor (EGFR) Kinase Inhibitors: The Role of Side Chain Chirality and Michael Acceptor Group for Maximal Potency. Journal of Medicinal Chemistry, 2010, 53, 7316-7326.	6.4	100
7	Comparison of IHC, FISH and RT-PCR Methods for Detection of ALK Rearrangements in 312 Non-Small Cell Lung Cancer Patients in Taiwan. PLoS ONE, 2013, 8, e70839.	2.5	92
8	Reversed mutation rates of <i>KRAS</i> and <i>EGFR</i> genes in adenocarcinoma of the lung in Taiwan and their implications. Cancer, 2008, 113 , $3199-3208$.	4.1	84
9	Phenylethyl Isothiocyanate Induces Apoptotic Signaling via Suppressing Phosphatase Activity against c-Jun N-terminal Kinase. Journal of Biological Chemistry, 2002, 277, 39334-39342.	3.4	81
10	c-Jun N-Terminal Kinase Mediates Apoptotic Signaling Induced by <i>N</i> -(4-Hydroxyphenyl)retinamide. Molecular Pharmacology, 1999, 56, 1271-1279.	2.3	79
11	Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate. Oncogene, 2001, 20, 367-374.	5.9	79
12	Caspase-mediated cleavage and functional changes of hematopoietic progenitor kinase 1 (HPK1). Oncogene, 1999, 18, 7370-7377.	5.9	67
13	The SH3 Domain-containing Adaptor HIP-55 Mediates c-Jun N-terminal Kinase Activation in T Cell Receptor Signaling. Journal of Biological Chemistry, 2003, 278, 52195-52202.	3.4	51
14	Prognostic Implications of Epidermal Growth Factor Receptor and KRAS Gene Mutations and Epidermal Growth Factor Receptor Gene Copy Numbers in Patients with Surgically Resectable Non-small Cell Lung Cancer in Taiwan. Journal of Thoracic Oncology, 2010, 5, 1175-1184.	1.1	50
15	Increased epidermal growth factor receptor (EGFR) gene copy number is strongly associated with EGFR mutations and adenocarcinoma in non-small cell lung cancers: A chromogenic in situ hybridization study of 182 patients. Lung Cancer, 2008, 61, 328-339.	2.0	45
16	EGFR over-expression in non-small cell lung cancers harboring EGFR mutations is associated with marked down-regulation of CD82. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1540-1549.	3.8	45
17	Vaccinia H1-related Phosphatase Is a Phosphatase of ErbB Receptors and Is Down-regulated in Non-small Cell Lung Cancer. Journal of Biological Chemistry, 2011, 286, 10177-10184.	3.4	41
18	JNK Pathway-associated Phosphatase Dephosphorylates Focal Adhesion Kinase and Suppresses Cell Migration. Journal of Biological Chemistry, 2010, 285, 5472-5478.	3.4	40

#	Article	IF	CITATIONS
19	Caspase-Mediated Cleavage of Actin-Binding and SH3-Domain-Containing Proteins Cortactin, HS1, and HIP-55 during Apoptosis. Biochemical and Biophysical Research Communications, 2001, 288, 981-989.	2.1	37
20	MAP4K3/GLK Promotes Lung Cancer Metastasis by Phosphorylating and Activating IQGAP1. Cancer Research, 2019, 79, 4978-4993.	0.9	36
21	Biochemical and biological characterization of a neuroendocrine-associated phosphatase. Journal of Neurochemistry, 2006, 98, 89-101.	3.9	35
22	EGFR mutants found in non-small cell lung cancer show different levels of sensitivity to suppression of Src: implications in targeting therapy. Oncogene, 2008, 27, 957-965.	5.9	32
23	The dimeric transmembrane domain of prolyl dipeptidase DPPâ€IV contributes to its quaternary structure and enzymatic activities. Protein Science, 2010, 19, 1627-1638.	7.6	29
24	MCT-1 oncogene downregulates p53 and destabilizes genome structure in the response to DNA double-strand damage. DNA Repair, 2007, 6, 1319-1332.	2.8	28
25	Increased expression of Dyrk1a in HPV16 immortalized Keratinocytes enable evasion of apoptosis. International Journal of Cancer, 2007, 120, 2377-2385.	5.1	26
26	Akt suppresses DLK for maintaining self-renewal of mouse embryonic stem cells. Cell Cycle, 2015, 14, 1207-1217.	2.6	24
27	Clinical Implications of High MET Gene Dosage in Non-Small Cell Lung Cancer Patients without Previous Tyrosine Kinase Inhibitor Treatment. Journal of Thoracic Oncology, 2011, 6, 2027-2035.	1.1	23
28	Dysregulated Kras/YY1/ZNF322A/Shh transcriptional axis enhances neo-angiogenesis to promote lung cancer progression. Theranostics, 2020, 10, 10001-10015.	10.0	22
29	Deficiency in VHR/DUSP3, a suppressor of focal adhesion kinase, reveals its role in regulating cell adhesion and migration. Oncogene, 2017, 36, 6509-6517.	5.9	21
30	NEAP causes downâ€regulation of EGFR, subsequently induces the suppression of NGFâ€induced differentiation in PC12 cells. Journal of Neurochemistry, 2008, 107, 1544-1555.	3.9	17
31	Protein Phosphorylation Profiling Using an In Situ Proximity Ligation Assay: Phosphorylation of AURKA-Elicited EGFR-Thr654 and EGFR-Ser1046 in Lung Cancer Cells. PLoS ONE, 2013, 8, e55657.	2.5	14
32	NEAP/DUSP26 suppresses receptor tyrosine kinases and regulates neuronal development in zebrafish. Scientific Reports, 2017, 7, 5241.	3.3	13
33	A cell-based high-throughput screen for epidermal growth factor receptor pathway inhibitors. Analytical Biochemistry, 2008, 377, 89-94.	2.4	12
34	Lack of Correlation in JNK Activation and p53-Dependent Fas Expression Induced by Apoptotic Stimuli. Biochemical and Biophysical Research Communications, 1999, 256, 595-599.	2.1	10
35	UTF1 deficiency promotes retinoic acid-induced neuronal differentiation in P19 embryonal carcinoma cells. International Journal of Biochemistry and Cell Biology, 2012, 44, 350-357.	2.8	9
36	EGFR Mutation-Harboring Lung Cancer Cells Produce CLEC11A with Endothelial Trophic and Tumor-Promoting Activities. Cancers, 2022, 14, 1356.	3.7	8

YI-RONG CHEN

#	Article	IF	CITATIONS
37	Correlation of anaplastic lymphoma kinase overexpression and the EML4-ALK fusion gene in non-small cell lung cancer by immunohistochemical study. Biomedical Journal, 2012, 35, 309.	3.1	6
38	DUSP3 regulates phosphorylation-mediated degradation of occludin and is required for maintaining epithelial tight junction. Journal of Biomedical Science, 2022, 29, .	7.0	3
39	Chimeric mouse models for lung adenocarcinomas. Future Oncology, 2010, 6, 901-903.	2.4	O
40	Changes of serum amino acid profiles by an epidermal growth factor receptor mutation and benzo[a]pyrene in mouse lung tumorigenesis. Toxicology Research, 2016, 5, 1182-1192.	2.1	0
41	Abstract B02: Oncogene MCT-1 deregulates oxidative metabolism and promotes tumor metastasis via YY1 signaling network. , 2016, , .		0