Nam-Hai Chua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/445738/publications.pdf

Version: 2024-02-01

133 papers 18,857 citations

64 h-index 131 g-index

137 all docs

137 docs citations

137 times ranked

15719 citing authors

#	Article	IF	CITATIONS
1	PLncDB V2.0: a comprehensive encyclopedia of plant long noncoding RNAs. Nucleic Acids Research, 2021, 49, D1489-D1495.	14.5	83
2	Differential requirement of MED14/17 recruitment for activation of heat inducible genes. New Phytologist, 2021, 229, 3360-3376.	7.3	10
3	Rapid Detection and Quantification of Plant Innate Immunity Response Using Raman Spectroscopy. Frontiers in Plant Science, 2021, 12, 746586.	3.6	4
4	Ubiquitin-specific proteases UBP12 and UBP13 promote shade avoidance response by enhancing PIF7 stability. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
5	Species-independent analytical tools for next-generation agriculture. Nature Plants, 2020, 6, 1408-1417.	9.3	63
6	Rapid metabolite response in leaf blade and petiole as a marker for shade avoidance syndrome. Plant Methods, 2020, 16, 144.	4.3	9
7	Early Diagnosis and Management of Nitrogen Deficiency in Plants Utilizing Raman Spectroscopy. Frontiers in Plant Science, 2020, 11, 663.	3.6	29
8	Characterization of a sweet basil acyltransferase involved in eugenol biosynthesis. Journal of Experimental Botany, 2020, 71, 3638-3652.	4.8	21
9	Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors. Nature Plants, 2020, 6, 404-415.	9.3	157
10	Regulation of flowering time by SPL10/MED25 module in Arabidopsis. New Phytologist, 2019, 224, 493-504.	7.3	24
11	Arabidopsis ubiquitinâ€specific proteases UBP12 and UBP13 shape ORE1 levels during leaf senescence induced by nitrogen deficiency. New Phytologist, 2019, 223, 1447-1460.	7.3	58
12	Analysis of Interaction Between Long Noncoding RNAs and Protein by RNA Immunoprecipitation in Arabidopsis. Methods in Molecular Biology, 2019, 1933, 289-295.	0.9	5
13	Trimolecular Fluorescence Complementation (TriFC) Assay for Visualization of RNA-Protein Interaction in Plants. Methods in Molecular Biology, 2019, 1933, 297-303.	0.9	3
14	Identification of Long Noncoding RNA-Protein Interactions Through In Vitro RNA Pull-Down Assay with Plant Nuclear Extracts. Methods in Molecular Biology, 2019, 1933, 279-288.	0.9	6
15	Bioinformatics Approaches to Studying Plant Long Noncoding RNAs (IncRNAs): Identification and Functional Interpretation of IncRNAs from RNA-Seq Data Sets. Methods in Molecular Biology, 2019, 1933, 197-205.	0.9	8
16	Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnology, 2019, 14, 447-455.	31.5	364
17	CYP79D73 Participates in Biosynthesis of Floral Scent Compound 2-Phenylethanol in <i>Plumeria rubra</i> . Plant Physiology, 2019, 180, 171-184.	4.8	32
18	ELF18â€INDUCED LONG NONCODING RNAÂ1 evicts fibrillarin from mediator subunit to enhance <i>PATHOGENESISâ€RELATED GENEÂ1</i> (<i>PR1</i>) expression. New Phytologist, 2019, 221, 2067-2079.	7.3	87

