Mingjun Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4456240/publications.pdf Version: 2024-02-01

MINCHIN LINC

#	Article	IF	CITATIONS
1	Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodiumâ€lon Batteries with Ultralong Cycle Life. Advanced Materials, 2015, 27, 7861-7866.	21.0	1,055
2	Porous NiCo ₂ O ₄ spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. Journal of Materials Chemistry A, 2015, 3, 866-877.	10.3	282
3	First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. Journal of Materials Chemistry A, 2014, 2, 5358.	10.3	222
4	Ti ³⁺ Selfâ€Doped Dark Rutile TiO ₂ Ultrafine Nanorods with Durable Highâ€Rate Capability for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2015, 25, 6793-6801.	14.9	221
5	One-Dimensional Rod-Like Sb ₂ S ₃ -Based Anode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 19362-19369.	8.0	218
6	Carbon dots supported upon N-doped TiO ₂ nanorods applied into sodium and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5648-5655.	10.3	215
7	Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 2971-2977.	10.3	156
8	Controllable Chainâ€Length for Covalent Sulfur–Carbon Materials Enabling Stable and Highâ€Capacity Sodium Storage. Advanced Energy Materials, 2019, 9, 1803478.	19.5	145
9	Graphene-Embedded Co ₃ O ₄ Rose-Spheres for Enhanced Performance in Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 9662-9668.	8.0	133
10	Alternating Voltage Introduced NiCo Double Hydroxide Layered Nanoflakes for an Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2015, 7, 22741-22744.	8.0	117
11	Facile Synthesis of ZnS/N,S Co-doped Carbon Composite from Zinc Metal Complex for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 704-712.	8.0	108
12	Carbon quantum dot coated Mn ₃ O ₄ with enhanced performances for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16824-16830.	10.3	100
13	Enhanced sodium storage behavior of carbon coated anatase TiO ₂ hollow spheres. Journal of Materials Chemistry A, 2015, 3, 18944-18952.	10.3	96
14	Surfaceâ€Driven Energy Storage Behavior of Dualâ€Heteroatoms Functionalized Carbon Material. Advanced Functional Materials, 2019, 29, 1900941.	14.9	68
15	Binding low crystalline MoS ₂ nanoflakes on nitrogen-doped carbon nanotube: towards high-rate lithium and sodium storage. Journal of Materials Chemistry A, 2019, 7, 6439-6449.	10.3	65
16	Amorphous RuO2 coated on carbon spheres as excellent electrode materials for supercapacitors. RSC Advances, 2014, 4, 6927.	3.6	59
17	Cypress leaf-like Sb as anode material for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17549-17552.	10.3	57
18	Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 26118-26125.	8.0	55

Mingjun Jing

#	Article	IF	CITATIONS
19	Edge-Rich Quasi-Mesoporous Nitrogen-Doped Carbon Framework Derived from Palm Tree Bark Hair for Electrochemical Applications. ACS Applied Materials & Interfaces, 2018, 10, 27047-27055.	8.0	49
20	Dual Functions of Potassium Antimony(III)â€Tartrate in Tuning Antimony/Carbon Composites for Longâ€Life Naâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1705744.	14.9	42
21	Self-assembly of porous CuO nanospheres decorated on reduced graphene oxide with enhanced lithium storage performance. RSC Advances, 2017, 7, 10376-10384.	3.6	41
22	Binding ZnO nanorods in reduced graphene oxide via facile electrochemical method for Na-ion battery. Applied Surface Science, 2019, 463, 986-993.	6.1	41
23	Chemâ€Bonding and Physâ€Trapping Se Electrode for Longâ€Life Rechargeable Batteries. Advanced Functional Materials, 2019, 29, 1809014.	14.9	36
24	Alternating voltage induced porous Co ₃ O ₄ sheets: an exploration of its supercapacity properties. RSC Advances, 2015, 5, 177-183.	3.6	17
25	Sodiumâ€ion Batteries: Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodiumâ€ion Batteries with Ultralong Cycle Life (Adv. Mater. 47/2015). Advanced Materials, 2015, 27, 7895-7895.	21.0	10
26	In situ growth of ultrashort rice-like CuO nanorods supported on reduced graphene oxide nanosheets and their lithium storage performance. Ionics, 2017, 23, 607-616.	2.4	8
27	Zn ₂ SnO ₄ coated reduced graphene oxide nanoribbons with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Research, 2016, 31, 3666-3674.	2.6	7
28	RGO–RGONRs–Zn2SnO4 Composite with Three-Dimensional Hierarchical Structure for Use in Lithium-Ion Batteries. Journal of Electronic Materials, 2018, 47, 422-429.	2.2	4
29	Dataset analysis on Cu9S5 material structure and its electrochemical behavior as anode for sodium-ion batteries. Data in Brief, 2018, 20, 790-793.	1.0	2