#	Article	IF	Citations
19	Visualizing nuclearâ€localized <scp>RNA</scp> using transient expression system in plants. Genes To Cells, 2018, 23, 105-111.	1.2	2
20	Developing genome-wide SNPs and constructing an ultrahigh-density linkage map in oil palm. Scientific Reports, 2018, 8, 691.	3.3	31
21	Overexpression of a Transcription Factor Increases Lipid Content in a Woody Perennial Jatropha curcas. Frontiers in Plant Science, 2018, 9, 1479.	3.6	23
22	Arabidopsis NITROGEN LIMITATION ADAPTATION regulates ORE1 homeostasis during senescence induced by nitrogen deficiency. Nature Plants, 2018, 4, 898-903.	9.3	92
23	A noncoding <scp>RNA</scp> transcribed from the <i><scp>AGAMOUS</scp></i> (<i><scp>AG</scp></i>) second intron binds to <scp>CURLY LEAF</scp> and represses <i><scp>AG</scp></i> expression in leaves. New Phytologist, 2018, 219, 1480-1491.	7. 3	76
24	ELF18-INDUCED LONG-NONCODING RNA Associates with Mediator to Enhance Expression of Innate Immune Response Genes in Arabidopsis. Plant Cell, 2017, 29, 1024-1038.	6.6	191
25	Dehydration stress extends mRNA 3′ untranslated regions with noncoding RNA functions in <i>Arabidopsis</i> . Genome Research, 2017, 27, 1427-1436.	5.5	31
26	Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds. BMC Genomics, 2017, 18, 463.	2.8	32
27	Genome-wide identification of markers for selecting higher oil content in oil palm. BMC Plant Biology, 2017, 17, 93.	3.6	43
28	Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm. Scientific Reports, 2017, 7, 439.	3.3	33
29	The Deubiquitinating Enzymes UBP12 and UBP13 Positively Regulate MYC2 Levels in Jasmonate Responses. Plant Cell, 2017, 29, 1406-1424.	6.6	80
30	The antiphasic regulatory module comprising <i>CDF5</i> and its antisense <scp>RNA </scp> <i>FLORE</i> links the circadian clock to photoperiodic flowering. New Phytologist, 2017, 216, 854-867.	7.3	112
31	Coâ€expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants. New Phytologist, 2017, 213, 1133-1144.	7.3	46
32	Comparative transcriptome analysis of oil palm flowers reveals an EAR-motif-containing R2R3-MYB that modulates phenylpropene biosynthesis. BMC Plant Biology, 2017, 17, 219.	3.6	9
33	Trimolecular Fluorescence Complementation (TriFC) Assay for Direct Visualization of RNA-Protein Interaction in planta. Bio-protocol, 2017, 7, e2579.	0.4	2
34	<i>CURLY LEAF</i> Regulates Gene Sets Coordinating Seed Size and Lipid Biosynthesis. Plant Physiology, 2016, 171, 424-436.	4.8	57
35	HSI2 Repressor Recruits MED13 and HDA6 to Down-Regulate Seed Maturation Gene Expression Directly During Arabidopsis Early Seedling Growth. Plant and Cell Physiology, 2016, 57, 1689-1706.	3.1	61
36	Metabolic engineering of terpene biosynthesis in plants using a trichomeâ€specific transcription factor ⟨i>Ms <scp>YABBY</scp> 5 from spearmint (⟨i>Mentha spicata). Plant Biotechnology Journal, 2016, 14, 1619-1632.	8.3	111

#	Article	IF	CITATIONS
37	Draft genome sequence of an elite <i>Dura</i> palm and whole-genome patterns of DNA variation in oil palm. DNA Research, 2016, 23, 527-533.	3.4	34
38	The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor. Plant Physiology, 2016, 171, 1951-1964.	4.8	65
39	Noncoding and coding transcriptome responses of a marine diatom to phosphate fluctuations. New Phytologist, 2016, 210, 497-510.	7.3	118
40	Light-Inducible MiR163 Targets <i>PXMT1</i> Transcripts to Promote Seed Germination and Primary Root Elongation in Arabidopsis. Plant Physiology, 2016, 170, 1772-1782.	4.8	51
41	JMJ24 targets CHROMOMETHYLASE3 for proteasomal degradation in <i>Arabidopsis</i> . Genes and Development, 2016, 30, 251-256.	5.9	27
42	The role of miR156/ <scp>SPL</scp> s modules in Arabidopsis lateral root development. Plant Journal, 2015, 83, 673-685.	5.7	194
43	Analysis of nonâ€coding transcriptome in rice and maize uncovers roles of conserved Inc <scp>RNA</scp> s associated with agriculture traits. Plant Journal, 2015, 84, 404-416.	5.7	164
44	<scp>JMJ</scp> 24 binds to <scp>RDR</scp> 2 and is required for the basal level transcription of silenced loci in Arabidopsis. Plant Journal, 2015, 83, 770-782.	5.7	12
45	Geminivirus Activates ASYMMETRIC LEAVES 2 to Accelerate Cytoplasmic DCP2-Mediated mRNA Turnover and Weakens RNA Silencing in Arabidopsis. PLoS Pathogens, 2015, 11, e1005196.	4.7	61
46	Long noncoding <scp>RNA</scp> transcriptome of plants. Plant Biotechnology Journal, 2015, 13, 319-328.	8.3	246
47	Inverted-Repeat RNAs Targeting <i>FT </i> Intronic Regions Promote <i>FT </i> Expression in Arabidopsis. Plant and Cell Physiology, 2015, 56, 1667-1678.	3.1	16
48	PLANT U-BOX PROTEIN10 Regulates MYC2 Stability in Arabidopsis. Plant Cell, 2015, 27, 2016-2031.	6.6	93
49	The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase. Journal of Experimental Botany, 2015, 66, 3959-3975.	4.8	50
50	A consensus linkage map of oil palm and a major QTL for stem height. Scientific Reports, 2015, 5, 8232.	3.3	49
51	Comparative transcriptomics unravel biochemical specialization of leaf tissues of Stevia (Stevia) Tj ETQq1 1 0.784	·314 rgBT /	/Qyerlock 1
52	Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance. Plant Cell, 2014, 26, 4991-5008.	6.6	224
53	Engineering geminivirus resistance in Jatropha curcus. Biotechnology for Biofuels, 2014, 7, 149.	6.2	30
54	Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in <i>Arabidopsis</i> . Genome Research, 2014, 24, 444-453.	5.5	316

#	Article	IF	CITATIONS
55	Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnology for Biofuels, 2014, 7, 36.	6.2	82
56	NITROGEN LIMITATION ADAPTATION Recruits PHOSPHATE2 to Target the Phosphate Transporter PT2 for Degradation during the Regulation of <i>Arabidopsis</i> Phosphate Homeostasis. Plant Cell, 2014, 26, 454-464.	6.6	216
57	Arabidopsis histone methyltransferase SET DOMAIN GROUP2 is required for regulation of various hormone responsive genes. Journal of Plant Biology, 2013, 56, 39-48.	2.1	8
58	PLncDB: plant long non-coding RNA database. Bioinformatics, 2013, 29, 1068-1071.	4.1	163
59	Genome-Wide Analysis Uncovers Regulation of Long Intergenic Noncoding RNAs in <i>Arabidopsis</i> Plant Cell, 2012, 24, 4333-4345.	6.6	656
60	Strategies and mechanisms of plant virus resistance. Plant Biotechnology Reports, 2007, 1, 125-134.	1.5	42
61	Cytokinin affects circadian-clock oscillation in a phytochrome B- and Arabidopsis response regulator 4-dependent manner. Physiologia Plantarum, 2006, 127, 277-292.	5.2	28
62	Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 2006, 1, 641-646.	12.0	1,758
63	MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development. Plant Cell, 2005, 17, 1376-1386.	6.6	950
64	The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant Journal, 2002, 30, 349-359.	5.7	573
65	SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 2002, 419, 167-170.	27.8	417
66	ADF Proteins Are Involved in the Control of Flowering and Regulate F-Actin Organization, Cell Expansion, and Organ Growth in Arabidopsis. Plant Cell, 2001, 13, 1333-1346.	6.6	184
67	Molecular identification and characterization of the Arabidopsis AtADF1, AtADFS and AtADF6 genes. Plant Molecular Biology, 2001, 45, 517-527.	3.9	71
68	Chemical-regulated, site-specific DNA excision in transgenic plants. Nature Biotechnology, 2001, 19, 157-161.	17.5	313
69	Arabidopsis PLC1 Is Required for Secondary Responses to Abscisic Acid Signals. Plant Cell, 2001, 13, 1143-1154.	6.6	187
70	Overexpression of Arabidopsis <i>ESR1</i> Induces Initiation of Shoot Regeneration. Plant Cell, 2001, 13, 2609-2618.	6.6	266
71	A comparative structural analysis of the ADF/Cofilin family. Proteins: Structure, Function and Bioinformatics, 2000, 41, 374-384.	2.6	73
72	An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant Journal, 2000, 24, 265-273.	5.7	1,052

#	Article	IF	Citations
73	A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nature Cell Biology, 2000, 2, 226-231.	10.3	246
74	KORRIGAN, an Arabidopsis Endo-1,4- $\hat{1}^2$ -Glucanase, Localizes to the Cell Plate by Polarized Targeting and Is Essential for Cytokinesis. Plant Cell, 2000, 12, 1137-1152.	6.6	258
75	Profilin Plays a Role in Cell Elongation, Cell Shape Maintenance, and Flowering in Arabidopsis. Plant Physiology, 2000, 124, 1637-1647.	4.8	194
76	Microtubule Stabilization Leads to Growth Reorientation in Arabidopsis Trichomes. Plant Cell, 2000, 12, 465-477.	6.6	223
77	Villin-Like Actin-Binding Proteins Are Expressed Ubiquitously in Arabidopsis. Plant Physiology, 2000, 122, 35-48.	4.8	111
78	A Null Mutation in a bZIP Factor Confers ABA-Insensitivity in Arabidopsis thaliana. Plant and Cell Physiology, 2000, 41, 541-547.	3.1	268
79	Cell Wall Alterations in the Arabidopsis emb30 Mutant. Plant Cell, 2000, 12, 2047-2059.	6.6	86
80	AnArabidopsismutant with deregulated ABA gene expression: implications for negative regulator function. Plant Journal, 1999, 17, 363-372.	5.7	50
81	A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant Journal, 1999, 18, 443-448.	5.7	100
82	Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nature Biotechnology, 1999, 17, 916-919.	17. 5	130
83	Alternate Plant Transformation Strategies Using Chemical-Inducible Promoters. Nature Biotechnology, 1999, 17, 27-27.	17.5	0
84	Modulation of GT-1 DNA-binding activity by calcium-dependent phosphorylation. Plant Molecular Biology, 1999, 40, 373-386.	3.9	42
85	The Arabidopsis actin-related protein 2 (AtARP2) promoter directs expression in xylem precursor cells and pollen., 1999, 41, 65-73.		53
86	Overexpression of rice phytochrome A partially complements phytochrome B deficiency in Arabidopsis. Planta, 1999, 207, 401-409.	3.2	14
87	Identification by PCR of receptor-like protein kinases from Arabidopsis flowers. Plant Molecular Biology, 1998, 37, 587-596.	3.9	42
88	Different roles for calcium and calmodulin in phytochrome―and UVâ€regulated expression of chalcone synthase. Plant Journal, 1998, 13, 763-772.	5.7	57
89	Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. Plant Journal, 1998, 14, 247-257.	5.7	153
90	An Arabidopsis Mutant Hypersensitive to Red and Far-Red Light Signals. Plant Cell, 1998, 10, 889-904.	6.6	103

#	Article	IF	Citations
91	The Arabidopsis DIMINUTO/DWARF1 Gene Encodes a Protein Involved in Steroid Synthesis. Plant Cell, 1998, 10, 1677-1690.	6.6	276
92	Expression of human muscarinic cholinergic receptors in tobacco. Plant Molecular Biology, 1997, 34, 357-362.	3.9	8
93	In vitro flowering ofDendrobium candidum. Science in China Series C: Life Sciences, 1997, 40, 35-42.	1.3	14
94	Light regulated transcription in higher plants. Journal of Plant Research, 1997, 110, 131-139.	2.4	21
95	Phytochrome and UV signal transduction pathways. Acta Physiologiae Plantarum, 1997, 19, 475-483.	2.1	5
96	A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant Journal, 1997, 11, 605-612.	5.7	896
97	An Arabidopsis mutant showing reduced feedback inhibition of photosynthesis. Plant Journal, 1997, 12, 1011-1020.	5.7	46
98	Improvement of arabidopsis mutant screens based on luciferase imagingin planta. Plant Molecular Biology Reporter, 1996, 14, 320-329.	1.8	11
99	Arabidopsis profilins are functionally similar to yeast profilins: identification of a vascular bundle-specific profilin and a pollen-specific profilin. Plant Journal, 1996, 10, 269-279.	5.7	107
100	Functional analysis of yeast-derived phytochrome A and B phycocyanobilin adducts. Plant Journal, 1996, 10, 625-636.	5.7	71
101	Identification of plant cytoskeletal, cell cycle-related and polarity-related proteins using Schizosaccharomyces pombe. Plant Journal, 1996, 10, 761-769.	5.7	67
102	Calcium and cGMP target distinct phytochrome-responsive elements. Plant Journal, 1996, 10, 1149-1154.	5.7	59
103	fhy1 defines a branch point in phytochrome A signal transduction pathways for gene expression. Plant Journal, 1996, 10, 1155-1161.	5.7	71
104	Expression of three members of the calcium-dependent protein kinase gene family in Arabidopsis thaliana. Plant Molecular Biology, 1996, 30, 1259-1275.	3.9	70
105	Identification of an immediate-early salicylic acid-inducible tobacco gene and characterization of induction by other compounds. Plant Molecular Biology, 1996, 31, 1061-1072.	3.9	104
106	The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation. Plant Journal, 1994, 6, 441-446.	5.7	81
107	bZIP proteins bind to a palindromic sequence without an ACGT core located in a seed-specific element of the pea lectin promoter. Plant Journal, 1994, 6, 133-140.	5 .7	58
108	Rice phytochrome A controls apical hook opening after a single light pulse in transgenic tobacco seedlings. Plant Journal, 1994, 6, 935-940.	5.7	5

#	Article	IF	CITATIONS
109	Immediate Early Transcription Activation by Salicylic Acid via the Cauliflower Mosaic Virus as-1 Element. Plant Cell, 1994, 6, 863.	6.6	37
110	Proembryo culture: ⟨i⟩in vitro⟨ i⟩ development of early globularâ€stage zygotic embryos from ⟨i⟩Brassica juncea⟨ i⟩. Plant Journal, 1993, 3, 291-300.	5.7	47
111	In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B. FEBS Journal, 1993, 215, 587-594.	0.2	70
112	Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed. Plant Molecular Biology, 1992, 19, 473-484.	3.9	124
113	Characterization of cymbidium mosaic virus coat protein gene and its expression in transgenic tobacco plants. Plant Molecular Biology, 1992, 18, 1091-1099.	3.9	36
114	The promoter of the rice gene GOS2 is active in various different monocot tissues and binds rice nuclear factor ASF-1 Plant Journal, 1992, 2, 837-844.	5.7	50
115	Crystal structure of TFIID TATA-box binding protein. Nature, 1992, 360, 40-46.	27.8	430
116	Detection and localization of viruses in orchids by tissue-print hybridization. Plant Pathology, 1992, 41, 355-361.	2.4	21
117	Gene isolation with the Polymerase Chain Reaction. , 1992, , 342-356.		6
118	Transformation of Melon (Cucumis melo L.) and Expression from the Cauliflower Mosaic Virus 35S Promoter in Transgenic Melon Plants. Nature Biotechnology, 1991, 9, 858-863.	17.5	64
119	The tobacco transcription activator TGA1a binds to a sequence in the $5\hat{a}\in^2$ upstream region of a gene encoding a TGA1a-related protein. Molecular Genetics and Genomics, 1991, 229, 181-188.	2.4	45
120	Arabidopsis thaliana contains two genes for TFIID. Nature, 1990, 346, 390-394.	27.8	170
121	Accurate transcription of plant genesin vitro using a wheat germ-chromatin extract. Plant Molecular Biology Reporter, 1990, 8, 114-123.	1.8	12
122	Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature, 1989, 340, 727-730.	27.8	458
123	Rapid Production of Transgenic Flowering Shoots and F1 Progeny from Nicotiana plumbaginifolia Epidermal Peels. Nature Biotechnology, 1987, 5, 1081-1084.	17.5	31
124	Transgenic Plants of Brassica napus L Nature Biotechnology, 1987, 5, 815-817.	17.5	86
125	Chloroplast DNA gyrase and in vitro regulation of transcription by template topology and novobiocin. Plant Molecular Biology, 1987, 8, 415-424.	3.9	88
126	Plant cells do not properly recognize animal gene polyadenylation signals. Plant Molecular Biology, 1987, 8, 23-35.	3.9	62

#	Article	IF	CITATION
127	Targeting of bacterial chloramphenicol acetyltransferase to mitochondria in transgenic plants. Nature, 1987, 328, 340-342.	27.8	159
128	Characterization of an rbcS gene from Nicotiana plumbaginifolia and expression of an rbcS-CAT chimeric gene in homologous and heterologous nuclear background. Molecular Genetics and Genomics, 1986, 205, 193-200.	2.4	35
129	Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 1985, 313, 810-812.	27.8	1,333
130	A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea. Nature, 1985, 315, 200-204.	27.8	204
131	Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco. Nature, 1985, 316, 750-752.	27.8	131
132	Light-regulated expression of a pea ribulose-1,5-bisphosphate carboxylase small subunit gene in transformed plant cells. Science, 1984, 224, 838-843.	12.6	139
133	Structural Analysis of Nuclear Genes Coding for the Precursor to the Small Subunit of Wheat Ribulose–1,5–Bisphosphate Carboxylase. Nature Biotechnology, 1983, 1, 55-61.	17.5	97